Apafant

Last updated
Apafant
Apafant structure.png
Identifiers
  • 3-(4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-2-yl)-1-(4-morpholinyl)-1-propanone
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.220.442 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C22H22ClN5O2S
Molar mass 455.96 g·mol−1
3D model (JSmol)
  • CC1=NN=C2N1C3=C(C=C(S3)CCC(=O)N4CCOCC4)C(=NC2)C5=CC=CC=C5Cl
  • InChI=1S/C22H22ClN5O2S/c1-14-25-26-19-13-24-21(16-4-2-3-5-18(16)23)17-12-15(31-22(17)28(14)19)6-7-20(29)27-8-10-30-11-9-27/h2-5,12H,6-11,13H2,1H3
  • Key:JGPJQFOROWSRRS-UHFFFAOYSA-N

Apafant (WEB-2086, LSM-2613) is a drug which acts as a potent and selective inhibitor of the phospholipid mediator platelet-activating factor (PAF). It was developed by structural modification of the thienotriazolodiazepine sedative drug brotizolam and demonstrated that PAF inhibitory actions could be separated from activity at the benzodiazepine receptor. Apafant was investigated for several applications involving inflammatory responses such as asthma and conjunctivitis but was never adopted for medical use, however it continues to be used in pharmacology research. [1] [2] [3] [4]

Related Research Articles

<span class="mw-page-title-main">Agonist</span> Chemical which binds to and activates a biochemical receptor

An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the agonist, while an inverse agonist causes an action opposite to that of the agonist.

<span class="mw-page-title-main">Receptor antagonist</span> Type of receptor ligand or drug that blocks a biological response

A receptor antagonist is a type of receptor ligand or drug that blocks or dampens a biological response by binding to and blocking a receptor rather than activating it like an agonist. Antagonist drugs interfere in the natural operation of receptor proteins. They are sometimes called blockers; examples include alpha blockers, beta blockers, and calcium channel blockers. In pharmacology, antagonists have affinity but no efficacy for their cognate receptors, and binding will disrupt the interaction and inhibit the function of an agonist or inverse agonist at receptors. Antagonists mediate their effects by binding to the active site or to the allosteric site on a receptor, or they may interact at unique binding sites not normally involved in the biological regulation of the receptor's activity. Antagonist activity may be reversible or irreversible depending on the longevity of the antagonist–receptor complex, which, in turn, depends on the nature of antagonist–receptor binding. The majority of drug antagonists achieve their potency by competing with endogenous ligands or substrates at structurally defined binding sites on receptors.

Platelet-activating factor, also known as PAF, PAF-acether or AGEPC (acetyl-glyceryl-ether-phosphorylcholine), is a potent phospholipid activator and mediator of many leukocyte functions, platelet aggregation and degranulation, inflammation, and anaphylaxis. It is also involved in changes to vascular permeability, the oxidative burst, chemotaxis of leukocytes, as well as augmentation of arachidonic acid metabolism in phagocytes.

<span class="mw-page-title-main">Levocabastine</span> Chemical compound

Levocabastine (trade name Livostin or Livocab, depending on the region) is a selective second-generation H1 receptor antagonist which was discovered at Janssen Pharmaceutica in 1979. It is used for allergic conjunctivitis.

<span class="mw-page-title-main">Pregnane X receptor</span> Mammalian protein found in Homo sapiens

In the field of molecular biology, the pregnane X receptor (PXR), also known as the steroid and xenobiotic sensing nuclear receptor (SXR) or nuclear receptor subfamily 1, group I, member 2 (NR1I2) is a protein that in humans is encoded by the NR1I2 gene.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

<span class="mw-page-title-main">BIMU8</span> Chemical compound

BIMU-8 is a drug which acts as a 5-HT4 receptor selective agonist. BIMU-8 was one of the first compounds of this class. The main action of BIMU-8 is to increase the rate of respiration by activating an area of the brain stem known as the pre-Botzinger complex.

<span class="mw-page-title-main">Rupatadine</span> Second generation H1-antihistamine

Rupatadine is a second generation antihistamine and platelet-activating factor antagonist used to treat allergies. It was discovered and developed by Uriach and is marketed as Rupafin and under several other trade names.

<span class="mw-page-title-main">Platelet-activating factor receptor</span> Protein-coding gene in the species Homo sapiens

The platelet-activating factor receptor(PAF-R) is a G-protein coupled receptor which binds platelet-activating factor. It is encoded in the human by the PTAFR gene.

Prostaglandin DP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

<span class="mw-page-title-main">Dipropylcyclopentylxanthine</span> Chemical compound

8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, PD-116,948) is a drug which acts as a potent and selective antagonist for the adenosine A1 receptor. It has high selectivity for A1 over other adenosine receptor subtypes, but as with other xanthine derivatives DPCPX also acts as a phosphodiesterase inhibitor, and is almost as potent as rolipram at inhibiting PDE4. It has been used to study the function of the adenosine A1 receptor in animals, which has been found to be involved in several important functions such as regulation of breathing and activity in various regions of the brain, and DPCPX has also been shown to produce behavioural effects such as increasing the hallucinogen-appropriate responding produced by the 5-HT2A agonist DOI, and the dopamine release induced by MDMA, as well as having interactions with a range of anticonvulsant drugs.

Prostaglandin EP<sub>3</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin EP3 receptor (53kDa), also known as EP3, is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the human gene PTGER3; it is one of four identified EP receptors, the others being EP1, EP2, and EP4, all of which bind with and mediate cellular responses to PGE2 and also, but generally with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). EP has been implicated in various physiological and pathological responses.

