Names | |
---|---|
Preferred IUPAC name Ethoxyethane | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
1696894 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.000.425 |
EC Number |
|
25444 | |
KEGG | |
PubChem CID | |
RTECS number |
|
UNII | |
UN number | 1155 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C4H10O | |
Molar mass | 74.123 g·mol−1 |
Appearance | Colorless liquid |
Odor | Dry, Rum-like, sweetish odor [1] |
Density | 0.7134 g/cm3, liquid |
Melting point | −116.3 °C (−177.3 °F; 156.8 K) |
Boiling point | 34.6 °C (94.3 °F; 307.8 K) [2] |
6.05 g/(100 mL) [3] | |
log P | 0.98 [4] |
Vapor pressure | 440 mmHg (58.66 kPa) at 20 °C [1] |
−55.1·10−6 cm3/mol | |
Refractive index (nD) | 1.353 (20 °C) |
Viscosity | 0.224 cP (25 °C) |
Structure | |
1.15 D (gas) | |
Thermochemistry | |
Heat capacity (C) | 172.5 J/(mol·K) |
Std molar entropy (S⦵298) | 253.5 J/(mol·K) |
Std enthalpy of formation (ΔfH⦵298) | −271.2 ± 1.9 kJ/mol |
Std enthalpy of combustion (ΔcH⦵298) | −2732.1 ± 1.9 kJ/mol |
Pharmacology | |
N01AA01 ( WHO ) | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | Extremely flammable, harmful to skin, decomposes to explosive peroxides in air and light [1] |
GHS labelling: | |
Danger | |
H224, H302, H336 | |
P210, P233, P240, P241, P242, P243, P261, P264, P270, P271, P280, P301+P312, P303+P361+P353, P304+P340, P312, P330, P370+P378, P403+P233, P403+P235, P405, P501 | |
NFPA 704 (fire diamond) | |
Flash point | −45 °C (−49 °F; 228 K) [5] |
160 °C (320 °F; 433 K) [5] | |
Explosive limits | 1.9–48.0% [6] |
Lethal dose or concentration (LD, LC): | |
LC50 (median concentration) | 73,000 ppm (rat, 2 hr) 6500 ppm (mouse, 1.65 hr) [7] |
LCLo (lowest published) | 106,000 ppm (rabbit) 76,000 ppm (dog) [7] |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 400 ppm (1200 mg/m3) [1] |
REL (Recommended) | No established REL [1] |
IDLH (Immediate danger) | 1900 ppm [1] |
Safety data sheet (SDS) | External MSDS |
Related compounds | |
Related ethers | |
Related compounds | |
Supplementary data page | |
Diethyl ether (data page) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Diethyl ether, or simply ether, is an organic compound with the chemical formula (CH3CH2)2O, sometimes abbreviated as Et2O. [a] It is a colourless, highly volatile, sweet-smelling ("ethereal odour"), extremely flammable liquid. It belongs to the ether class of organic compounds. It is a common solvent. It was formerly used as a general anesthetic. [8]
Most diethyl ether is produced as a byproduct of the vapor-phase hydration of ethylene to make ethanol. This process uses solid-supported phosphoric acid catalysts and can be adjusted to make more ether if the need arises: [9] Vapor-phase dehydration of ethanol over some alumina catalysts can give diethyl ether yields of up to 95%. [10]
Diethyl ether can be prepared both in laboratories and on an industrial scale by the acid ether synthesis. [11]
The dominant use of diethyl ether is as a solvent. One particular application is in the production of cellulose plastics such as cellulose acetate. [9]
It is a common solvent for the Grignard reaction in addition to other reactions involving organometallic reagents. [12] These uses exploit its basicity. Diethyl ether is a popular non-polar solvent in liquid-liquid extraction. As an extractant, it is immiscible with and less dense than water.
Although immiscible, it has significant solubility in water (6.05 g/(100 ml) at 25 °C [3] ) and dissolves 1.5 g/(100 g) (1.0 g/(100 ml)) water at 25 °C. [13]
Diethyl ether has a high cetane number of 85–96 and, in combination with petroleum distillates for gasoline and diesel engines, [14] is used as a starting fluid because of its high volatility and low flash point. Ether starting fluid is sold and used in countries with cold climates, as it can help with cold starting an engine at sub-zero temperatures. For the same reason it is also used as a component of the fuel mixture for carbureted compression ignition model engines.
