Articles about |
Electromagnetism |
---|
An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an electromagnetic wave . [2] [3]
The way in which charges and currents (i.e. streams of charges) interact with the electromagnetic field is described by Maxwell's equations [4] and the Lorentz force law. [5] Maxwell's equations detail how the electric field converges towards or diverges away from electric charges, how the magnetic field curls around electrical currents, and how changes in the electric and magnetic fields influence each other. The Lorentz force law states that a charge subject to an electric field feels a force along the direction of the field, and a charge moving through a magnetic field feels a force that is perpendicular both to the magnetic field and to its direction of motion.
The electromagnetic field is described by classical electrodynamics, an example of a classical field theory. This theory describes many macroscopic physical phenomena accurately. [6] However, it was unable to explain the photoelectric effect and atomic absorption spectroscopy, experiments at the atomic scale. That required the use of quantum mechanics, specifically the quantization of the electromagnetic field and the development of quantum electrodynamics.
The empirical investigation of electromagnetism is at least as old as the ancient Greek philosopher, mathematician and scientist Thales of Miletus, who around 600 BCE described his experiments rubbing fur of animals on various materials such as amber creating static electricity. [7] By the 18th century, it was understood that objects can carry positive or negative electric charge, that two objects carrying charge of the same sign repel each other, that two objects carrying charges of opposite sign attract one another, and that the strength of this force falls off as the square of the distance between them. Michael Faraday visualized this in terms of the charges interacting via the electric field. An electric field is produced when the charge is stationary with respect to an observer measuring the properties of the charge, and a magnetic field as well as an electric field are produced when the charge moves, creating an electric current with respect to this observer. Over time, it was realized that the electric and magnetic fields are better thought of as two parts of a greater whole—the electromagnetic field. In 1820, Hans Christian Ørsted showed that an electric current can deflect a nearby compass needle, establishing that electricity and magnetism are closely related phenomena. [8] Faraday then made the seminal observation that time-varying magnetic fields could induce electric currents in 1831.
In 1861, James Clerk Maxwell synthesized all the work to date on electrical and magnetic phenomena into a single mathematical theory, from which he then deduced that light is an electromagnetic wave. Maxwell's continuous field theory was very successful until evidence supporting the atomic model of matter emerged. Beginning in 1877, Hendrik Lorentz developed an atomic model of electromagnetism and in 1897 J. J. Thomson completed experiments that defined the electron. The Lorentz theory works for free charges in electromagnetic fields, but fails to predict the energy spectrum for bound charges in atoms and molecules. For that problem, quantum mechanics is needed, ultimately leading to the theory of quantum electrodynamics.
Practical applications of the new understanding of electromagnetic fields emerged in the late 1800s. The electrical generator and motor were invented using only the empirical findings like Faraday's and Ampere's laws combined with practical experience.
There are different mathematical ways of representing the electromagnetic field. The first one views the electric and magnetic fields as three-dimensional vector fields. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field).
If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations. [9]
With the advent of special relativity, physical laws became amenable to the formalism of tensors. Maxwell's equations can be written in tensor form, generally viewed by physicists as a more elegant means of expressing physical laws.
The behavior of electric and magnetic fields, whether in cases of electrostatics, magnetostatics, or electrodynamics (electromagnetic fields), is governed by Maxwell's equations. In the vector field formalism, these are:
where is the charge density, which is a function of time and position, is the vacuum permittivity, is the vacuum permeability, and J is the current density vector, also a function of time and position. Inside a linear material, Maxwell's equations change by switching the permeability and permittivity of free space with the permeability and permittivity of the linear material in question. Inside other materials which possess more complex responses to electromagnetic fields, these terms are often represented by complex numbers, or tensors.
The Lorentz force law governs the interaction of the electromagnetic field with charged matter.
When a field travels across to different media, the behavior of the field changes according to the properties of the media. [10]
The Maxwell equations simplify when the charge density at each point in space does not change over time and all electric currents likewise remain constant. All of the time derivatives vanish from the equations, leaving two expressions that involve the electric field, and along with two formulae that involve the magnetic field: and These expressions are the basic equations of electrostatics, which focuses on situations where electrical charges do not move, and magnetostatics, the corresponding area of magnetic phenomena. [11]
Whether a physical effect is attributable to an electric field or to a magnetic field is dependent upon the observer, in a way that special relativity makes mathematically precise. For example, suppose that a laboratory contains a long straight wire that carries an electrical current. In the frame of reference where the laboratory is at rest, the wire is motionless and electrically neutral: the current, composed of negatively charged electrons, moves against a background of positively charged ions, and the densities of positive and negative charges cancel each other out. A test charge near the wire would feel no electrical force from the wire. However, if the test charge is in motion parallel to the current, the situation changes. In the rest frame of the test charge, the positive and negative charges in the wire are moving at different speeds, and so the positive and negative charge distributions are Lorentz-contracted by different amounts. Consequently, the wire has a nonzero net charge density, and the test charge must experience a nonzero electric field and thus a nonzero force. In the rest frame of the laboratory, there is no electric field to explain the test charge being pulled towards or pushed away from the wire. So, an observer in the laboratory rest frame concludes that a magnetic field must be present. [12] [13]
In general, a situation that one observer describes using only an electric field will be described by an observer in a different inertial frame using a combination of electric and magnetic fields. Analogously, a phenomenon that one observer describes using only a magnetic field will be, in a relatively moving reference frame, described by a combination of fields. The rules for relating the fields required in different reference frames are the Lorentz transformations of the fields. [14]
Thus, electrostatics and magnetostatics are now seen as studies of the static EM field when a particular frame has been selected to suppress the other type of field, and since an EM field with both electric and magnetic will appear in any other frame, these "simpler" effects are merely a consequence of different frames of measurement. The fact that the two field variations can be reproduced just by changing the motion of the observer is further evidence that there is only a single actual field involved which is simply being observed differently.
