CGP-35348

Last updated
CGP-35348
CGP-35348.svg
Identifiers
  • 3-Aminopropyl(diethoxymethyl)phosphinic acid
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C8H20NO4P
Molar mass 225.225 g·mol−1
3D model (JSmol)
  • CCOC(OCC)P(=O)(CCCN)O
  • InChI=1S/C8H20NO4P/c1-3-12-8(13-4-2)14(10,11)7-5-6-9/h8H,3-7,9H2,1-2H3,(H,10,11) X mark.svgN
  • Key:QIIVUOWTHWIXFO-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

CGP-35348 is a compound used in scientific research which acts as an antagonist at GABAB receptors. [1] [2] [3]

CGP-35348 was ineffective up to 100 μM to antagonize the inhibitory release of GABA elicited by baclofen, doing so selectively as a GABAB heteroreceptor antagonist. [4] Moreover, CGP-35348 was about threefold less potent in antagonizing gamma-hydroxybutyrate (GHB) and gamma-butyrolactone (GBL) than baclofen and SKF-97,541. [5]

Related Research Articles

<i>gamma</i>-Hydroxybutyric acid Chemical compound

gamma-Hydroxybutyric acid is a naturally occurring neurotransmitter and a depressant drug. It is a precursor to GABA, glutamate, and glycine in certain brain areas. It acts on the GHB receptor and is a weak agonist at the GABAB receptor. GHB has been used in the medical setting as a general anesthetic and as treatment for cataplexy, narcolepsy, and alcoholism. The substance is also used illicitly for various reasons, including as a performance-enhancing drug, date rape drug, and as a recreational drug.

Colloquially known as "downers", depressants or central depressants are drugs that lower neurotransmission levels, or depress or reduce arousal or stimulation in various areas of the brain. Depressants do not change the mood or mental state of others. Stimulants, or "uppers", increase mental or physical function, hence the opposite drug class from depressants are stimulants, not antidepressants.

<span class="mw-page-title-main">GABA receptor</span> Receptors that respond to gamma-aminobutyric acid

The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels ; whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors.

<span class="mw-page-title-main">Baclofen</span> Medication for muscle movement disorders

Baclofen, sold under the brand name Lioresal among others, is a medication used to treat muscle spasticity such as from a spinal cord injury or multiple sclerosis. It may also be used for hiccups and muscle spasms near the end of life, and off-label to treat alcohol use disorder or opioid withdrawal symptoms. It is taken orally or by intrathecal pump. It is also sometimes used transdermally in combination with gabapentin and clonidine prepared at a compounding pharmacy.

gamma-Butyrolactone Chemical compound

Gamma-butyrolactone (GBL) or γ-butyrolactone is a hygroscopic, colorless, water-miscible liquid with a weak, characteristic odor. It is the simplest 4-carbon lactone. It is mainly used as an intermediate in the production of other chemicals, such as N-methyl-2-pyrrolidone.

GABAB receptors (GABABR) are G-protein coupled receptors for gamma-aminobutyric acid (GABA), therefore making them metabotropic receptors, that are linked via G-proteins to potassium channels. The changing potassium concentrations hyperpolarize the cell at the end of an action potential. The reversal potential of the GABAB-mediated IPSP is –100 mV, which is much more hyperpolarized than the GABAA IPSP. GABAB receptors are found in the central nervous system and the autonomic division of the peripheral nervous system.

The GABAA-rho receptor is a subclass of GABAA receptors composed entirely of rho (ρ) subunits. GABAA receptors including those of the ρ-subclass are ligand-gated ion channels responsible for mediating the effects of gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter in the brain. The GABAA-ρ receptor, like other GABAA receptors, is expressed in many areas of the brain, but in contrast to other GABAA receptors, the GABAA-ρ receptor has especially high expression in the retina.

<span class="mw-page-title-main">Succinic semialdehyde dehydrogenase deficiency</span> Rare disorder involving deficiency in GABA degradation

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive disorder of the degradation pathway of the inhibitory neurotransmitter γ-aminobutyric acid, or GABA. The disorder has been identified in approximately 350 families, with a significant proportion being consanguineous families. The first case was identified in 1981 and published in a Dutch clinical chemistry journal that highlighted a number of neurological conditions such as delayed intellectual, motor, speech, and language as the most common manifestations. Later cases reported in the early 1990s began to show that hypotonia, hyporeflexia, seizures, and a nonprogressive ataxia were frequent clinical features as well.

<span class="mw-page-title-main">Saclofen</span> Chemical compound

Saclofen is a competitive antagonist for the GABAB receptor. This drug is an analogue of the GABAB agonist baclofen. The GABAB receptor is heptahelical receptor, expressed as an obligate heterodimer, which couples to the Gi/o class of heterotrimeric G-proteins. The action of saclofen on the central nervous system is understandably modest, because G-proteins rely on an enzyme cascade to alter cell behavior while ionotropic receptors immediately change the ionic permeability of the neuronal plasma membrane, thus changing its firing patterns. These particular receptors, presynaptically inhibit N- and P/Q- voltage-gated calcium channels (VGCCs) via a direct interaction of the dissociated beta gamma subunit of the g-protein with the intracellular loop between the 1st and 2nd domain of the VGCC's alpha-subunit; postsynaptically, these potentiate Kir currents. Both result in inhibitory effects.