Triethyloxonium tetrafluoroborate is prepared from boron trifluoride, diethyl ether, and epichlorohydrin: [15]
Diethyl ether is a common laboratory aprotic solvent. It is susceptible to the formation of hydroperoxides.
A cytochrome P450 enzyme is proposed to metabolize diethyl ether. [16]
Diethyl ether inhibits alcohol dehydrogenase, and thus slows the metabolism of ethanol. [17] It also inhibits metabolism of other drugs requiring oxidative metabolism. For example, diazepam requires hepatic oxidization whereas its oxidized metabolite oxazepam does not. [18]
Diethyl ether is extremely flammable and may form explosive vapour/air mixtures. [19]
Since ether is heavier than air it can collect low to the ground and the vapour may travel considerable distances to ignition sources. Ether will ignite if exposed to an open flame, though due to its high flammability, an open flame is not required for ignition. Other possible ignition sources include – but are not limited to – hot plates, steam pipes, heaters, and electrical arcs created by switches or outlets. [19] Vapour may also be ignited by the static electricity which can build up when ether is being poured from one vessel into another. The autoignition temperature of diethyl ether is 160 °C (320 °F). The diffusion of diethyl ether in air is 9.18 × 10−6 m2/s (298 K, 101.325 kPa).[ citation needed ]
Ether is sensitive to light and air, tending to form explosive peroxides. [19] Ether peroxides have a higher boiling point than ether and are contact explosives when dry. [19] Commercial diethyl ether is typically supplied with trace amounts of the antioxidant butylated hydroxytoluene (BHT), which reduces the formation of peroxides. Storage over sodium hydroxide precipitates the intermediate ether hydroperoxides. Water and peroxides can be removed by either distillation from sodium and benzophenone, or by passing through a column of activated alumina. [20]
Due to its application in the manufacturing of illicit substances, it is listed in the Table II precursor under the United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances as well as substances such as acetone, toluene and sulfuric acid. [21]
The compound may have been synthesised by either Jābir ibn Hayyān in the 8th century [22] or Ramon Llull in 1275. [22] [23] It was synthesised in 1540 by Valerius Cordus, who called it "sweet oil of vitriol" (oleum dulce vitrioli) – the name reflects the fact that it is obtained by distilling a mixture of ethanol and sulfuric acid (then known as oil of vitriol) – and noted some of its medicinal properties. [22] At about the same time, Paracelsus discovered the analgesic properties of the molecule in dogs. [22] The name ether was given to the substance in 1729 by August Sigmund Frobenius. [24]
It was considered to be a sulfur compound until the idea was disproved in about 1800. [25]
The synthesis of diethyl ether by a reaction between ethanol and sulfuric acid has been known since the 13th century. [25]
William T. G. Morton participated in a public demonstration of ether anesthesia on October 16, 1846, at the Ether Dome in Boston, Massachusetts. Morton had called his ether preparation, with aromatic oils to conceal its smell, "Letheon" after the Lethe River (Λήθη, meaning "forgetfulness, oblivion"). [26] However, Crawford Williamson Long is now known to have demonstrated its use privately as a general anesthetic in surgery to officials in Georgia, as early as March 30, 1842, and Long publicly demonstrated ether's use as a surgical anesthetic on six occasions before the Boston demonstration. [27] [28] [29] British doctors were aware of the anesthetic properties of ether as early as 1840 where it was widely prescribed in conjunction with opium. [30] Diethyl ether was preferred by some practitioners over chloroform as a general anesthetic due to ether's more favorable therapeutic index, that is, a greater difference between an effective dose and a potentially toxic dose. [31]
Diethyl ether does not depress the myocardium but rather it stimulates the sympathetic nervous system leading to hypertension and tachycardia. It is safely used in patients with shock as it preserves the baroreceptor reflex. [32] Its minimal effect on myocardial depression and respiratory drive, as well as its low cost and high therapeutic index allows it to see continued use in developing countries. [33] Diethyl ether could also be mixed with other anesthetic agents such as chloroform to make C.E. mixture, or chloroform and alcohol to make A.C.E. mixture. In the 21st century, ether is rarely used. The use of flammable ether was displaced by nonflammable fluorinated hydrocarbon anesthetics. Halothane was the first such anesthetic developed and other currently used inhaled anesthetics, such as isoflurane, desflurane, and sevoflurane, are halogenated ethers. [34] Diethyl ether was found to have undesirable side effects, such as post-anesthetic nausea and vomiting. Modern anesthetic agents reduce these side effects. [27]
