Electric potential energy | |
---|---|
Common symbols | U_{E} |
SI unit | joule (J) |
Derivations from other quantities | U_{E} = C · V ^{2} / 2 |
Articles about |
Electromagnetism |
---|
Electric potential energy is a potential energy (measured in joules) that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may have electric potential energy by virtue of two key elements: its own electric charge and its relative position to other electrically charged objects.
The term "electric potential energy" is used to describe the potential energy in systems with time-variant electric fields, while the term "electrostatic potential energy" is used to describe the potential energy in systems with time-invariant electric fields.
The electric potential energy of a system of point charges is defined as the work required to assemble this system of charges by bringing them close together, as in the system from an infinite distance. Alternatively, the electric potential energy of any given charge or system of charges is termed as the total work done by an external agent in bringing the charge or the system of charges from infinity to the present configuration without undergoing any acceleration.
,
The electrostatic potential energy can also be defined from the electric potential as follows:
,
The SI unit of electric potential energy is joule (named after the English physicist James Prescott Joule). In the CGS system the erg is the unit of energy, being equal to 10^{−7} Joules. Also electronvolts may be used, 1 eV = 1.602×10^{−19} Joules.
The electrostatic potential energy, U_{E}, of one point charge q at position r in the presence of a point charge Q, taking an infinite separation between the charges as the reference position, is:
where is Coulomb's constant, r is the distance between the point charges q and Q, and q and Q are the charges (not the absolute values of the charges—i.e., an electron would have a negative value of charge when placed in the formula). The following outline of proof states the derivation from the definition of electric potential energy and Coulomb's law to this formula.
The electrostatic force F acting on a charge q can be written in terms of the electric field E as
By definition, the change in electrostatic potential energy, U_{E}, of a point charge q that has moved from the reference position r_{ref} to position r in the presence of an electric field E is the negative of the work done by the electrostatic force to bring it from the reference position r_{ref} to that position r.
where:
Usually U_{E} is set to zero when r_{ref} is infinity:
so
When the curl ∇ × E is zero, the line integral above does not depend on the specific path C chosen but only on its endpoints. This happens in time-invariant electric fields. When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used.
Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q. By the definition of the position vector r and the displacement vector s, it follows that r and s are also radially directed from Q. So, E and ds must be parallel:
Using Coulomb's law, the electric field is given by
and the integral can be easily evaluated:
The electrostatic potential energy, U_{E}, of one point charge q in the presence of n point charges Q_{i}, taking an infinite separation between the charges as the reference position, is:
where is Coulomb's constant, r_{i} is the distance between the point charges q and Q_{i}, and q and Q_{i} are the assigned values of the charges.
The electrostatic potential energy U_{E} stored in a system of N charges q_{1}, q_{2}, …, q_{N} at positions r_{1}, r_{2}, …, r_{N} respectively, is:
| (1) |
where, for each i value, Φ(r_{i}) is the electrostatic potential due to all point charges except the one at r_{i},^{ [note 2] } and is equal to:
where r_{ij} is the distance between q_{i} and q_{j}.
The electrostatic potential energy U_{E} stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q_{1} generates an electrostatic potential Φ_{1}, which is a function of position r, then
Doing the same calculation with respect to the other charge, we obtain
The electrostatic potential energy is mutually shared by and , so the total stored energy is
This can be generalized to say that the electrostatic potential energy U_{E} stored in a system of N charges q_{1}, q_{2}, …, q_{N} at positions r_{1}, r_{2}, …, r_{N} respectively, is:
The electrostatic potential energy of a system containing only one point charge is zero, as there are no other sources of electrostatic force against which an external agent must do work in moving the point charge from infinity to its final location.
A common question arises concerning the interaction of a point charge with its own electrostatic potential. Since this interaction doesn't act to move the point charge itself, it doesn't contribute to the stored energy of the system.
Consider bringing a point charge, q, into its final position near a point charge, Q_{1}. The electric potential Φ(r) due to Q_{1} is
Hence we obtain, the electrostatic potential energy of q in the potential of Q_{1} as
where r_{1} is the separation between the two point charges.
The electrostatic potential energy of a system of three charges should not be confused with the electrostatic potential energy of Q_{1} due to two charges Q_{2} and Q_{3}, because the latter doesn't include the electrostatic potential energy of the system of the two charges Q_{2} and Q_{3}.
