Cloniprazepam

Last updated
Cloniprazepam
Cloniprazepam.svg
Clinical data
Other names1-Cyclopropylmethylclonazepam, Kloniprazepam, 2-Chloro-7'-nitroprazepam
Drug class Benzodiazepines
Legal status
Legal status
Identifiers
  • 5-(2-Chlorophenyl)-1-(cyclopropylmethyl)-7-nitro-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H16ClN3O3
Molar mass 369.81 g·mol−1
3D model (JSmol)
  • O=C1N(CC2CC2)C3=CC=C([N+]([O-])=O)C=C3C(C4=CC=CC=C4Cl)=NC1
  • InChI=1S/C19H16ClN3O3/c20-16-4-2-1-3-14(16)19-15-9-13(23(25)26)7-8-17(15)22(11-12-5-6-12)18(24)10-21-19/h1-4,7-9,12H,5-6,10-11H2
  • Key:CCSYKGYLSFXNTA-UHFFFAOYSA-N
Metabolic pathway of cloniprazepam Cloniprazepam.png
Metabolic pathway of cloniprazepam

Cloniprazepam is a benzodiazepine derivative and a prodrug of clonazepam, 7-aminoclonazepam, and other metabolites. [1] [2]

Contents

Some of the minor metabolites include 3-hydroxyclonazepam and 6-hydroxyclonazepam, 3-hydroxycloniprazepam and ketocloniprazepam with ketone group formed where 3-hydroxy group was. [1]

It is a designer drug and an NPS (short for "new psychoactive substance"). [1] At the end of 2017, cloniprazepam was an uncontrolled substance in most of the countries.

See also

Related Research Articles

<span class="mw-page-title-main">Flunitrazepam</span> Benzodiazepine sedative

Flunitrazepam, also known as Rohypnol among other names, is a benzodiazepine used to treat severe insomnia and assist with anesthesia. As with other hypnotics, flunitrazepam has been advised to be prescribed only for short-term use or by those with chronic insomnia on an occasional basis.

<span class="mw-page-title-main">Adinazolam</span> Chemical compound

Adinazolam is a tranquilizer of the triazolobenzodiazepine (TBZD) class, which are benzodiazepines (BZDs) fused with a triazole ring. It possesses anxiolytic, anticonvulsant, sedative, and antidepressant properties. Adinazolam was developed by Jackson B. Hester, who was seeking to enhance the antidepressant properties of alprazolam, which he also developed. Adinazolam was never FDA approved and never made available to the public market; however, it has been sold as a designer drug.

<span class="mw-page-title-main">Ethyl loflazepate</span> Chemical compound

Ethyl loflazepate is a drug which is a benzodiazepine derivative. It possesses anxiolytic, anticonvulsant, sedative and skeletal muscle relaxant properties. In animal studies it was found to have low toxicity, although in rats evidence of pulmonary phospholipidosis occurred with pulmonary foam cells developing with long-term use of very high doses. Its elimination half-life is 51–103 hours. Its mechanism of action is similar to other benzodiazepines. Ethyl loflazepate also produces an active metabolite which is stronger than the parent compound. Ethyl loflazepate was designed to be a prodrug for descarboxyloflazepate, its active metabolite. It is the active metabolite which is responsible for most of the pharmacological effects rather than ethyl loflazepate. The main metabolites of ethyl loflazepate are descarbethoxyloflazepate, loflazepate and 3-hydroxydescarbethoxyloflazepate. Accumulation of the active metabolites of ethyl loflazepate are not affected by those with kidney failure or impairment. The symptoms of an overdose of ethyl loflazepate include sleepiness, agitation and ataxia. Hypotonia may also occur in severe cases. These symptoms occur much more frequently and severely in children. Death from therapeutic maintenance doses of ethyl loflazepate taken for 2 – 3 weeks has been reported in 3 elderly patients. The cause of death was asphyxia due to benzodiazepine toxicity. High doses of the antidepressant fluvoxamine may potentiate the adverse effects of ethyl loflazepate.

<span class="mw-page-title-main">Etizolam</span> Chemical compound

Etizolam is a thienodiazepine derivative which is a benzodiazepine analog. The etizolam molecule differs from a benzodiazepine in that the benzene ring has been replaced by a thiophene ring and triazole ring has been fused, making the drug a thienotriazolodiazepine.

<span class="mw-page-title-main">Flutoprazepam</span> Benzodiazepam

Flutoprazepam (Restas) is a drug which is a benzodiazepine. It was patented in Japan by Sumitomo in 1972 and its medical use remains mostly confined to that country. Its muscle relaxant properties are approximately equivalent to those of diazepam - however, it has more powerful sedative, hypnotic, anxiolytic and anticonvulsant effects and is around four times more potent by weight compared to diazepam. It is longer acting than diazepam due to its long-acting active metabolites, which contribute significantly to its effects. Its principal active metabolite is n-desalkylflurazepam, also known as norflurazepam, which is also a principal metabolite of flurazepam.

<span class="mw-page-title-main">Meclonazepam</span> Chemical compound

Meclonazepam ((S)-3-methylclonazepam) was discovered by a team at Hoffmann-La Roche in the 1970s and is a drug which is a benzodiazepine derivative similar in structure to clonazepam. It has sedative and anxiolytic actions like those of other benzodiazepines, and also has anti-parasitic effects against the parasitic worm Schistosoma mansoni.

