Flumazenil

Last updated
Flumazenil
Flumazenil.svg
Flumazenil ball-and-stick model.png
Clinical data
Trade names Anexate, Lanexat, Mazicon, Romazicon
Other namesethyl 8-fluoro- 5,6-dihydro- 5-methyl- 6-oxo- 4H- imidazo [1,5-a] [1,4] benzodiazepine- 3-carboxylate
AHFS/Drugs.com Monograph
Pregnancy
category
  • AU:B3
Routes of
administration
IV
ATC code
Legal status
Legal status
Pharmacokinetic data
Metabolism Hepatic
Elimination half-life 7–15 min (initial)
20–30 min (brain)
40–80 min (terminal)
Excretion Urine 90–95%
Feces 5–10%
Identifiers
  • Ethyl 8-fluoro-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.128.069 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C15H14FN3O3
Molar mass 303.293 g·mol−1
3D model (JSmol)
  • Fc(c1)ccc-2c1C(=O)N(C)Cc3n2cnc3C(=O)OCC
  • InChI=1S/C15H14FN3O3/c1-3-22-15(21)13-12-7-18(2)14(20)10-6-9(16)4-5-11(10)19(12)8-17-13/h4-6,8H,3,7H2,1-2H3 Yes check.svgY
  • Key:OFBIFZUFASYYRE-UHFFFAOYSA-N Yes check.svgY
   (verify)
A vial of flumazenil solution for injection Flumazenil1.JPG
A vial of flumazenil solution for injection

Flumazenil (also known as flumazepil, code name Ro 15-1788 [3] ) is a selective GABAA receptor antagonist [4] administered via injection, otic insertion, or intranasally. Therapeutically, it acts as both an antagonist and antidote to benzodiazepines (particularly in cases of overdose), through competitive inhibition.

Contents

It was first characterized in 1981, [5] and was first marketed in 1987 by Hoffmann-La Roche under the trade name Anexate. However, it did not receive FDA approval until December 20, 1991. The developer lost its exclusive patent rights in 2008; so at present, generic formulations of this drug are available. Intravenous flumazenil is primarily used to treat benzodiazepine overdoses and to help reverse anesthesia. Administration of flumazenil by sublingual lozenge and topical cream has also been tested. [6] [7]

Medical uses

Flumazenil benefits patients who become excessively drowsy after use of benzodiazepines for either diagnostic or therapeutic procedures. [8]

The drug has been used as an antidote in the treatment of benzodiazepine overdoses. [8] It reverses the effects of benzodiazepines by competitive inhibition at the benzodiazepine (BZ) recognition site on the GABA/benzodiazepine receptor complex. There are many complications that must be taken into consideration when used in the acute care setting. [8] These include lowered seizure threshold, agitation, and anxiousness. Flumazenil's short half-life requires multiple doses. Because of the potential risks of withdrawal symptoms and the drug's short half-life, patients must be carefully monitored to prevent recurrence of overdose symptoms or adverse side effects.

Flumazenil is also sometimes used after surgery to reverse the sedative effects of benzodiazepines. This is similar to naloxone's application to reverse the effect of opiates and opioids following surgery. Administration of the drug requires careful monitoring by an anesthesiologist due to potential side effects and serious risks associated with over-administeration. Likewise, post-surgical monitoring is also necessary because flumazenil can mask the apparent metabolization ("wearing off") of the drug after removal of patient life-support and monitoring equipment.

