Heat

Last updated

The Sun and Earth form an ongoing example of a heating process. Some of the Sun's thermal radiation strikes and heats the Earth. Compared to the Sun, Earth has a much lower temperature and so sends far less thermal radiation back to the Sun. The heat of this process can be quantified by the net amount, and direction (Sun to Earth), of energy it transferred in a given period of time. 171879main LimbFlareJan12 lg.jpg
The Sun and Earth form an ongoing example of a heating process. Some of the Sun's thermal radiation strikes and heats the Earth. Compared to the Sun, Earth has a much lower temperature and so sends far less thermal radiation back to the Sun. The heat of this process can be quantified by the net amount, and direction (Sun to Earth), of energy it transferred in a given period of time.

In thermodynamics, heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. [1] [2] [3] [4] [5] [6] [7] The mechanisms include conduction, through direct contact of immobile bodies, or through a wall or barrier that is impermeable to matter; or radiation between separated bodies; or isochoric mechanical work done by the surroundings on the system of interest; or Joule heating by an electric current driven through the system of interest by an external system; or a combination of these. When there is a suitable path between two systems with different temperatures, heat transfer occurs necessarily, immediately, and spontaneously from the hotter to the colder system. Thermal conduction occurs by the stochastic (random) motion of microscopic particles (such as atoms or molecules). In contrast, thermodynamic work is defined by mechanisms that act macroscopically and directly on the system's whole-body state variables; for example, change of the system's volume through a piston's motion with externally measurable force; or change of the system's internal electric polarization through an externally measurable change in electric field. The definition of heat transfer does not require that the process be in any sense smooth. For example, a bolt of lightning may transfer heat to a body.

Thermodynamics branch of physics concerned with heat, work, temperature, and thermal or internal energy

Thermodynamics is the branch of physics that deals with heat and temperature, and their relation to energy, work, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in fields as complex as meteorology.

Energy Physical property transferred to objects to perform heating or work

In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.

Work (thermodynamics) an energy transfer, or its amount (& direction), in a thermodynamic process due to macroscopic factors external to a thermodynamic system

In thermodynamics, work performed by a system is energy transferred by the system to its surroundings, due solely to macroscopic forces exerted by the system on its surroundings, where those forces, and their external effects, can be measured. Through suitable passive linkages, the whole of the work done by such forces can lift a weight in the surroundings.

Contents

Convective circulation allows one body to heat another, through an intermediate circulating fluid that carries energy from a boundary of one to a boundary of the other; the actual heat transfer is by conduction and radiation between the fluid and the respective bodies. [8] [9] [10] Though spontaneous, convective circulation does not necessarily and immediately occur merely because of temperature difference; for it to occur in a given arrangement of systems, there is a threshold temperature difference that needs to be exceeded.

Convective heat transfer

Convective heat transfer, often referred to simply as convection, is the transfer of heat from one place to another by the movement of fluids. Convection is usually the dominant form of heat transfer in liquids and gases. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of unknown conduction and advection.

Like thermodynamic work, heat transfer is a process involving two systems, not a property of any one system. In thermodynamics, energy transferred as heat (a process function) contributes to change in the system's cardinal energy variable of state, for example its internal energy, or for example its enthalpy. This is to be distinguished from the ordinary language conception of heat as a property of the system.

Process function property of a thermodynamic process; depends on the historical path of system states, not just on the current system state

In thermodynamics, a quantity that is well defined so as to describe the path of a process through the equilibrium state space of a thermodynamic system is termed a process function, or, alternatively, a process quantity, or a path function. As an example, mechanical work and heat are process functions because they describe quantitatively the transition between equilibrium states of a thermodynamic system.

State function measurable characteristic of the current state of a thermodynamic system, independent of the history of the system

In thermodynamics, a state function or function of state or point function is a function defined for a system relating several state variables or state quantities that depends only on the current equilibrium state of the system, for example a gas, a liquid, a solid, crystal, or emulsion. State functions do not depend on the path by which the system arrived at its present state. A state function describes the equilibrium state of a system and thus also describes the type of system. For example, a state function could describe an atom or molecule in a gaseous, liquid, or solid form; a heterogeneous or homogeneous mixture; and the amounts of energy required to create such systems or change them into a different equilibrium state.

Internal energy energy contained in a system, excluding energy due to its position as a body in external force fields or its overall motion

In thermodynamics, the internal energy of a system is the total energy contained within the system. It is the energy necessary to create or prepare the system in any given state, but does not include the kinetic energy of motion of the system as a whole, nor the potential energy of the system as a whole due to external force fields which includes the energy of displacement of the system's surroundings. It keeps account of the gains and losses of energy of the system that are due to changes in its internal state.

Although heat flows spontaneously from a hotter body to a cooler one, it is possible to construct a heat pump; a refrigeration system expends work to transfer energy from a colder body to hotter surroundings; such a device can also transfer energy from colder surroundings to a hotter body; these devices have internal temperatures that lie outside the range between those of the body and the surroundings. In contrast, a heat engine reduces an existing temperature difference to supply work to another system. Another thermodynamic type of heat transfer device is an active heat spreader, which expends work to speed up transfer of energy to colder surroundings from a hotter body, for example a computer component. [11]

Heat pump Pumps heat backward - a device that transfers thermal energy in the opposite direction of spontaneous heat transfer

A heat pump is a device that transfers heat energy from a source of heat to what is called a heat sink. Heat pumps move thermal energy in the opposite direction of spontaneous heat transfer, by absorbing heat from a cold space and releasing it to a warmer one. A heat pump uses external power to accomplish the work of transferring energy from the heat source to the heat sink. The most common design of a heat pump involves four main components – a condenser, an expansion valve, an evaporator and a compressor. The heat transfer medium circulated through these components is called refrigerant.

Heat engine System that converts heat or thermal energy to mechanical work

In thermodynamics and engineering, a heat engine is a system that converts heat or thermal energy—and chemical energy—to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the high temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a low temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, a lot of heat is lost to the surroundings and so cannot be converted to work.

Heat spreader

A heat spreader transfers energy as heat from a hotter source to a colder heat sink or heat exchanger. There are two thermodynamic types, passive and active. The most common sort of passive heat spreader is a plate or block of material having high thermal conductivity, such as copper, aluminum, or diamond. An active heat spreader speeds up heat transfer with expenditure of energy as work supplied by an external source.

The amount of heat transferred in any process can be defined as the total amount of transferred energy excluding any macroscopic work that was done and any energy contained in matter transferred. For the precise definition of heat, it is necessary that it occur by a path that does not include transfer of matter. [12] As an amount of energy (being transferred), the SI unit of heat is the joule (J). The conventional symbol used to represent the amount of heat transferred in a thermodynamic process is Q. Heat is measured by its effect on the states of interacting bodies, for example, by the amount of ice melted or a change in temperature. [13] The quantification of heat via the temperature change of a body is called calorimetry.