The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the electric generator.
Ampere's Law roughly states that "an electrical current around a loop creates a magnetic field through the loop". Thus, this law can be applied to generate a magnetic field and run an electric motor.
Maxwell's equations can be combined to derive wave equations. The solutions of these equations take the form of an electromagnetic wave. In a volume of space not containing charges or currents (free space) – that is, where and J are zero, the electric and magnetic fields satisfy these electromagnetic wave equations: [15] [16]
James Clerk Maxwell was the first to obtain this relationship by his completion of Maxwell's equations with the addition of a displacement current term to Ampere's circuital law. This unified the physical understanding of electricity, magnetism, and light: visible light is but one portion of the full range of electromagnetic waves, the electromagnetic spectrum.
An electromagnetic field very far from currents and charges (sources) is called electromagnetic radiation (EMR) since it radiates from the charges and currents in the source. Such radiation can occur across a wide range of frequencies called the electromagnetic spectrum, including radio waves, microwave, infrared, visible light, ultraviolet light, X-rays, and gamma rays. The many commercial applications of these radiations are discussed in the named and linked articles.
A notable application of visible light is that this type of energy from the Sun powers all life on Earth that either makes or uses oxygen.
A changing electromagnetic field which is physically close to currents and charges (see near and far field for a definition of "close") will have a dipole characteristic that is dominated by either a changing electric dipole, or a changing magnetic dipole. This type of dipole field near sources is called an electromagnetic near-field.
Changing electric dipole fields, as such, are used commercially as near-fields mainly as a source of dielectric heating. Otherwise, they appear parasitically around conductors which absorb EMR, and around antennas which have the purpose of generating EMR at greater distances.
Changing magnetic dipole fields (i.e., magnetic near-fields) are used commercially for many types of magnetic induction devices. These include motors and electrical transformers at low frequencies, and devices such as RFID tags, metal detectors, and MRI scanner coils at higher frequencies.
The potential effects of electromagnetic fields on human health vary widely depending on the frequency, intensity of the fields, and the length of the exposure. Low frequency, low intensity, and short duration exposure to electromagnetic radiation is generally considered safe. [17] On the other hand, radiation from other parts of the electromagnetic spectrum, such as ultraviolet light [18] and gamma rays, [19] are known to cause significant harm in some circumstances.
In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.
A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.
An electric field is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same. Because these forces are exerted mutually, two charges must be present for the forces to take place. The electric field of a single charge describes their capacity to exert such forces on another charged object. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Thus, we may informally say that the greater the charge of an object, the stronger its electric field. Similarly, an electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, Electromagnetism is one of the four fundamental interactions of nature.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field.
In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.
In classical electromagnetism, Ampère's circuital law relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop.
Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics which is a quantum field theory.
In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.
"A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. In the paper, Maxwell derives an electromagnetic wave equation with a velocity for light in close agreement with measurements made by experiment, and deduces that light is an electromagnetic wave.
Faraday's law of induction is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction, is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.
Magnetostatics is the study of magnetic fields in systems where the currents are steady. It is the magnetic analogue of electrostatics, where the charges are stationary. The magnetization need not be static; the equations of magnetostatics can be used to predict fast magnetic switching events that occur on time scales of nanoseconds or less. Magnetostatics is even a good approximation when the currents are not static – as long as the currents do not alternate rapidly. Magnetostatics is widely used in applications of micromagnetics such as models of magnetic storage devices as in computer memory.
In electromagnetism, Jefimenko's equations give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay of the fields due to the finite speed of light and relativistic effects. Therefore, they can be used for moving charges and currents. They are the particular solutions to Maxwell's equations for any arbitrary distribution of charges and currents.
Heaviside–Lorentz units constitute a system of units and quantities that extends the CGS with a particular set of equations that defines electromagnetic quantities, named for Oliver Heaviside and Hendrik Antoon Lorentz. They share with the CGS-Gaussian system that the electric constant ε0 and magnetic constant µ0 do not appear in the defining equations for electromagnetism, having been incorporated implicitly into the electromagnetic quantities. Heaviside–Lorentz units may be thought of as normalizing ε0 = 1 and µ0 = 1, while at the same time revising Maxwell's equations to use the speed of light c instead.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.
The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.
Weber electrodynamics is a theory of electromagnetism that preceded Maxwell electrodynamics and was replaced by it by the end of the 19th century. Weber electrodynamics is mainly based on the contributions of André-Marie Ampère, Carl Friedrich Gauss and Wilhelm Eduard Weber. In this theory, Coulomb's law becomes velocity and acceleration dependent. Weber electrodynamics is only applicable for electrostatics, magnetostatics and for the quasistatic approximation. Weber electrodynamics is not suitable for describing electromagnetic waves and for calculating the forces between electrically charged particles that move very rapidly or that are accelerated more than insignificantly.
By the first half of the 19th century, the understanding of electromagnetics had improved through many experiments and theoretical work. In the 1780s, Charles-Augustin de Coulomb established his law of electrostatics. In 1825, André-Marie Ampère published his force law. In 1831, Michael Faraday discovered electromagnetic induction through his experiments, and proposed lines of forces to describe it. In 1834, Emil Lenz solved the problem of the direction of the induction, and Franz Ernst Neumann wrote down the equation to calculate the induced force by change of magnetic flux. However, these experimental results and rules were not well organized and sometimes confusing to scientists. A comprehensive summary of the electrodynamic principles was needed.