Flumazenil has been effectively used to treat overdoses of non-benzodiazepine hypnotics, such as zolpidem, zaleplon and zopiclone (also known as "Z-drugs"). [9]

It may also be effective in reducing excessive daytime sleepiness while improving vigilance in primary hypersomnias, such as idiopathic hypersomnia. [6]

The drug has also been used in hepatic encephalopathy. It may have beneficial short‐term effects in people with cirrhosis, but there is no evidence for long-term benefits. [10]

The onset of action is rapid, and effects are usually seen within one to two minutes. The peak effect is seen at six to ten minutes. The recommended dose for adults is 200 μg every 1–2 minutes until the effect is seen, up to a maximum of 3 mg per hour. It is available as a clear, colourless solution for intravenous injection, containing 500 μg in 5 mL.[ citation needed ] Additional doses may be needed within 20 to 30 minutes if evidence of oversedation reappears. [11]

Many benzodiazepines (including midazolam) have longer half-lives than flumazenil. Therefore, in cases of overdose, repeated doses of flumazenil may be required to prevent recurrent symptoms once the initial dose of flumazenil wears off.[ citation needed ]

It is hepatically metabolised to inactive compounds which are excreted in the urine. Individuals who are physically dependent on benzodiazepines may experience benzodiazepine withdrawal symptoms, including seizures, upon rapid administration of flumazenil.

It is not recommended for routine use in those with a decreased level of consciousness. [12]

In terms of drug enforcement initiatives, diversion control programs and required post-marketing surveillance of adverse events, orders for flumazenil may trigger a prescription audit to the search for benzodiazepine misuse and for clinically significant adverse reactions related to their use. [13]

PET radioligand

Radiolabeled with the radioactive isotope carbon-11, flumazenil may be used as a radioligand in neuroimaging with positron emission tomography to visualize the distribution of GABAA receptors in the human brain. [14]

Treatment for benzodiazepine dependence & tolerance

Epileptic patients who have become tolerant to the anti-seizure effects of the benzodiazepine clonazepam became seizure-free for several days after treatment with 1.5 mg of flumazenil. [15] Similarly, patients who were dependent on high doses of benzodiazepines (median dosage 333 mg diazepam-equivalent) were able to be stabilised on a low dose of clonazepam after 7–8 days of treatment with flumazenil. [16]

Flumazenil has been tested against placebo in benzodiazepine-dependent subjects. Results showed that typical benzodiazepine withdrawal effects were reversed with few to no symptoms. [17] Flumazenil was also shown to produce significantly fewer withdrawal symptoms than saline in a randomized, placebo-controlled study with benzodiazepine-dependent subjects. Additionally, relapse rates were much lower during subsequent follow-up. [18]

In vitro studies of tissue cultured cell lines have shown that chronic treatment with flumazenil enhanced the benzodiazepine binding site where such receptors have become more numerous and uncoupling/down-regulation of GABAA has been reversed. [19] [20] [21] After long-term exposure to benzodiazepines, GABAA receptors become down-regulated and uncoupled. Growth of new receptors and recoupling after prolonged flumazenil exposure has also been observed. It is thought this may be due to increased synthesis of receptor proteins. [22]

Flumazenil was found to be more effective than placebo in reducing feelings of hostility and aggression in patients who had been free of benzodiazepines for 4–266 weeks. [23] This may suggest a role for flumazenil in treating protracted benzodiazepine withdrawal symptoms.

Low-dose, slow subcutaneous flumazenil administration is a safe procedure for patients withdrawing from long-term, high-dose benzodiazepine dependency. [24] It has a low risk of seizures even amongst those who have experienced convulsions when previously attempting benzodiazepine withdrawal. [25]

In Italy, the gold standard for treatment of high-dose benzodiazepine dependency is 8–10 days of low-dose, slowly infused flumazenil. [26] One addiction treatment centre in Italy has used flumazenil to treat over 300 patients who were dependent on high doses of benzodiazepines (up to 70 times higher than conventionally prescribed) with physicians being among the clinic's most common patients. [27]

Pharmacology

Flumazenil, an imidazobenzodiazepine derivative, antagonizes the actions of benzodiazepines on the central nervous system. Flumazenil competitively inhibits the activity at the benzodiazepine recognition site on the GABA/benzodiazepine receptor complex. [28] It also exhibits weak partial agonism of GABAA receptor complexes that contain α6-type monomers; the clinical relevance of this is unknown. [29]