The joule is a derived unit of energy in the International System of Units. It is equal to the energy transferred to an object when a force of one newton acts on that object in the direction of the force's motion through a distance of one metre. It is also the energy dissipated as heat when an electric current of one ampere passes through a resistance of one ohm for one second. It is named after the English physicist James Prescott Joule (1818–1889).

Temperature physical property of matter that quantitatively expresses the common notions of hot and cold

Temperature is a physical quantity expressing hot and cold. It is measured with a thermometer calibrated in one or more temperature scales. The most commonly used scales are the Celsius scale, Fahrenheit scale, and Kelvin scale. The kelvin is the unit of temperature in the International System of Units (SI), in which temperature is one of the seven fundamental base quantities. The Kelvin scale is widely used in science and technology.

Calorimetry Thermodynamic state measurement

Calorimetry is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. The word calorimetry is derived from the Latin word calor, meaning heat and the Greek word μέτρον (metron), meaning measure. Scottish physician and scientist Joseph Black, who was the first to recognize the distinction between heat and temperature, is said to be the founder of the science of calorimetry.

Notation and units

As a form of energy, heat has the unit joule (J) in the International System of Units (SI). However, in many applied fields in engineering the British thermal unit (BTU) and the calorie are often used. The standard unit for the rate of heat transferred is the watt (W), defined as one joule per second.

International System of Units a system of units of measurement for base and derived physical quantities

The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, which are the second, metre, kilogram, ampere, kelvin, mole, candela, and a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system also specifies names for 22 derived units, such as lumen and watt, for other common physical quantities.

The British thermal unit is a traditional unit of heat; it is defined as the amount of heat required to raise the temperature of one pound of water by one degree Fahrenheit. It is also part of the United States customary units. Its counterpart in the metric system is the calorie, which is defined as the amount of heat required to raise the temperature of one gram of water by one degree Celsius. Heat is now known to be equivalent to energy, for which the SI unit is the joule; one BTU is about 1055 joules. While units of heat are often supplanted by energy units in scientific work, they are still used in many fields. As examples, in the United States the price of natural gas is quoted in dollars per million BTUs.

Calorie unit of energy

The calorie is a unit of energy.

Use of the symbol Q for the total amount of energy transferred as heat is due to Rudolf Clausius in 1850:

"Let the amount of heat which must be imparted during the transition of the gas in a definite manner from any given state to another, in which its volume is v and its temperature t, be called Q" [14]

Heat released by a system into its surroundings is by convention a negative quantity (Q < 0); when a system absorbs heat from its surroundings, it is positive (Q > 0). Heat transfer rate, or heat flow per unit time, is denoted by . This should not be confused with a time derivative of a function of state (which can also be written with the dot notation) since heat is not a function of state. [15] Heat flux is defined as rate of heat transfer per unit cross-sectional area (units watts per square metre).

Classical thermodynamics

Heat and entropy

Rudolf Clausius Clausius-1.jpg
Rudolf Clausius

In 1856, Rudolf Clausius, referring to closed systems, in which transfers of matter do not occur, defined the second fundamental theorem (the second law of thermodynamics) in the mechanical theory of heat (thermodynamics): "if two transformations which, without necessitating any other permanent change, can mutually replace one another, be called equivalent, then the generations of the quantity of heat Q from work at the temperature T, has the equivalence-value:" [16] [17]

In 1865, he came to define the entropy symbolized by S, such that, due to the supply of the amount of heat Q at temperature T the entropy of the system is increased by

In a transfer of energy as heat without work being done, there are changes of entropy in both the surroundings which lose heat and the system which gains it. The increase, ΔS, of entropy in the system may be considered to consist of two parts, an increment, ΔS that matches, or 'compensates', the change, −ΔS, of entropy in the surroundings, and a further increment, ΔS′′ that may be considered to be 'generated' or 'produced' in the system, and is said therefore to be 'uncompensated'. Thus

This may also be written

The total change of entropy in the system and surroundings is thus

This may also be written

It is then said that an amount of entropy ΔS has been transferred from the surroundings to the system. Because entropy is not a conserved quantity, this is an exception to the general way of speaking, in which an amount transferred is of a conserved quantity.

From the second law of thermodynamics follows that in a spontaneous transfer of heat, in which the temperature of the system is different from that of the surroundings:

For purposes of mathematical analysis of transfers, one thinks of fictive processes that are called reversible, with the temperature T of the system being hardly less than that of the surroundings, and the transfer taking place at an imperceptibly slow rate.

Following the definition above in formula (1), for such a fictive reversible process, a quantity of transferred heat δQ (an inexact differential) is analyzed as a quantity T dS, with dS (an exact differential):

This equality is only valid for a fictive transfer in which there is no production of entropy, that is to say, in which there is no uncompensated entropy.

If, in contrast, the process is natural, and can really occur, with irreversibility, then there is entropy production, with dSuncompensated > 0. The quantity T dSuncompensated was termed by Clausius the "uncompensated heat", though that does not accord with present-day terminology. Then one has

This leads to the statement

which is the second law of thermodynamics for closed systems.

In non-equilibrium thermodynamics that approximates by assuming the hypothesis of local thermodynamic equilibrium, there is a special notation for this. The transfer of energy as heat is assumed to take place across an infinitesimal temperature difference, so that the system element and its surroundings have near enough the same temperature T. Then one writes

where by definition

The second law for a natural process asserts that

[18] [19] [20] [21]

Heat and enthalpy

For a closed system (a system from which no matter can enter or exit), one version of the first law of thermodynamics states that the change in internal energy ΔU of the system is equal to the amount of heat Q supplied to the system minus the amount of work W done by system on its surroundings. The foregoing sign convention for work is used in the present article, but an alternate sign convention, followed by IUPAC, for work, is to consider the work performed on the system by its surroundings as positive. This is the convention adopted by many modern textbooks of physical chemistry, such as those by Peter Atkins and Ira Levine, but many textbooks on physics define work as work done by the system.

This formula can be re-written so as to express a definition of quantity of energy transferred as heat, based purely on the concept of adiabatic work, if it is supposed that ΔU is defined and measured solely by processes of adiabatic work:

The work done by the system includes boundary work (when the system increases its volume against an external force, such as that exerted by a piston) and other work (e.g. shaft work performed by a compressor fan), which is called isochoric work:

In this Section we will neglect the "other-" or isochoric work contribution.

The internal energy, U, is a state function. In cyclical processes, such as the operation of a heat engine, state functions of the working substance return to their initial values upon completion of a cycle.

The differential, or infinitesimal increment, for the internal energy in an infinitesimal process is an exact differential dU. The symbol for exact differentials is the lowercase letter d.