Prior to 2005, it was on the World Health Organization's List of Essential Medicines for use as an anesthetic. [35] [36]
Ether was once used in pharmaceutical formulations. A mixture of alcohol and ether, one part of diethyl ether and three parts of ethanol, was known as "Spirit of ether", Hoffman's Anodyne or Hoffman's Drops. In the United States this concoction was removed from the Pharmacopeia at some point prior to June 1917, [37] as a study published by William Procter, Jr. in the American Journal of Pharmacy as early as 1852 showed that there were differences in formulation to be found between commercial manufacturers, between international pharmacopoeia, and from Hoffman's original recipe. [38] It is also used to treat hiccups through instillation into the nasal cavity. [39]
The recreational use of ether also took place at organised parties in the 19th century called ether frolics, where guests were encouraged to inhale therapeutic amounts of diethyl ether or nitrous oxide, producing a state of excitation. Long, as well as fellow dentists Horace Wells, William Edward Clarke and William T. G. Morton observed that during these gatherings, people would often experience minor injuries but appear to show no reaction to the injury, nor memory that it had happened, demonstrating ether's anaesthetic effects. [40]
In the 19th century and early 20th century ether drinking was popular among Polish peasants. [41] It is a traditional and still relatively popular recreational drug among Lemkos. [42] It is usually consumed in a small quantity ( kropka , or "dot") poured over milk, sugar water, or orange juice in a shot glass. As a drug, it has been known to cause psychological dependence, sometimes referred to as etheromania. [43] [ medical citation needed ]
In organic chemistry, ethers are a class of compounds that contain an ether group—a single oxygen atom bonded to two separate carbon atoms, each part of an organyl group. They have the general formula R−O−R′, where R and R′ represent the organyl groups. Ethers can again be classified into two varieties: if the organyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.
Ethanol is an organic compound with the chemical formula CH3CH2OH. It is an alcohol, with its formula also written as C2H5OH, C2H6O or EtOH, where Et stands for ethyl. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like odor and pungent taste. In nature, grape-sugar breaks up by the action of fermentation into alcohol or carbonic acid, without anything being added. As a psychoactive depressant, it is the active ingredient in alcoholic beverages, and the second most consumed drug globally behind caffeine.
A solvent is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules, and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell.
An azeotrope or a constant heating point mixture is a mixture of two or more liquids whose proportions cannot be changed by simple distillation. This happens because when an azeotrope is boiled, the vapour has the same proportions of constituents as the unboiled mixture. Knowing an azeotrope's behavior is important for distillation.
Chloroform, or trichloromethane, is an organochloride with the formula CHCl3 and a common solvent. It is a volatile, colorless, sweet-smelling, dense liquid produced on a large scale as a precursor to refrigerants and PTFE. Chloroform was once used as an inhalational anesthetic between the 19th century and the first half of the 20th century. It is miscible with many solvents but it is only very slightly soluble in water.
Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is an isomer of another solvent, butanone.
Ethanethiol, commonly known as ethyl mercaptan, is an organosulfur compound with the formula CH3CH2SH. It is a colorless liquid with a distinct odor. Abbreviated EtSH, it consists of an ethyl group (Et), CH3CH2, attached to a thiol group, SH. Its structure parallels that of ethanol, but with sulfur in place of oxygen. The odor of EtSH is infamous. Ethanethiol is more volatile than ethanol due to a diminished ability to engage in hydrogen bonding. Ethanethiol is toxic in high concentrations. It occurs naturally as a minor component of petroleum, and may be added to otherwise odorless gaseous products such as liquefied petroleum gas (LPG) to help warn of gas leaks. At these concentrations, ethanethiol is not harmful.
Organochlorine chemistry is concerned with the properties of organochlorine compounds, or organochlorides, organic compounds that contain one or more carbon–chlorine bonds. The chloroalkane class includes common examples. The wide structural variety and divergent chemical properties of organochlorides lead to a broad range of names, applications, and properties. Organochlorine compounds have wide use in many applications, though some are of profound environmental concern, with TCDD being one of the most notorious.