Flumazenil does not antagonize all of the central nervous system effects of drugs affecting GABA-ergic neurons by means other than the benzodiazepine receptor (including ethanol, barbiturates, and most anesthetics) and does not reverse the effects of opioids. It will however antagonize the action of non-benzodiazepine z-drugs, such as zolpidem and zopiclone, because they act via the benzodiazepine site of the GABA receptor [30] - it has been used to successfully treat z-drug overdose. [30] [31] [32]

Pharmacodynamics

Intravenous flumazenil has been shown to antagonize sedation, impairment of recall, psychomotor impairment and ventilatory depression produced by benzodiazepines in healthy human volunteers.

The duration and degree of reversal of sedative benzodiazepine effects are related to the dose and plasma concentrations of flumazenil.

Availability

Flumazenil is sold under a wide variety of brand names worldwide like Anexate, Lanexat, Mazicon, Romazicon. In India it is manufactured by Roche Bangladesh Pharmaceuticals and USAN Pharmaceuticals.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Benzodiazepine</span> Class of depressant drugs

Benzodiazepines, colloquially called "benzos", are a class of depressant drugs whose core chemical structure is the fusion of a benzene ring and a diazepine ring. They are prescribed to treat conditions such as anxiety disorders, insomnia, and seizures. The first benzodiazepine, chlordiazepoxide (Librium), was discovered accidentally by Leo Sternbach in 1955 and was made available in 1960 by Hoffmann–La Roche, who soon followed with diazepam (Valium) in 1963. By 1977, benzodiazepines were the most prescribed medications globally; the introduction of selective serotonin reuptake inhibitors (SSRIs), among other factors, decreased rates of prescription, but they remain frequently used worldwide.

<span class="mw-page-title-main">Diazepam</span> Benzodiazepine sedative

Diazepam, first marketed as Valium, is a medicine of the benzodiazepine family that acts as an anxiolytic. It is commonly used to treat a range of conditions, including anxiety, seizures, alcohol withdrawal syndrome, muscle spasms, insomnia, and restless legs syndrome. It may also be used to cause memory loss during certain medical procedures. It can be taken orally, as a suppository inserted into the rectum, intramuscularly, intravenously or used as a nasal spray. When injected intravenously, effects begin in one to five minutes and last up to an hour. Orally, effects begin after 15 to 60 minutes.

<span class="mw-page-title-main">Zolpidem</span> Hypnotic medication

Zolpidem, sold under the brand name Ambien among others, is a medication primarily used for the short-term treatment of sleeping problems. Guidelines recommend that it be used only after cognitive behavioral therapy for insomnia and behavioral changes, such as sleep hygiene, have been tried. It decreases the time to sleep onset by about fifteen minutes and at larger doses helps people stay asleep longer. It is taken by mouth and is available in conventional tablets, sublingual tablets, or oral spray.

<span class="mw-page-title-main">Clonazepam</span> Benzodiazepine medication

Clonazepam, sold under the brand names Klonopin and Rivotril, is a medication used to prevent and treat anxiety disorders, seizures, bipolar mania, agitation associated with psychosis, OCD and akathisia. It is a long-acting tranquilizer of the benzodiazepine class. It possesses anxiolytic, anticonvulsant, sedative, hypnotic, and skeletal muscle relaxant properties. It is typically taken by mouth but is also used intravenously. Effects begin within one hour and last between eight and twelve hours in adults.

<span class="mw-page-title-main">Zopiclone</span> Hypnotic medication

Zopiclone, sold under the brand name Imovane among others, is a nonbenzodiazepine used to treat difficulty sleeping. Zopiclone is molecularly distinct from benzodiazepine drugs and is classed as a cyclopyrrolone. However, zopiclone increases the normal transmission of the neurotransmitter gamma-aminobutyric acid (GABA) in the central nervous system, via modulating GABAA receptors similarly to the way benzodiazepine drugs do.