In contrast, neither of the infinitesimal increments δQ nor δW in an infinitesimal process represents the state of the system. Thus, infinitesimal increments of heat and work are inexact differentials. The lowercase Greek letter delta, δ, is the symbol for inexact differentials. The integral of any inexact differential over the time it takes for a system to leave and return to the same thermodynamic state does not necessarily equal zero.

As recounted below, in the section headed Entropy, the second law of thermodynamics observes that if heat is supplied to a system in which no irreversible processes take place and which has a well-defined temperature T, the increment of heat δQ and the temperature T form the exact differential

and that S, the entropy of the working body, is a function of state. Likewise, with a well-defined pressure, P, behind the moving boundary, the work differential, δW, and the pressure, P, combine to form the exact differential

with V the volume of the system, which is a state variable. In general, for homogeneous systems,

Associated with this differential equation is that the internal energy may be considered to be a function U (S,V) of its natural variables S and V. The internal energy representation of the fundamental thermodynamic relation is written

[22] [23]

If V is constant

and if P is constant

with H the enthalpy defined by

The enthalpy may be considered to be a function H (S,P) of its natural variables S and P. The enthalpy representation of the fundamental thermodynamic relation is written

[23] [24]

The internal energy representation and the enthalpy representation are partial Legendre transforms of one another. They contain the same physical information, written in different ways. Like the internal energy, the enthalpy stated as a function of its natural variables is a thermodynamic potential and contains all thermodynamic information about a body. [24] [25]

If a quantity Q of heat is added to a body while it does expansion work W on its surroundings, one has

If this is constrained to happen at constant pressure with ΔP = 0, the expansion work W done by the body is given by W = P ΔV; recalling the first law of thermodynamics, one has

Consequently, by substitution one has

In this scenario, the increase in enthalpy is equal to the quantity of heat added to the system. Since many processes do take place at constant pressure, or approximately at atmospheric pressure, the enthalpy is therefore sometimes given the misleading name of 'heat content'. [26] It is sometimes also called the heat function. [27]

In terms of the natural variables S and P of the state function H, this process of change of state from state 1 to state 2 can be expressed as

It is known that the temperature T(S, P) is identically stated by

Consequently,

In this case, the integral specifies a quantity of heat transferred at constant pressure.

History

As a common noun, English heat or warmth (just as French chaleur, German Wärme, Latin calor, Greek θάλπος, etc.) refers to (the human perception of) either thermal energy or temperature. Speculation on thermal energy or "heat" as a separate form of matter has a long history, see caloric theory, phlogiston and fire (classical element).

The modern understanding of thermal energy originates with Thompson's 1798 mechanical theory of heat ( An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction ), postulating a mechanical equivalent of heat. A collaboration between Nicolas Clément and Sadi Carnot ( Reflections on the Motive Power of Fire ) in the 1820s had some related thinking near the same lines. [28] In 1845, Joule published a paper entitled The Mechanical Equivalent of Heat, in which he specified a numerical value for the amount of mechanical work required to "produce a unit of heat". The theory of classical thermodynamics matured in the 1850s to 1860s. John Tyndall's Heat Considered as Mode of Motion (1863) was instrumental in popularising the idea of heat as motion to the English-speaking public. The theory was developed in academic publications in French, English and German. From an early time, the French technical term chaleur used by Carnot was taken as equivalent to the English heat and German Wärme (lit. "warmth", the equivalent of heat would be German Hitze).

The process function Q was introduced by Rudolf Clausius in 1850. Clausius described it with the German compound Wärmemenge, translated as "amount of heat". [14]

James Clerk Maxwell in his 1871 Theory of Heat outlines four stipulations for the definition of heat:

The process function Q is referred to as Wärmemenge by Clausius, or as "amount of heat" in translation. Use of "heat" as an abbreviated of the specific concept of "amount of heat being transferred" led to some terminological confusion by the early 20th century. The generic meaning of "heat", even in classical thermodynamics, is just "thermal energy". [30] Since the 1920s, it has been recommended practice to use enthalpy to refer to the "heat content at constant volume", and to thermal energy when "heat" in the general sense is intended, while "heat" is reserved for the very specific context of the transfer of thermal energy between two systems. Leonard Benedict Loeb in his Kinetic Theory of Gases (1927) makes a point of using "quanitity of heat" or "heat–quantity" when referring to Q: [31]

After the perfection of thermometry [...] the next great advance made in the field of heat was the definition of a term which is called the quantity of heat. [... after the abandonment of caloric theory,] It still remains to interpret this very definite concept, the quantity of heat, in terms of a theory ascribing all heat to the kinetics of gas molecules.

[32]

Carathéodory (1909)

A frequent definition of heat is based on the work of Carathéodory (1909), referring to processes in a closed system. [33] [34] [35] [36] [37] [38]

The internal energy UX of a body in an arbitrary state X can be determined by amounts of work adiabatically performed by the body on its surroundings when it starts from a reference state O. Such work is assessed through quantities defined in the surroundings of the body. It is supposed that such work can be assessed accurately, without error due to friction in the surroundings; friction in the body is not excluded by this definition. The adiabatic performance of work is defined in terms of adiabatic walls, which allow transfer of energy as work, but no other transfer, of energy or matter. In particular they do not allow the passage of energy as heat. According to this definition, work performed adiabatically is in general accompanied by friction within the thermodynamic system or body. On the other hand, according to Carathéodory (1909), there also exist non-adiabatic, diathermal walls, which are postulated to be permeable only to heat.

For the definition of quantity of energy transferred as heat, it is customarily envisaged that an arbitrary state of interest Y is reached from state O by a process with two components, one adiabatic and the other not adiabatic. For convenience one may say that the adiabatic component was the sum of work done by the body through volume change through movement of the walls while the non-adiabatic wall was temporarily rendered adiabatic, and of isochoric adiabatic work. Then the non-adiabatic component is a process of energy transfer through the wall that passes only heat, newly made accessible for the purpose of this transfer, from the surroundings to the body. The change in internal energy to reach the state Y from the state O is the difference of the two amounts of energy transferred.

Although Carathéodory himself did not state such a definition, following his work it is customary in theoretical studies to define heat, Q, to the body from its surroundings, in the combined process of change to state Y from the state O, as the change in internal energy, ΔUY, minus the amount of work, W, done by the body on its surrounds by the adiabatic process, so that Q = ΔUYW.