Ethyl acetate is the organic compound with the formula CH3CO2CH2CH3, simplified to C4H8O2. This flammable, colorless liquid has a characteristic sweet smell and is used in glues, nail polish removers, and the decaffeination process of tea and coffee. Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent.
An inhalational anesthetic is a chemical compound possessing general anesthetic properties that is delivered via inhalation. They are administered through a face mask, laryngeal mask airway or tracheal tube connected to an anesthetic vaporiser and an anesthetic delivery system. Agents of significant contemporary clinical interest include volatile anesthetic agents such as isoflurane, sevoflurane and desflurane, as well as certain anesthetic gases such as nitrous oxide and xenon.
Diisopropyl ether is a secondary ether that is used as a solvent. It is a colorless liquid that is slightly soluble in water, but miscible with organic solvents. It is used as an extractant and an oxygenate gasoline additive. It is obtained industrially as a byproduct in the production of isopropanol by hydration of propylene. Diisopropyl ether is sometimes represented by the abbreviation DIPE.
Butan-2-ol, or sec-butanol, is an organic compound with formula CH3CH(OH)CH2CH3. Its structural isomers are 1-butanol, isobutanol, and tert-butanol. 2-Butanol is chiral and thus can be obtained as either of two stereoisomers designated as (R)-(−)-butan-2-ol and (S)-(+)-butan-2-ol. It is normally encountered as a 1:1 mixture of the two stereoisomers — a racemic mixture.
tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH3)3COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.
Halogenated ethers are a subcategory of ethers—organic chemicals that contain an oxygen atom connected to two alkyl groups or similar structures. An example of an ether is the solvent diethyl ether. Halogenated ethers differ from other ethers because there are one or more halogen atoms—fluorine, chlorine, bromine, or iodine—as substituents on the carbon groups.. Examples of commonly used halogenated ethers include isoflurane, sevofluorane and desflurane.
Chloral, also known as trichloroacetaldehyde or trichloroethanal, is the organic compound with the formula Cl3CCHO. This aldehyde is a colourless liquid that is soluble in a wide range of solvents. It reacts with water to form chloral hydrate, a once widely used sedative and hypnotic substance.
Ethyl sulfate, also known as sulfovinic acid, is an organic chemical compound used as an intermediate in the production of ethanol from ethylene. It is the ethyl ester of sulfuric acid.
In organic chemistry an enol ether is an alkene with an alkoxy substituent. The general structure is R2C=CR-OR where R = H, alkyl or aryl. A common subfamily of enol ethers are vinyl ethers, with the formula ROCH=CH2. Important enol ethers include the reagent 3,4-dihydropyran and the monomers methyl vinyl ether and ethyl vinyl ether.
Divinyl ether is the organic compound with the formula O(CH=CH2)2. It is a colorless, volatile liquid that has mainly been of interest as an inhalation anesthetic. It is prepared by treating bis(chloroethyl) ether with base.
In fire protection, an accelerant is any substance or mixture that accelerates or speeds the development and escalation of fire. Accelerants are often used to commit arson, and some accelerants may cause an explosion. Some fire investigators use the term "accelerant" to mean any substance that initiates and promotes a fire without implying intent or malice. The accelerant works by burning rapidly. As such, the accelerant itself is consumed in the process, and should not be considered as a catalyst. In Arson investigation, the significance of accelerant is to detect the presence of a such substance in order to proved that the fire is classified as an arson.
Isopropyl alcohol is a colorless, flammable, organic compound with a pungent alcoholic odor.
the structure of ethyl alcohol cohen julius diethyl ether.
{{cite web}}
: CS1 maint: archived copy as title (link)Dawniej eteru używało się w lecznictwie do narkozy, ponieważ ma właściwości halucynogenne, a już kilka kropel inhalacji wystarczyło do silnego znieczulenia pacjenta. Jednak eter, jak każda ciecz, może teoretycznie być napojem. Łemkowie tę teorię praktykują. Mimo to, nazywanie skroplonego eteru – "kropki" – ich "napojem narodowym" byłoby przesadą. Chociaż stanowi to pewną część mitu "bycia Łemkiem".