The electrostatic potential energy stored in the system of three charges is:
Using the formula given in ( 1 ), the electrostatic potential energy of the system of the three charges will then be:
Where is the electric potential in r_{1} created by charges Q_{2} and Q_{3}, is the electric potential in r_{2} created by charges Q_{1} and Q_{3}, and is the electric potential in r_{3} created by charges Q_{1} and Q_{2}. The potentials are:
Where r_{ij} is the distance between charge Q_{i} and Q_{j}.
If we add everything:
Finally, we get that the electrostatic potential energy stored in the system of three charges:
The energy density, or energy per unit volume, , of the electrostatic field of a continuous charge distribution is:
One may take the equation for the electrostatic potential energy of a continuous charge distribution and put it in terms of the electrostatic field.
Since Gauss's law for electrostatic field in differential form states
where
then,
so, now using the following divergence vector identity
we have
using the divergence theorem and taking the area to be at infinity where
So, the energy density, or energy per unit volume of the electrostatic field is:
Some elements in a circuit can convert energy from one form to another. For example, a resistor converts electrical energy to heat. This is known as the Joule effect. A capacitor stores it in its electric field. The total electrostatic potential energy stored in a capacitor is given by
where C is the capacitance, V is the electric potential difference, and Q the charge stored in the capacitor.
One may assemble charges to a capacitor in infinitesimal increments, , such that the amount of work done to assemble each increment to its final location may be expressed as
The total work done to fully charge the capacitor in this way is then
where is the total charge on the capacitor. This work is stored as electrostatic potential energy, hence,
Notably, this expression is only valid if , which holds for many-charge systems such as large capacitors having metallic electrodes. For few-charge systems the discrete nature of charge is important. The total energy stored in a few-charge capacitor is
which is obtained by a method of charge assembly utilizing the smallest physical charge increment where is the elementary unit of charge and where is the total number of charges in the capacitor.
The total electrostatic potential energy may also be expressed in terms of the electric field in the form
where is the electric displacement field within a dielectric material and integration is over the entire volume of the dielectric.
(A virtual experiment based on the energy transfert between capacitor plates reveals that an additional term must be taken into account when the electrostatic energy is expressed in terms of the electric field and displacement vectors ^{ [3] }.
While this extra energy cancels when dealing with insulators, in general it cannot be ignored, as for instance with semiconductors.)
The total electrostatic potential energy stored within a charged dielectric may also be expressed in terms of a continuous volume charge, ,
where integration is over the entire volume of the dielectric.
These latter two expressions are valid only for cases when the smallest increment of charge is zero () such as dielectrics in the presence of metallic electrodes or dielectrics containing many charges.
In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.
An electric field is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges, or from time-varying magnetic fields. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces of nature.
The electric potential is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in an electric field. More precisely, it is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. Furthermore, the motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.
In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed. Even though the law alone is insufficient to determine the electric field across a surface enclosing any charge distribution, this may be possible in cases where symmetry mandates uniformity of the field. Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.
In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.
Electrostatics is a branch of physics that studies electric charges at rest.
Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.
Electric field work is the work performed by an electric field on a charged particle in its vicinity.
The chemists Peter Debye and Erich Hückel noticed that solutions that contain ionic solutes do not behave ideally even at very low concentrations. So, while the concentration of the solutes is fundamental to the calculation of the dynamics of a solution, they theorized that an extra factor that they termed gamma is necessary to the calculation of the activity coefficients of the solution. Hence they developed the Debye–Hückel equation and Debye–Hückel limiting law. The activity is only proportional to the concentration and is altered by a factor known as the activity coefficient . This factor takes into account the interaction energy of ions in solution.
The Coulomb constant, the electric force constant, or the electrostatic constant (denoted k_{e}, k or K) is a proportionality constant in electrostatics equations. In SI base units it is equal to 8.9875517923(14)×10^{9} kg⋅m^{3}⋅s^{−4}⋅A^{−2}. It was named after the French physicist Charles-Augustin de Coulomb (1736–1806) who introduced Coulomb's law.
A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, the electric field, or magnetic field. It is an arbitrary closed surface S = ∂V used in conjunction with Gauss's law for the corresponding field by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of gravitational mass as the source of the gravitational field or amount of electric charge as the source of the electrostatic field, or vice versa: calculate the fields for the source distribution.
The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem.
Spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as 1/R. Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.
Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system in order to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.
The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.
In electrodynamics, the retarded potentials are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past. The fields propagate at the speed of light c, so the delay of the fields connecting cause and effect at earlier and later times is an important factor: the signal takes a finite time to propagate from a point in the charge or current distribution to another point in space, see figure below.
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point, as it made it possible to discuss the quantity of electric charge in a meaningful way.
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.