In this definition, for the sake of conceptual rigour, the quantity of energy transferred as heat is not specified directly in terms of the non-adiabatic process. It is defined through knowledge of precisely two variables, the change of internal energy and the amount of adiabatic work done, for the combined process of change from the reference state O to the arbitrary state Y. It is important that this does not explicitly involve the amount of energy transferred in the non-adiabatic component of the combined process. It is assumed here that the amount of energy required to pass from state O to state Y, the change of internal energy, is known, independently of the combined process, by a determination through a purely adiabatic process, like that for the determination of the internal energy of state X above. The rigour that is prized in this definition is that there is one and only one kind of energy transfer admitted as fundamental: energy transferred as work. Energy transfer as heat is considered as a derived quantity. The uniqueness of work in this scheme is considered to guarantee rigor and purity of conception. The conceptual purity of this definition, based on the concept of energy transferred as work as an ideal notion, relies on the idea that some frictionless and otherwise non-dissipative processes of energy transfer can be realized in physical actuality. The second law of thermodynamics, on the other hand, assures us that such processes are not found in nature.

Before the rigorous mathematical definition of heat based on Carathéodory's 1909 paper, historically, heat, temperature, and thermal equilibrium were presented in thermodynamics textbooks as jointly primitive notions. [39] Carathéodory introduced his 1909 paper thus: "The proposition that the discipline of thermodynamics can be justified without recourse to any hypothesis that cannot be verified experimentally must be regarded as one of the most noteworthy results of the research in thermodynamics that was accomplished during the last century." Referring to the "point of view adopted by most authors who were active in the last fifty years", Carathéodory wrote: "There exists a physical quantity called heat that is not identical with the mechanical quantities (mass, force, pressure, etc.) and whose variations can be determined by calorimetric measurements." James Serrin introduces an account of the theory of thermodynamics thus: "In the following section, we shall use the classical notions of heat, work, and hotness as primitive elements, ... That heat is an appropriate and natural primitive for thermodynamics was already accepted by Carnot. Its continued validity as a primitive element of thermodynamical structure is due to the fact that it synthesizes an essential physical concept, as well as to its successful use in recent work to unify different constitutive theories." [40] [41] This traditional kind of presentation of the basis of thermodynamics includes ideas that may be summarized by the statement that heat transfer is purely due to spatial non-uniformity of temperature, and is by conduction and radiation, from hotter to colder bodies. It is sometimes proposed that this traditional kind of presentation necessarily rests on "circular reasoning"; against this proposal, there stands the rigorously logical mathematical development of the theory presented by Truesdell and Bharatha (1977). [42]

This alternative approach to the definition of quantity of energy transferred as heat differs in logical structure from that of Carathéodory, recounted just above.

This alternative approach admits calorimetry as a primary or direct way to measure quantity of energy transferred as heat. It relies on temperature as one of its primitive concepts, and used in calorimetry. [43] It is presupposed that enough processes exist physically to allow measurement of differences in internal energies. Such processes are not restricted to adiabatic transfers of energy as work. They include calorimetry, which is the commonest practical way of finding internal energy differences. [44] The needed temperature can be either empirical or absolute thermodynamic.

In contrast, the Carathéodory way recounted just above does not use calorimetry or temperature in its primary definition of quantity of energy transferred as heat. The Carathéodory way regards calorimetry only as a secondary or indirect way of measuring quantity of energy transferred as heat. As recounted in more detail just above, the Carathéodory way regards quantity of energy transferred as heat in a process as primarily or directly defined as a residual quantity. It is calculated from the difference of the internal energies of the initial and final states of the system, and from the actual work done by the system during the process. That internal energy difference is supposed to have been measured in advance through processes of purely adiabatic transfer of energy as work, processes that take the system between the initial and final states. By the Carathéodory way it is presupposed as known from experiment that there actually physically exist enough such adiabatic processes, so that there need be no recourse to calorimetry for measurement of quantity of energy transferred as heat. This presupposition is essential but is explicitly labeled neither as a law of thermodynamics nor as an axiom of the Carathéodory way. In fact, the actual physical existence of such adiabatic processes is indeed mostly supposition, and those supposed processes have in most cases not been actually verified empirically to exist. [45]

Heat transfer

Heat transfer between two bodies

Referring to conduction, Partington writes: "If a hot body is brought in conducting contact with a cold body, the temperature of the hot body falls and that of the cold body rises, and it is said that a quantity of heat has passed from the hot body to the cold body." [46]

Referring to radiation, Maxwell writes: "In Radiation, the hotter body loses heat, and the colder body receives heat by means of a process occurring in some intervening medium which does not itself thereby become hot." [47]

Maxwell writes that convection as such "is not a purely thermal phenomenon". [48] In thermodynamics, convection in general is regarded as transport of internal energy. If, however, the convection is enclosed and circulatory, then it may be regarded as an intermediary that transfers energy as heat between source and destination bodies, because it transfers only energy and not matter from the source to the destination body. [10]

In accordance with the first law for closed systems, energy transferred solely as heat leaves one body and enters another, changing the internal energies of each. Transfer, between bodies, of energy as work is a complementary way of changing internal energies. Though it is not logically rigorous from the viewpoint of strict physical concepts, a common form of words that expresses this is to say that heat and work are interconvertible.

Cyclically operating engines, that use only heat and work transfers, have two thermal reservoirs, a hot and a cold one. They may be classified by the range of operating temperatures of the working body, relative to those reservoirs. In a heat engine, the working body is at all times colder than the hot reservoir and hotter than the cold reservoir. In a sense, it uses heat transfer to produce work. In a heat pump, the working body, at stages of the cycle, goes both hotter than the hot reservoir, and colder than the cold reservoir. In a sense, it uses work to produce heat transfer.

Heat engine

In classical thermodynamics, a commonly considered model is the heat engine. It consists of four bodies: the working body, the hot reservoir, the cold reservoir, and the work reservoir. A cyclic process leaves the working body in an unchanged state, and is envisaged as being repeated indefinitely often. Work transfers between the working body and the work reservoir are envisaged as reversible, and thus only one work reservoir is needed. But two thermal reservoirs are needed, because transfer of energy as heat is irreversible. A single cycle sees energy taken by the working body from the hot reservoir and sent to the two other reservoirs, the work reservoir and the cold reservoir. The hot reservoir always and only supplies energy and the cold reservoir always and only receives energy. The second law of thermodynamics requires that no cycle can occur in which no energy is received by the cold reservoir. Heat engines achieve higher efficiency when the difference between initial and final temperature is greater.

Heat pump or refrigerator

Another commonly considered model is the heat pump or refrigerator. Again there are four bodies: the working body, the hot reservoir, the cold reservoir, and the work reservoir. A single cycle starts with the working body colder than the cold reservoir, and then energy is taken in as heat by the working body from the cold reservoir. Then the work reservoir does work on the working body, adding more to its internal energy, making it hotter than the hot reservoir. The hot working body passes heat to the hot reservoir, but still remains hotter than the cold reservoir. Then, by allowing it to expand without doing work on another body and without passing heat to another body, the working body is made colder than the cold reservoir. It can now accept heat transfer from the cold reservoir to start another cycle.