<span class="mw-page-title-main">Nonbenzodiazepine</span> Class of psychoactive drugs

Nonbenzodiazepines, sometimes referred to colloquially as Z-drugs, are a class of psychoactive drugs that are benzodiazepine-like in uses, such as for treating insomnia and anxiety.

<span class="mw-page-title-main">Clobazam</span> Benzodiazepine class medication

Clobazam, sold under the brand names Frisium, Onfi and others, is a benzodiazepine class medication that was patented in 1968. Clobazam was first synthesized in 1966 and first published in 1969. Clobazam was originally marketed as an anxioselective anxiolytic since 1970, and an anticonvulsant since 1984. The primary drug-development goal was to provide greater anxiolytic, anti-obsessive efficacy with fewer benzodiazepine-related side effects.

<span class="mw-page-title-main">Quazepam</span> Benzodiazipine

Quazepam, sold under brand name Doral among others, is a relatively long-acting benzodiazepine derivative drug developed by the Schering Corporation in the 1970s. Quazepam is used for the treatment of insomnia including sleep induction and sleep maintenance. Quazepam induces impairment of motor function and has relatively selective hypnotic and anticonvulsant properties with considerably less overdose potential than other benzodiazepines. Quazepam is an effective hypnotic which induces and maintains sleep without disruption of the sleep architecture.

<span class="mw-page-title-main">Clomethiazole</span> Sedative/Hypnotic medication for alcohol withdrawal

Clomethiazole is a sedative and hypnotic originally developed by Hoffmann-La Roche in the 1930s. The drug is used in treating and preventing symptoms of acute alcohol withdrawal.

<span class="mw-page-title-main">Clorazepate</span> Benzodiazepine medication

Clorazepate, sold under the brand name Tranxene among others, is a benzodiazepine medication. It possesses anxiolytic, anticonvulsant, sedative, hypnotic, and skeletal muscle relaxant properties. Clorazepate is an unusually long-lasting benzodiazepine and serves as a prodrug for the equally long-lasting desmethyldiazepam, which is rapidly produced as an active metabolite. Desmethyldiazepam is responsible for most of the therapeutic effects of clorazepate.

<span class="mw-page-title-main">Alpidem</span> Anxiolytic medication

Alpidem, sold under the brand name Ananxyl, is a nonbenzodiazepine anxiolytic medication which was briefly used to treat anxiety disorders but is no longer marketed. It was previously marketed in France, but was discontinued due to liver toxicity. Alpidem is taken by mouth.

<span class="mw-page-title-main">Lormetazepam</span> Benzodiazepine medication

Lormetazepam, sold under the brand name Noctamid among others, is a drug which is a short to intermediate acting 3-hydroxy benzodiazepine derivative and temazepam analogue. It possesses hypnotic, anxiolytic, anticonvulsant, sedative, and skeletal muscle relaxant properties.

<span class="mw-page-title-main">Bretazenil</span> Chemical compound

Bretazenil (Ro16-6028) is an imidazopyrrolobenzodiazepine anxiolytic drug which is derived from the benzodiazepine family, and was invented in 1988. It is most closely related in structure to the GABA antagonist flumazenil, although its effects are somewhat different. It is classified as a high-potency benzodiazepine due to its high affinity binding to benzodiazepine binding sites where it acts as a partial agonist. Its profile as a partial agonist and preclinical trial data suggests that it may have a reduced adverse effect profile. In particular bretazenil has been proposed to cause a less strong development of tolerance and withdrawal syndrome. Bretazenil differs from traditional 1,4-benzodiazepines by being a partial agonist and because it binds to α1, α2, α3, α4, α5 and α6 subunit containing GABAA receptor benzodiazepine receptor complexes. 1,4-benzodiazepines bind only to α1, α2, α3 and α5GABAA benzodiazepine receptor complexes.

<span class="mw-page-title-main">Chlordiazepoxide</span> Benzodiazepine class sedative and hypnotic medication

Chlordiazepoxide, trade name Librium among others, is a sedative and hypnotic medication of the benzodiazepine class; it is used to treat anxiety, insomnia and symptoms of withdrawal from alcohol and other drugs.