<span class="mw-page-title-main">AM-694</span> Chemical compound

AM-694 (1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole) is a designer drug that acts as a potent and selective agonist for the cannabinoid receptor CB1. It is used in scientific research for mapping the distribution of CB1 receptors.

<i>N</i>-Desalkylflurazepam Benzodiazepine analog

N-Desalkylflurazepam is a benzodiazepine analog and an active metabolite of several other benzodiazepine drugs including flurazepam, flutoprazepam, fludiazepam, midazolam, flutazolam, quazepam, and ethyl loflazepate. It is long-acting, prone to accumulation, and binds unselectively to the various benzodiazepine receptor subtypes. It has been sold as a designer drug from 2016 onward.

<span class="mw-page-title-main">Flubromazepam</span> Benzodiazepine designer drug

Flubromazepam is a benzodiazepine derivative which was first synthesized in 1960, but was never marketed and did not receive any further attention or study until late 2012 when it appeared on the grey market as a novel designer drug.

<span class="mw-page-title-main">3-Hydroxyphenazepam</span> Benzodiazepine medication

3-Hydroxyphenazepam is a benzodiazepine with hypnotic, sedative, anxiolytic, and anticonvulsant properties. It is an active metabolite of phenazepam, as well as the active metabolite of the benzodiazepine prodrug cinazepam. Relative to phenazepam, 3-hydroxyphenazepam has diminished myorelaxant properties, but is about equivalent in most other regards. Like other benzodiazepines, 3-hydroxyphenazepam behaves as a positive allosteric modulator of the benzodiazepine site of the GABAA receptor with an EC50 value of 10.3 nM. It has been sold online as a designer drug.

<span class="mw-page-title-main">Clonazolam</span> Benzodiazepine derivative research chemical

Clonazolam is a drug of the triazolobenzodiazepine (TBZD) class, which are benzodiazepines (BZDs) fused with a triazole ring. Little research has been done about its effects and metabolism, and is sold online as a designer drug.

<span class="mw-page-title-main">Flubromazolam</span> Triazolobenzodiazepine/Benzodiazepine derivative

Flubromazolam (JYI-73) is a triazolobenzodiazepine (TBZD), which are benzodiazepine (BZD) derivatives. Flubromazolam is reputed to be highly potent, and concerns have been raised that clonazolam and flubromazolam in particular may pose comparatively higher risks than other designer benzodiazepines, due to their ability to produce strong sedation and amnesia at oral doses of as little as 0.5 mg. Life-threatening adverse reactions have been observed at doses of only 3 mg of flubromazolam.

<span class="mw-page-title-main">3-HO-PCP</span> Chemical compound

3-Hydroxyphencyclidine (3-HO-PCP) is a dissociative of the arylcyclohexylamine class related to phencyclidine (PCP) that has been sold online as a designer drug.

<span class="mw-page-title-main">Nifoxipam</span> Benzodiazepine designer drug

Nifoxipam is a benzodiazepine that is a minor metabolite of flunitrazepam and has been sold online as a designer drug.

<span class="mw-page-title-main">Metizolam</span> Chemical compound

Metizolam is a thienotriazolodiazepine that is the demethylated analogue of the closely related etizolam.

<span class="mw-page-title-main">Deschloroketamine</span> Chemical compound

Deschloroketamine is a dissociative anesthetic that has been sold online as a designer drug. It has also been proposed for the treatment of bacterial, fungal, viral or protozoal infections and for immunomodulation at doses of 2 mg per day.

<span class="mw-page-title-main">Desmethylflunitrazepam</span> Chemical compound

Desmethylflunitrazepam (also known as norflunitrazepam, Ro05-4435 and fonazepam) is a benzodiazepine that is a metabolite of flunitrazepam and has been sold online as a designer drug. It has an IC50 value of 1.499 nM for the GABAA receptor.

<span class="mw-page-title-main">Nitrazolam</span> Benzodiazepine designer drug

Nitrazolam is a triazolobenzodiazepine (TBZD) , which are benzodiazepine (BZD) derivatives, that has been sold online as a designer drug.

<span class="mw-page-title-main">EG-018</span> Chemical compound

EG-018 is a carbazole-based synthetic cannabinoid that has been sold online as a designer drug. It acts as a partial agonist of the CB1 and CB2 receptor, with reasonably high binding affinity, but low efficacy in terms of inducing a signaling response.

References

  1. 1 2 3 Moosmann B, Bisel P, Franz F, Huppertz LM, Auwärter V (November 2016). "Characterization and in vitro phase I microsomal metabolism of designer benzodiazepines - an update comprising adinazolam, cloniprazepam, fonazepam, 3-hydroxyphenazepam, metizolam and nitrazolam". Journal of Mass Spectrometry. 51 (11): 1080–1089. Bibcode:2016JMSp...51.1080M. doi:10.1002/jms.3840. PMID   27535017.
  2. Mortelé O, Vervliet P, Gys C, Degreef M, Cuykx M, Maudens K, et al. (May 2018). "In vitro Phase I and Phase II metabolism of the new designer benzodiazepine cloniprazepam using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry". Journal of Pharmaceutical and Biomedical Analysis. 153: 158–167. doi:10.1016/j.jpba.2018.02.032. hdl: 10067/1496330151162165141 . PMID   29494888. S2CID   3946404.