The device has transported energy from a colder to a hotter reservoir, but this is not regarded as by an inanimate agency; rather, it is regarded as by the harnessing of work . This is because work is supplied from the work reservoir, not just by a simple thermodynamic process, but by a cycle of thermodynamic operations and processes, which may be regarded as directed by an animate or harnessing agency. Accordingly, the cycle is still in accord with the second law of thermodynamics. The efficiency of a heat pump is best when the temperature difference between the hot and cold reservoirs is least.

Functionally, such engines are used in two ways, distinguishing a target reservoir and a resource or surrounding reservoir. A heat pump transfers heat, to the hot reservoir as the target, from the resource or surrounding reservoir. A refrigerator transfers heat, from the cold reservoir as the target, to the resource or surrounding reservoir. The target reservoir may be regarded as leaking: when the target leaks hotness to the surroundings, heat pumping is used; when the target leaks coldness to the surroundings, refrigeration is used. The engines harness work to overcome the leaks.

Macroscopic view

According to Planck, there are three main conceptual approaches to heat. [49] One is the microscopic or kinetic theory approach. The other two are macroscopic approaches. One is the approach through the law of conservation of energy taken as prior to thermodynamics, with a mechanical analysis of processes, for example in the work of Helmholtz. This mechanical view is taken in this article as currently customary for thermodynamic theory. The other macroscopic approach is the thermodynamic one, which admits heat as a primitive concept, which contributes, by scientific induction [50] to knowledge of the law of conservation of energy. This view is widely taken as the practical one, quantity of heat being measured by calorimetry.

Bailyn also distinguishes the two macroscopic approaches as the mechanical and the thermodynamic. [51] The thermodynamic view was taken by the founders of thermodynamics in the nineteenth century. It regards quantity of energy transferred as heat as a primitive concept coherent with a primitive concept of temperature, measured primarily by calorimetry. A calorimeter is a body in the surroundings of the system, with its own temperature and internal energy; when it is connected to the system by a path for heat transfer, changes in it measure heat transfer. The mechanical view was pioneered by Helmholtz and developed and used in the twentieth century, largely through the influence of Max Born. [52] It regards quantity of heat transferred as heat as a derived concept, defined for closed systems as quantity of heat transferred by mechanisms other than work transfer, the latter being regarded as primitive for thermodynamics, defined by macroscopic mechanics. According to Born, the transfer of internal energy between open systems that accompanies transfer of matter "cannot be reduced to mechanics". [53] It follows that there is no well-founded definition of quantities of energy transferred as heat or as work associated with transfer of matter.

Nevertheless, for the thermodynamical description of non-equilibrium processes, it is desired to consider the effect of a temperature gradient established by the surroundings across the system of interest when there is no physical barrier or wall between system and surroundings, that is to say, when they are open with respect to one another. The impossibility of a mechanical definition in terms of work for this circumstance does not alter the physical fact that a temperature gradient causes a diffusive flux of internal energy, a process that, in the thermodynamic view, might be proposed as a candidate concept for transfer of energy as heat.

In this circumstance, it may be expected that there may also be active other drivers of diffusive flux of internal energy, such as gradient of chemical potential which drives transfer of matter, and gradient of electric potential which drives electric current and iontophoresis; such effects usually interact with diffusive flux of internal energy driven by temperature gradient, and such interactions are known as cross-effects. [54]

If cross-effects that result in diffusive transfer of internal energy were also labeled as heat transfers, they would sometimes violate the rule that pure heat transfer occurs only down a temperature gradient, never up one. They would also contradict the principle that all heat transfer is of one and the same kind, a principle founded on the idea of heat conduction between closed systems. One might to try to think narrowly of heat flux driven purely by temperature gradient as a conceptual component of diffusive internal energy flux, in the thermodynamic view, the concept resting specifically on careful calculations based on detailed knowledge of the processes and being indirectly assessed. In these circumstances, if perchance it happens that no transfer of matter is actualized, and there are no cross-effects, then the thermodynamic concept and the mechanical concept coincide, as if one were dealing with closed systems. But when there is transfer of matter, the exact laws by which temperature gradient drives diffusive flux of internal energy, rather than being exactly knowable, mostly need to be assumed, and in many cases are practically unverifiable. Consequently, when there is transfer of matter, the calculation of the pure 'heat flux' component of the diffusive flux of internal energy rests on practically unverifiable assumptions. [55] [quotations 1] [56] This is a reason to think of heat as a specialized concept that relates primarily and precisely to closed systems, and applicable only in a very restricted way to open systems.

In many writings in this context, the term "heat flux" is used when what is meant is therefore more accurately called diffusive flux of internal energy; such usage of the term "heat flux" is a residue of older and now obsolete language usage that allowed that a body may have a "heat content". [57]

Microscopic view

In the kinetic theory, heat is explained in terms of the microscopic motions and interactions of constituent particles, such as electrons, atoms, and molecules. [58] The immediate meaning of the kinetic energy of the constituent particles is not as heat. It is as a component of internal energy. In microscopic terms, heat is a transfer quantity, and is described by a transport theory, not as steadily localized kinetic energy of particles. Heat transfer arises from temperature gradients or differences, through the diffuse exchange of microscopic kinetic and potential particle energy, by particle collisions and other interactions. An early and vague expression of this was made by Francis Bacon. [59] [60] Precise and detailed versions of it were developed in the nineteenth century. [61]

In statistical mechanics, for a closed system (no transfer of matter), heat is the energy transfer associated with a disordered, microscopic action on the system, associated with jumps in occupation numbers of the energy levels of the system, without change in the values of the energy levels themselves. [62] It is possible for macroscopic thermodynamic work to alter the occupation numbers without change in the values of the system energy levels themselves, but what distinguishes transfer as heat is that the transfer is entirely due to disordered, microscopic action, including radiative transfer. A mathematical definition can be formulated for small increments of quasi-static adiabatic work in terms of the statistical distribution of an ensemble of microstates.

Calorimetry

Quantity of heat transferred can be measured by calorimetry, or determined through calculations based on other quantities.

Calorimetry is the empirical basis of the idea of quantity of heat transferred in a process. The transferred heat is measured by changes in a body of known properties, for example, temperature rise, change in volume or length, or phase change, such as melting of ice. [63] [64]

A calculation of quantity of heat transferred can rely on a hypothetical quantity of energy transferred as adiabatic work and on the first law of thermodynamics. Such calculation is the primary approach of many theoretical studies of quantity of heat transferred. [33] [65] [66]

Engineering

A red-hot iron rod from which heat transfer to the surrounding environment will be primarily through radiation. Hot metalwork.jpg
A red-hot iron rod from which heat transfer to the surrounding environment will be primarily through radiation.