<span class="mw-page-title-main">Ro15-4513</span> Chemical compound

Ro15-4513(IUPAC: Ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo-1,4-benzodiazepine-3-carboxylate) is a weak partial inverse agonist of the benzodiazepine class of drugs, developed by Hoffmann–La Roche in the 1980s. It acts as an inverse agonist, and can therefore be an antidote to the acute impairment caused by alcohols, including ethanol, isopropanol, tert-butyl alcohol, tert-amyl alcohol, 3-methyl-3-pentanol, methylpentynol and ethchlorvynol.

<span class="mw-page-title-main">Benzodiazepine withdrawal syndrome</span> Signs and symptoms due to benzodiazepines discontinuation in physically dependent persons

Benzodiazepine withdrawal syndrome is the cluster of signs and symptoms that may emerge when a person who has been taking benzodiazepines as prescribed develops a physical dependence on them and then reduces the dose or stops taking them without a safe taper schedule.

<span class="mw-page-title-main">Benzodiazepine dependence</span> Medical condition

Benzodiazepine dependence defines a situation in which one has developed one or more of either tolerance, withdrawal symptoms, drug seeking behaviors, such as continued use despite harmful effects, and maladaptive pattern of substance use, according to the DSM-IV. In the case of benzodiazepine dependence, the continued use seems to be typically associated with the avoidance of unpleasant withdrawal reaction rather than with the pleasurable effects of the drug. Benzodiazepine dependence develops with long-term use, even at low therapeutic doses, often without the described drug seeking behavior and tolerance.

<span class="mw-page-title-main">Benzodiazepine overdose</span> Medical condition

Benzodiazepine overdose describes the ingestion of one of the drugs in the benzodiazepine class in quantities greater than are recommended or generally practiced. The most common symptoms of overdose include central nervous system (CNS) depression, impaired balance, ataxia, and slurred speech. Severe symptoms include coma and respiratory depression. Supportive care is the mainstay of treatment of benzodiazepine overdose. There is an antidote, flumazenil, but its use is controversial.

<span class="mw-page-title-main">Barbiturate</span> Class of depressant drugs derived from barbituric acid

Barbiturates are a class of depressant drugs that are chemically derived from barbituric acid. They are effective when used medically as anxiolytics, hypnotics, and anticonvulsants, but have physical and psychological addiction potential as well as overdose potential among other possible adverse effects. They have been used recreationally for their anti-anxiety and sedative effects, and are thus controlled in most countries due to the risks associated with such use.