<span class="mw-page-title-main">Prostacyclin receptor</span> Mammalian protein found in Homo sapiens

The Prostacyclin receptor, also termed the prostaglandin I2 receptor or just IP, is a receptor belonging to the prostaglandin (PG) group of receptors. IP binds to and mediates the biological actions of prostacyclin (also termed Prostaglandin I2, PGI2, or when used as a drug, epoprostenol). IP is encoded in humans by the PTGIR gene. While possessing many functions as defined in animal model studies, the major clinical relevancy of IP is as a powerful vasodilator: stimulators of IP are used to treat severe and even life-threatening diseases involving pathological vasoconstriction.

<span class="mw-page-title-main">Alazocine</span> Synthetic opioid analgesic

Alazocine, also known more commonly as N-allylnormetazocine (NANM), is a synthetic opioid analgesic of the benzomorphan family related to metazocine, which was never marketed. In addition to its opioid activity, the drug is a sigma receptor agonist, and has been used widely in scientific research in studies of this receptor. Alazocine is described as a potent analgesic, psychotomimetic or hallucinogen, and opioid antagonist. Moreover, one of its enantiomers was the first compound that was found to selectively label the σ1 receptor, and led to the discovery and characterization of the receptor.

Adenosine diphosphate (ADP) receptor inhibitors are a drug class of antiplatelet agents, used in the treatment of acute coronary syndrome (ACS) or in preventive treatment for patients who are in risk of thromboembolism, myocardial infarction or a stroke. These drugs antagonize the P2Y12 platelet receptors and therefore prevent the binding of ADP to the P2Y12 receptor. This leads to a decrease in aggregation of platelets, prohibiting thrombus formation. The P2Y12 receptor is a surface bound protein found on blood platelets. They belong to G protein-coupled purinergic receptors (GPCR) and are chemoreceptors for ADP.

<span class="mw-page-title-main">Dextrallorphan</span> Chemical compound

Dextrallorphan (DXA) is a chemical of the morphinan class that is used in scientific research. It acts as a σ1 receptor agonist and NMDA receptor antagonist. It has no significant affinity for the σ2, μ-opioid, or δ-opioid receptor, or for the serotonin or norepinephrine transporter. As an NMDA receptor antagonist, in vivo, it is approximately twice as potent as dextromethorphan, and five-fold less potent than dextrorphan.

<span class="mw-page-title-main">Forasartan</span> Chemical compound

Forasartan, otherwise known as the compound SC-52458, is a nonpeptide angiotensin II receptor antagonist (ARB, AT1 receptor blocker).

<span class="mw-page-title-main">LY-215,840</span> Chemical compound

LY-215,840 is an ergoline derivative drug developed by Eli Lilly, which acts as a potent and selective antagonist at the serotonin 5-HT2 and 5-HT7 receptors. It has anti-hypertensive and muscle relaxant effects in animal studies.

<span class="mw-page-title-main">Israpafant</span> Chemical compound

Israpafant (Y-24180) is a drug which acts as a selective antagonist for the platelet-activating factor receptor, and was originally developed for the treatment of asthma. Its chemical structure is a thienotriazolodiazepine, closely related to the sedative benzodiazepine derivative etizolam. However israpafant binds far more tightly to the platelet-activating factor receptor, with an IC50 of 0.84nM for inhibiting PAF-induced human platelet aggregation (compared to etizolam's IC50 of 998nM at this target), while it binds only weakly to benzodiazepine receptors, with a Ki of 3680nM. Israpafant has been found to inhibit the activation of eosinophil cells, and consequently delays the development of immune responses. It has also been shown to have anti-nephrotoxic properties, and to mobilize calcium transport.

<span class="mw-page-title-main">5-Oxo-eicosatetraenoic acid</span> Chemical compound

5-Oxo-eicosatetraenoic acid is a Nonclassic eicosanoid metabolite of arachidonic acid and the most potent naturally occurring member of the 5-HETE family of cell signaling agents. Like other cell signaling agents, 5-oxo-ETE is made by a cell and then feeds back to stimulate its parent cell and/or exits this cell to stimulate nearby cells. 5-Oxo-ETE can stimulate various cell types particularly human leukocytes but possesses its highest potency and power in stimulating the human eosinophil type of leukocyte. It is therefore suggested to be formed during and to be an important contributor to the formation and progression of eosinophil-based allergic reactions; it is also suggested that 5-oxo-ETE contributes to the development of inflammation, cancer cell growth, and other pathological and physiological events.

References

  1. Casals-Stenzel J (December 1991). "Thieno-triazolo-1,4-diazepines as antagonists of platelet-activating factor: present status". Lipids. 26 (12): 1157–1161. doi:10.1007/BF02536522. PMID   1668111. S2CID   4053407.
  2. Brecht HM, Adamus WS, Heuer HO, Birke FW, Kempe ER (January 1991). "Pharmacodynamics, pharmacokinetics and safety profile of the new platelet-activating factor antagonist apafant in man". Arzneimittel-Forschung. 41 (1): 51–59. PMID   1646613.
  3. Ikegami K, Hata H, Fuchigami J, Tanaka K, Kohjimoto Y, Uchida S, Tasaka K (June 1997). "Apafant (a PAF receptor antagonist) suppresses the early and late airway responses in guinea pigs: a comparison with antiasthmatic drugs". European Journal of Pharmacology. 328 (1): 75–81. doi:10.1016/s0014-2999(97)83031-2. PMID   9203572.
  4. Kato M, Imoto K, Miyake H, Oda T, Miyaji S, Nakamura M (August 2004). "Apafant, a potent platelet-activating factor antagonist, blocks eosinophil activation and is effective in the chronic phase of experimental allergic conjunctivitis in guinea pigs". Journal of Pharmacological Sciences. 95 (4): 435–442. doi: 10.1254/jphs.fp0040265 . PMID   15286429. S2CID   34872524.