The discipline of heat transfer, typically considered an aspect of mechanical engineering and chemical engineering, deals with specific applied methods by which thermal energy in a system is generated, or converted, or transferred to another system. Although the definition of heat implicitly means the transfer of energy, the term heat transfer encompasses this traditional usage in many engineering disciplines and laymen language.

Heat transfer is generally described as including the mechanisms of heat conduction, heat convection, thermal radiation, but may include mass transfer and heat in processes of phase changes.

Convection may be described as the combined effects of conduction and fluid flow. From the thermodynamic point of view, heat flows into a fluid by diffusion to increase its energy, the fluid then transfers (advects) this increased internal energy (not heat) from one location to another, and this is then followed by a second thermal interaction which transfers heat to a second body or system, again by diffusion. This entire process is often regarded as an additional mechanism of heat transfer, although technically, "heat transfer" and thus heating and cooling occurs only on either end of such a conductive flow, but not as a result of flow. Thus, conduction can be said to "transfer" heat only as a net result of the process, but may not do so at every time within the complicated convective process.

Latent and sensible heat

Joseph Black Black Joseph.jpg
Joseph Black

In an 1847 lecture entitled On Matter, Living Force, and Heat, James Prescott Joule characterized the terms latent heat and sensible heat as components of heat each affecting distinct physical phenomena, namely the potential and kinetic energy of particles, respectively. [67] [quotations 2] He described latent energy as the energy possessed via a distancing of particles where attraction was over a greater distance, i.e. a form of potential energy, and the sensible heat as an energy involving the motion of particles, i.e. kinetic energy.

Latent heat is the heat released or absorbed by a chemical substance or a thermodynamic system during a change of state that occurs without a change in temperature. Such a process may be a phase transition, such as the melting of ice or the boiling of water. [68] [69]

Heat capacity

Heat capacity is a measurable physical quantity equal to the ratio of the heat added to an object to the resulting temperature change. [70] The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under consideration.

The specific heats of monatomic gases, such as helium, are nearly constant with temperature. Diatomic gases such as hydrogen display some temperature dependence, and triatomic gases (e.g., carbon dioxide) still more.

Before the development of the laws of thermodynamics, heat was measured by changes in the states of the participating bodies.

Some general rules, with important exceptions, can be stated as follows.

In general, most bodies expand on heating. In this circumstance, heating a body at a constant volume increases the pressure it exerts on its constraining walls, while heating at a constant pressure increases its volume.

Beyond this, most substances have three ordinarily recognized states of matter, solid, liquid, and gas. Some can also exist in a plasma. Many have further, more finely differentiated, states of matter, such as for example, glass, and liquid crystal. In many cases, at fixed temperature and pressure, a substance can exist in several distinct states of matter in what might be viewed as the same 'body'. For example, ice may float in a glass of water. Then the ice and the water are said to constitute two phases within the 'body'. Definite rules are known, telling how distinct phases may coexist in a 'body'. Mostly, at a fixed pressure, there is a definite temperature at which heating causes a solid to melt or evaporate, and a definite temperature at which heating causes a liquid to evaporate. In such cases, cooling has the reverse effects.

All of these, the commonest cases, fit with a rule that heating can be measured by changes of state of a body. Such cases supply what are called thermometric bodies, that allow the definition of empirical temperatures. Before 1848, all temperatures were defined in this way. There was thus a tight link, apparently logically determined, between heat and temperature, though they were recognized as conceptually thoroughly distinct, especially by Joseph Black in the later eighteenth century.

There are important exceptions. They break the obviously apparent link between heat and temperature. They make it clear that empirical definitions of temperature are contingent on the peculiar properties of particular thermometric substances, and are thus precluded from the title 'absolute'. For example, water contracts on being heated near 277 K. It cannot be used as a thermometric substance near that temperature. Also, over a certain temperature range, ice contracts on heating. Moreover, many substances can exist in metastable states, such as with negative pressure, that survive only transiently and in very special conditions. Such facts, sometimes called 'anomalous', are some of the reasons for the thermodynamic definition of absolute temperature.

In the early days of measurement of high temperatures, another factor was important, and used by Josiah Wedgwood in his pyrometer. The temperature reached in a process was estimated by the shrinkage of a sample of clay. The higher the temperature, the more the shrinkage. This was the only available more or less reliable method of measurement of temperatures above 1000 °C. But such shrinkage is irreversible. The clay does not expand again on cooling. That is why it could be used for the measurement. But only once. It is not a thermometric material in the usual sense of the word.

Nevertheless, the thermodynamic definition of absolute temperature does make essential use of the concept of heat, with proper circumspection.

"Hotness"

According to Denbigh (1981), the property of hotness is a concern of thermodynamics that should be defined without reference to the concept of heat. Consideration of hotness leads to the concept of empirical temperature. [71] All physical systems are capable of heating or cooling others. [72] With reference to hotness, the comparative terms hotter and colder are defined by the rule that heat flows from the hotter body to the colder. [73] [74] [75]

If a physical system is inhomogeneous or very rapidly or irregularly changing, for example by turbulence, it may be impossible to characterize it by a temperature, but still there can be transfer of energy as heat between it and another system. If a system has a physical state that is regular enough, and persists long enough to allow it to reach thermal equilibrium with a specified thermometer, then it has a temperature according to that thermometer. An empirical thermometer registers degree of hotness for such a system. Such a temperature is called empirical. [76] [77] [78] For example, Truesdell writes about classical thermodynamics: "At each time, the body is assigned a real number called the temperature. This number is a measure of how hot the body is." [79]

Physical systems that are too turbulent to have temperatures may still differ in hotness. A physical system that passes heat to another physical system is said to be the hotter of the two. More is required for the system to have a thermodynamic temperature. Its behavior must be so regular that its empirical temperature is the same for all suitably calibrated and scaled thermometers, and then its hotness is said to lie on the one-dimensional hotness manifold. This is part of the reason why heat is defined following Carathéodory and Born, solely as occurring other than by work or transfer of matter; temperature is advisedly and deliberately not mentioned in this now widely accepted definition.

This is also the reason that the zeroth law of thermodynamics is stated explicitly. If three physical systems, A, B, and C are each not in their own states of internal thermodynamic equilibrium, it is possible that, with suitable physical connections being made between them, A can heat B and B can heat C and C can heat A. In non-equilibrium situations, cycles of flow are possible. It is the special and uniquely distinguishing characteristic of internal thermodynamic equilibrium that this possibility is not open to thermodynamic systems (as distinguished amongst physical systems) which are in their own states of internal thermodynamic equilibrium; this is the reason why the zeroth law of thermodynamics needs explicit statement. That is to say, the relation 'is not colder than' between general non-equilibrium physical systems is not transitive, whereas, in contrast, the relation 'has no lower a temperature than' between thermodynamic systems in their own states of internal thermodynamic equilibrium is transitive. It follows from this that the relation 'is in thermal equilibrium with' is transitive, which is one way of stating the zeroth law.