References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-16.
  2. "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA . Retrieved 22 Oct 2023.
  3. Hunkeler W, Möhler H, Pieri L, Polc P, Bonetti EP, Cumin R, et al. (April 1981). "Selective antagonists of benzodiazepines". Nature. 290 (5806): 514–516. Bibcode:1981Natur.290..514H. doi:10.1038/290514a0. PMID   6261143. S2CID   4340263.
  4. Whitwam JG, Amrein R (1995-01-01). "Pharmacology of flumazenil". Acta Anaesthesiologica Scandinavica. Supplementum. 108: 3–14. doi:10.1111/j.1399-6576.1995.tb04374.x. PMID   8693922. S2CID   24494744.
  5. Whitwam JG (October 1988). "Flumazenil: a benzodiazepine antagonist". BMJ. 297 (6655): 999–1000. doi:10.1136/bmj.297.6655.999. PMC   1834756 . PMID   2903780.
  6. 1 2 Rye DB, Bliwise DL, Parker K, Trotti LM, Saini P, Fairley J, et al. (November 2012). "Modulation of vigilance in the primary hypersomnias by endogenous enhancement of GABAA receptors". Science Translational Medicine. 4 (161): 161ra151. doi:10.1126/scitranslmed.3004685. PMID   23175709. S2CID   44236050.
  7. Clinical trial number NCT01183312 for "Flumazenil for the Treatment of Primary Hypersomnia" at ClinicalTrials.gov
  8. 1 2 3 Goldfrank LR (2002). Goldfrank's toxicologic emergencies. New York: McGraw-Hill Medical Publ. Division. ISBN   978-0-07-136001-2.
  9. Nelson LH, Flomenbaum N, Goldfrank LR, Hoffman RL, Howland MD, Lewin NA (2006). Goldfrank's toxicologic emergencies. New York: McGraw-Hill, Medical Pub. Division. ISBN   978-0-07-147914-1.
  10. Goh ET, Andersen ML, Morgan MY, Gluud LL (August 2017). "Flumazenil versus placebo or no intervention for people with cirrhosis and hepatic encephalopathy". The Cochrane Database of Systematic Reviews. 2017 (8): CD002798. doi:10.1002/14651858.CD002798.pub4. PMC   6483298 . PMID   28796283.
  11. Mihic S, Mayfield J (2023). "Hypnotics and sedatives.". In Brunton LL, Knollmann BC (eds.). Goodman & Gilman's: The Pharmacological Basis of Therapeutics (14th ed.). McGraw Hill. ISBN   978-1-264-25807-9.
  12. Wood LD, Hall JB, Schmidt GD (2005). Principles of critical care. McGraw-Hill Professional. ISBN   978-0-07-141640-5.
  13. Kawano DF, Ueta J, Sankarankutty AK, Pereira LR, de Freitas O (June 2009). "Midazolam-related drug interactions: detection of risk situations to the patient safety in a brazilian teaching hospital". Journal of Patient Safety. 5 (2): 69–74. doi:10.1097/PTS.0b013e3181a5dafa. PMID   19920444. S2CID   12973546.
  14. Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS (June 2003). "Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients". Brain. 126 (Pt 6): 1300–1318. doi: 10.1093/brain/awg138 . PMID   12764053.
  15. Savic I, Widén L, Stone-Elander S (January 1991). "Feasibility of reversing benzodiazepine tolerance with flumazenil". Lancet. 337 (8734): 133–137. doi:10.1016/0140-6736(91)90799-U. PMID   1670787. S2CID   41180892.
  16. Quaglio G, Pattaro C, Gerra G, Mathewson S, Verbanck P, Des Jarlais DC, Lugoboni F (August 2012). "High dose benzodiazepine dependence: description of 29 patients treated with flumazenil infusion and stabilised with clonazepam". Psychiatry Research. 198 (3): 457–462. doi:10.1016/j.psychres.2012.02.008. PMID   22424905. S2CID   28979824.
  17. Gerra G, Giucasto G, Zaimovic A, Fertonani G, Chittolini B, Avanzini P, et al. (June 1996). "Intravenous flumazenil following prolonged exposure to lormetazepam in humans: lack of precipitated withdrawal". International Clinical Psychopharmacology. 11 (2): 81–88. doi:10.1097/00004850-199611020-00002. PMID   8803645.
  18. Gerra G, Zaimovic A, Giusti F, Moi G, Brewer C (October 2002). "Intravenous flumazenil versus oxazepam tapering in the treatment of benzodiazepine withdrawal: a randomized, placebo-controlled study". Addiction Biology. 7 (4): 385–395. doi:10.1080/1355621021000005973. PMID   14578014. S2CID   21255719.