Just as temperature may be undefined for a sufficiently inhomogeneous system, so also may entropy be undefined for a system not in its own state of internal thermodynamic equilibrium. For example, 'the temperature of the solar system' is not a defined quantity. Likewise, 'the entropy of the solar system' is not defined in classical thermodynamics. It has not been possible to define non-equilibrium entropy, as a simple number for a whole system, in a clearly satisfactory way. [80]

See also

Related Research Articles

Adiabatic process thermodynamic process

An adiabatic process occurs without transfer of heat or mass of substances between a thermodynamic system and its surroundings. In an adiabatic process, energy is transferred to the surroundings only as work. The adiabatic process provides a rigorous conceptual basis for the theory used to expound the first law of thermodynamics, and as such it is a key concept in thermodynamics.

Carnot heat engine heat engine

A Carnot heat engine is a theoretical engine that operates on the reversible Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded upon by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857 from which the concept of entropy emerged.

Entropy physical property of the state of a system, measure of disorder

In statistical mechanics, entropy is an extensive property of a thermodynamic system. It is closely related to the number Ω of microscopic configurations that are consistent with the macroscopic quantities that characterize the system. Under the assumption that each microstate is equally probable, the entropy is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant kB. Formally,

Enthalpy measurement of energy in a thermodynamic system; thermodynamic quantity equivalent to the total heat content of a system

Enthalpy, a property of a thermodynamic system, is equal to the system's internal energy plus the product of its pressure and volume. In a system enclosed so as to prevent matter transfer, for processes at constant pressure, the heat absorbed or released equals the change in enthalpy.

Thermodynamic free energy

The thermodynamic free energy is a concept useful in the thermodynamics of chemical or thermal processes in engineering and science. The change in the free energy is the maximum amount of work that a thermodynamic system can perform in a process at constant temperature, and its sign indicates whether a process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful.

Second law of thermodynamics law of physics stating that systems spontaneously evolve towards states of higher entropy

The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time. The total entropy of a system and its surroundings can remain constant in ideal cases where the system is in thermodynamic equilibrium, or is undergoing a (fictive) reversible process. In all processes that occur, including spontaneous processes, the total entropy of the system and its surroundings increases and the process is irreversible in the thermodynamic sense. The increase in entropy accounts for the irreversibility of natural processes, and the asymmetry between future and past.

First law of thermodynamics statement of conservation of energy as it applies specifically to a thermodynamic system or process

The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic systems. The law of conservation of energy states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed. The first law is often formulated

Gibbs free energy gibbs energy of formation

In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure. The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamically closed system ; this maximum can be attained only in a completely reversible process. When a system transforms reversibly from an initial state to a final state, the decrease in Gibbs free energy equals the work done by the system to its surroundings, minus the work of the pressure forces.

Isentropic process Thermodynamic process that is reversible and adiabatic

In thermodynamics, an isentropic process is an idealized thermodynamic process that is both adiabatic and reversible. The work transfers of the system are frictionless, and there is no transfer of heat or matter. Such an idealized process is useful in engineering as a model of and basis of comparison for real processes.

Isothermal process thermodynamic process in which the temperature remains constant

An isothermal process is a change of a system, in which the temperature remains constant: ΔT =0. This typically occurs when a system is in contact with an outside thermal reservoir, and the change in the system will occur slowly enough to allow the system to continue to adjust to the temperature of the reservoir through heat exchange. In contrast, an adiabatic process is where a system exchanges no heat with its surroundings (Q = 0). In other words, in an isothermal process, the value ΔT = 0 and therefore the change in internal energy ΔU = 0 but Q ≠ 0, while in an adiabatic process, ΔT ≠ 0 but Q = 0.

Isobaric process thermodynamic process

isobaric process is a thermodynamic process in which the pressure stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy of the system. This article uses the chemistry sign convention for work, where positive work is work done on the system. Using this convention, by the first law of thermodynamics,

Thermodynamic system precisely specified macroscopic region of the universe, defined by boundaries

A thermodynamic system is a group of material and/or radiative contents. Its properties may be described by thermodynamic state variables such as temperature, entropy, internal energy, and pressure.

Laws of thermodynamics law that defines fundamental physical quantities that characterize thermodynamic systems and their behavior

The three laws of thermodynamics define physical quantities that characterize thermodynamic systems at thermal equilibrium. The laws describe how these quantities behave under various circumstances, and preclude the possibility of certain phenomena.

Clausius theorem

The Clausius theorem (1855) states that a system exchanging heat with external reservoirs and undergoing a cyclic process, is one that ultimately returns a system to its original state,

Entropy is a property of thermodynamical systems. The term entropy was introduced by Rudolf Clausius who named it from the Greek word τρoπή, "transformation". He considered transfers of energy as heat and work between bodies of matter, taking temperature into account. Bodies of radiation are also covered by the same kind of reasoning.

Fundamental thermodynamic relation

In thermodynamics, the fundamental thermodynamic relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way.

Carnot cycle theoretical thermodynamic cycle proposed by Nicolas Léonard Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s

The Carnot cycle is a theoretical ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. It provides an upper limit on the efficiency that any classical thermodynamic engine can achieve during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference by the application of work to the system. It is not an actual thermodynamic cycle but is a theoretical construct.

References

  1. Reif (1965): "[in the special case of purely thermal interaction between two system:] The mean energy transferred from one system to the other as a result of purely thermal interaction is called 'heat'" (p. 67). the quantity Q [...] is simply a measure of the mean energy change not due to the change of external parameters. [...] splits the total mean energy change into a part W due to mechanical interaction and a part Q due to thermal interaction [...] by virtue of [the definition ΔU=Q–W, present notation, physics sign convention], both heat and work have the dimensions of energy" (p. 73). C.f.: "heat is thermal energy in transfer" Stephen J. Blundell, Katherine M. Blundell, Concepts in Thermal Physics (2009), p. 13 Archived 24 June 2018 at the Wayback Machine .
  2. Thermodynamics and an Introduction to Thermostatics, 2nd Edition, by Herbert B. Callen, 1985, http://cvika.grimoar.cz/callen/ Archived 17 October 2018 at the Wayback Machine or http://keszei.chem.elte.hu/1alapFizkem/H.B.Callen-Thermodynamics.pdf Archived 30 December 2016 at the Wayback Machine , p. 8: Energy may be transferred via ... work. "But it is equally possible to transfer energy via the hidden atomic modes of motion as well as via those that happen to be macroscopically observable. An energy transfer via the hidden atomic modes is called heat."
  3. Born, M. (1949), p. 31.
  4. Pippard, A.B. (1957/1966), p. 16.
  5. Landau, L., Lifshitz, E.M. (1958/1969), p. 43
  6. Callen, H.B. (1960/1985), pp. 18–19.
  7. Bailyn, M. (1994), p. 82.
  8. Guggenheim, E.A. (1949/1967) , p. 8
  9. Planck. M. (1914)
  10. 1 2 Chandrasekhar, S. (1961).
  11. Adams, M.J.,Verosky, M., Zebarjadi, M., Heremans, J.P. (2019). Active Peltier Coolers Based on Correlated and Magnon-Drag Metals, Phys. Rev. Applied11, 054008 (2019)
  12. >Born, M. (1949), p. 44.
  13. Maxwell, J.C. (1871), Chapter III.
  14. 1 2 Die Wärmemenge, welche dem Gase mitgetheilt werden muss, während es aus irgend einem früheren Zustande auf einem bestimmten Wege in den Zustand übergeführt wird, in welchem sein Volumen = v und seine Temperatur = t ist, möge Q heissen R. Clausius, Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen Archived 17 April 2019 at the Wayback Machine , communication to the Academy of Berlin, February 1850, published in Pogendorff's Annalen vol. 79, March/April 1850, first translated in Philosophical Magazine vol. 2, July 1851, as "First Memoir" in: The Mechanical Theory of Heat, with its Applications to the Steam-Engine and to the Physical Properties of Bodies, trans. John Tyndall, London, 1867, p. 25.
  15. Baierlein, R. (1999), p. 21.
  16. Clausius, R. (1854).
  17. Clausius, R. (1865), pp. 125–126.
  18. De Groot, S.R., Mazur, P. (1962), p. 20.
  19. Kondepudi, D, Prigogine, I. (1998), p. 82.
  20. Kondepudi, D. (2008), p. 114.
  21. Lebon, g., Jou, D., Casas-Vásquez, J. (2008), p. 41.
  22. Callen, H.B., (1985), Section 2-3, pp. 40–42.
  23. 1 2 Adkins, C.J. (1983), p. 101.
  24. 1 2 Callen, H.B. (1985), p. 147.
  25. Adkins, C.J. (1983), pp. 100–104.
  26. Adkins, C.J. (1968/1983), p. 46.
  27. Bailyn, M. (1994), p. 208.
  28. Lervig, P. Sadi Carnot and the steam engine:Nicolas Clément's lectures on industrial chemistry, 1823-28. Br. J Hist. Sci. 18:147, 1985.
  29. Maxwell, J.C. (1871), p. 7.
  30. "in a gas, heat is nothing else than the kinetic or mechanical energy of motion of the gas molecules". B.L. Loeb, The Kinetic Theory of Gases (1927), p. 14.
  31. From this terminological choice may derive a tradition to the effect that the letter Q represents "quantity", but there is no indication that Clausius had this in mind when he selected the letter in what seemed to be an ad hoc calculation in 1850.
  32. B.L. Loeb, The Kinetic Theory of Gases (1927), p. 426 Archived 24 June 2018 at the Wayback Machine .
  33. 1 2 Carathéodory, C. (1909).
  34. Adkins, C.J. (1968/1983).
  35. Münster, A. (1970).
  36. Pippard, A.B. (1957).
  37. Fowler, R., Guggenheim, E.A. (1939).
  38. Buchdahl, H.A. (1966).
  39. Lieb, E.H., Yngvason, J. (1999), p. 10.
  40. Serrin, J. (1986), p. 5 .
  41. Owen, D.R. (1984), pp. 43–45.
  42. Truesdell, C., Bharatha, S. (1977).
  43. Maxwell, J.C. (1871), p.v.
  44. Atkins, P., de Paula, J. (1978/2010), p. 54.
  45. Pippard, A.B. (1957/1966), p. 15.
  46. Partington, J.R. (1949), p. 118.
  47. Maxwell, J.C. (1871), p. 10.
  48. Maxwell, J.C. (1871), p. 11.
  49. Planck, M. (1897/1903), p. viii.
  50. Hintikka, J. (1988), p. 180.
  51. Bailyn, M. (1994), pp. 65, 79.
  52. Born, M.(1949), Lecture V.
  53. Born, M. (1949), p. 44.
  54. De Groot, S.R., Mazur, P. (1962), p. 30.
  55. Denbigh, K.G. (1951), p. 56.
  56. Fitts, D.D. (1962), p. 28.
  57. Gyarmati, I. (1970), p. 68.
  58. Kittel, C. Kroemer, H. (1980).
  59. Bacon, F. (1620).
  60. Partington, J.R. (1949), p. 131.
  61. Partington, J.R. (1949), pp. 132–136.
  62. Reif (1965), pp. 67–68
  63. Maxwell J.C. (1872), p. 54.
  64. Planck (1927), Chapter 3.
  65. Bryan, G.H. (1907), p. 47.
  66. Callen, H.B. (1985), Section 1-8.
  67. Joule J.P. (1884).
  68. Perrot, P. (1998).
  69. Clark, J.O.E. (2004).
  70. Halliday, David; Resnick, Robert (2013). Fundamentals of Physics. Wiley. p. 524.
  71. Denbigh, K. (1981), p. 9.
  72. Baierlein, R. (1999), p. 349.
  73. Adkins, C.J. (1968/1983), p. 34.
  74. Pippard, A.B. (1957/1966), p. 18.
  75. Haase, R. (1971), p. 7.
  76. Mach, E. (1900), section 5, pp. 48–49, section 22, pp. 60–61.
  77. Truesdell, C. (1980).
  78. Serrin, J. (1986), especially p. 6.
  79. Truesdell, C. (1969), p. 6.
  80. Lieb, E.H., Yngvason, J. (2003), p. 190.

Quotations

  1. Denbigh states in a footnote that he is indebted to correspondence with Professor E.A. Guggenheim and with Professor N.K. Adam. From this, Denbigh concludes "It seems, however, that when a system is able to exchange both heat and matter with its environment, it is impossible to make an unambiguous distinction between energy transported as heat and by the migration of matter, without already assuming the existence of the 'heat of transport'." Denbigh K.G. (1951), p. 56.
  2. "Heat must therefore consist of either living force or of attraction through space. In the former case we can conceive the constituent particles of heated bodies to be, either in whole or in part, in a state of motion. In the latter we may suppose the particles to be removed by the process of heating, so as to exert attraction through greater space. I am inclined to believe that both of these hypotheses will be found to hold good,—that in some instances, particularly in the case of sensible heat, or such as is indicated by the thermometer, heat will be found to consist in the living force of the particles of the bodies in which it is induced; whilst in others, particularly in the case of latent heat, the phenomena are produced by the separation of particle from particle, so as to cause them to attract one another through a greater space." Joule, J.P. (1884).

Bibliography of cited references

Further bibliography