  19. Pericić D, Lazić J, Strac DS (August 2005). "Chronic treatment with flumazenil enhances binding sites for convulsants at recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors". Biomedicine & Pharmacotherapy. 59 (7): 408–414. doi:10.1016/j.biopha.2005.02.003. PMID   16084060.
  20. Pericić D, Jazvinsćak Jembrek M, Svob Strac D, Lazić J, Spoljarić IR (January 2005). "Enhancement of benzodiazepine binding sites following chronic treatment with flumazenil". European Journal of Pharmacology. 507 (1–3): 7–13. doi:10.1016/j.ejphar.2004.10.057. PMID   15659288.
  21. Pericić D, Lazić J, Jembrek MJ, Strac DS, Rajcan I (December 2004). "Chronic exposure of cells expressing recombinant GABAA receptors to benzodiazepine antagonist flumazenil enhances the maximum number of benzodiazepine binding sites". Life Sciences. 76 (3): 303–317. doi:10.1016/j.lfs.2004.07.013. PMID   15531382.
  22. Jazvinsćak Jembrek M, Svob Strac D, Vlainić J, Pericić D (July 2008). "The role of transcriptional and translational mechanisms in flumazenil-induced up-regulation of recombinant GABA(A) receptors". Neuroscience Research. 61 (3): 234–241. doi:10.1016/j.neures.2008.03.005. PMID   18453026. S2CID   9033302.
  23. Saxon L, Borg S, Hiltunen AJ (August 2010). "Reduction of aggression during benzodiazepine withdrawal: effects of flumazenil". Pharmacology, Biochemistry, and Behavior. 96 (2): 148–151. doi:10.1016/j.pbb.2010.04.023. PMID   20451546. S2CID   41351863.
  24. Faccini M, Leone R, Opri S, Casari R, Resentera C, Morbioli L, et al. (October 2016). "Slow subcutaneous infusion of flumazenil for the treatment of long-term, high-dose benzodiazepine users: a review of 214 cases". Journal of Psychopharmacology. 30 (10): 1047–1053. doi:10.1177/0269881116647505. PMID   27166362. S2CID   27167585.
  25. Tamburin S, Faccini M, Casari R, Federico A, Morbioli L, Franchini E, et al. (October 2017). "Low risk of seizures with slow flumazenil infusion and routine anticonvulsant prophylaxis for high-dose benzodiazepine dependence". Journal of Psychopharmacology. 31 (10): 1369–1373. doi:10.1177/0269881117714050. PMID   28613124. S2CID   42432213.
  26. Lugoboni F, Faccini M, Quaglio G, Casari R, Albiero A, Pajusco B (April 2011). "Agonist substitution for high-dose benzodiazepine-dependent patients: let us not forget the importance of flumazenil". Addiction. 106 (4): 853. doi: 10.1111/j.1360-0443.2010.03327.x . PMID   21320225.
  27. Lugoboni F, Leone R (July 2012). "What is stopping us from using flumazenil?". Addiction. 107 (7): 1359. doi: 10.1111/j.1360-0443.2012.03851.x . PMID   22509854.
  28. Hood SD, Norman A, Hince DA, Melichar JK, Hulse GK (February 2014). "Benzodiazepine dependence and its treatment with low dose flumazenil". British Journal of Clinical Pharmacology. 77 (2): 285–294. doi:10.1111/bcp.12023. PMC   4014019 . PMID   23126253.
  29. Hadingham KL, Garrett EM, Wafford KA, Bain C, Heavens RP, Sirinathsinghji DJ, Whiting PJ (February 1996). "Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors". Molecular Pharmacology. 49 (2): 253–259. PMID   8632757.
  30. 1 2 Gunja N (June 2013). "The clinical and forensic toxicology of Z-drugs". Journal of Medical Toxicology. 9 (2): 155–162. doi:10.1007/s13181-013-0292-0. PMC   3657020 . PMID   23404347.
  31. Thornton SL, Negus E, Carstairs SD (November 2013). "Pediatric zolpidem ingestion demonstrating zero-order kinetics treated with flumazenil". Pediatric Emergency Care. 29 (11): 1204–1206. doi:10.1097/PEC.0b013e3182aa139c. PMID   24196090. S2CID   34655918.
  32. Lheureux P, Debailleul G, De Witte O, Askenasi R (March 1990). "Zolpidem intoxication mimicking narcotic overdose: response to flumazenil". Human & Experimental Toxicology. 9 (2): 105–107. doi:10.1177/096032719000900209. PMID   2111156. S2CID   34525063.