<span class="mw-page-title-main">GABA receptor agonist</span>

A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are permeable to chloride ions which reduces neuronal excitability. The GABA-β receptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to decreased cyclic adenosine monophosphate (cAMP). GABA-α and GABA-ρ receptors produce sedative and hypnotic effects and have anti-convulsion properties. GABA-β receptors also produce sedative effects. Furthermore, they lead to changes in gene transcription.

<i>gamma</i>-Amino-<i>beta</i>-hydroxybutyric acid Anticonvulsant drug

γ-Amino-β-hydroxybutyric acid (GABOB), also known as β-hydroxy-γ-aminobutyric acid (β-hydroxy-GABA), and sold under the brand name Gamibetal among others, is an anticonvulsant which is used for the treatment of epilepsy in Europe, Japan, and Mexico. It is a GABA analogue, or an analogue of the neurotransmitter γ-aminobutyric acid (GABA), and has been found to be an endogenous metabolite of GABA.

<span class="mw-page-title-main">Homotaurine</span> Chemical compound

Homotaurine is a natural sulfonic acid found in seaweed. It is analogous to taurine, but with an extra carbon in its chain. It has GABAergic activity, apparently by mimicking GABA, which it resembles.

<span class="mw-page-title-main">GHB receptor</span> GHB receptor coding gene in the species Homo sapiens

The γ-hydroxybutyrate (GHB) receptor (GHBR), originally identified as GPR172A, is an excitatory G protein-coupled receptor (GPCR) that binds the neurotransmitter and psychoactive drug γ-hydroxybutyric acid (GHB). As solute carrier family 52 member 2 (SLC52A2), it is also a transporter for riboflavin.

<span class="mw-page-title-main">T-HCA</span> Chemical compound

trans-4-Hydroxycrotonic acid (T-HCA), also known as γ-hydroxycrotonic acid (GHC), is an agent used in scientific research to study the GHB receptor. It is an analogue of γ-hydroxybutyric acid (GHB), as well as an active metabolite of GHB. Similarly to GHB, T-HCA has been found to be endogenous to the rat central nervous system, and as a metabolite of GHB, is almost certain to be endogenous to humans as well. T-HCA binds to the high-affinity GHB receptor with 4-fold greater affinity than GHB itself, where it acts as an agonist, but does not bind to the low-affinity GHB binding site, the GABAB receptor. Because of this, T-HCA does not produce sedation. T-HCA has been shown to cause receptor activation-evoked increases in extracellular glutamate concentrations, notably in the hippocampus.

<span class="mw-page-title-main">CGP-7930</span> Chemical compound

CGP-7930 was the first positive allosteric modulator of GABAB receptors described in literature. CGP7930 is also a GABAA receptor positive allosteric modulator and a blocker of Potassium channels.

<span class="mw-page-title-main">GS-39783</span> Chemical compound

GS-39783 is a compound used in scientific research which acts as a positive allosteric modulator at the GABAB receptor. It has been shown to produce anxiolytic effects in animal studies, and reduces self-administration of alcohol, cocaine and nicotine.

<span class="mw-page-title-main">SKF-97,541</span> Chemical compound

SKF-97,541 is a compound used in scientific research which acts primarily as a selective GABAB receptor agonist. It has sedative effects in animal studies and is widely used in research into potential treatment of various types of drug addiction.

<span class="mw-page-title-main">HA-966</span> Chemical compound

HA-966 or (±)-3-amino-1-hydroxy-pyrrolidin-2-one is a molecule used in scientific research as a glycine receptor and NMDA receptor antagonist / low efficacy partial agonist. It has neuroprotective and anticonvulsant, anxiolytic, antinociceptive and sedative / hypnotic effects in animal models. Pilot human clinical trials in the early 1960s showed that HA-966 appeared to benefit patients with tremors of extrapyramidal origin.

<span class="mw-page-title-main">GABA analogue</span> Class of drugs

A GABA analogue is a compound which is an analogue or derivative of the neurotransmitter gamma-Aminobutyric acid (GABA).

<span class="mw-page-title-main">3-APPA</span> Chemical compound

3-Aminopropylphosphinic acid, also known in the literature as 3-APPA or CGP 27492, is a compound used in scientific research which acts as an agonist at the GABAB receptor. It is part of a class of phosphinic acid GABAB agonists, which also includes SKF-97,541. It has a binding affinity (pKi) to the GABAB receptor of 8.30.

References

  1. Carter LP, Chen W, Coop A, Koek W, France CP (May 2006). "Discriminative stimulus effects of GHB and GABA(B) agonists are differentially attenuated by CGP35348". European Journal of Pharmacology. 538 (1–3): 85–93. doi:10.1016/j.ejphar.2006.03.039. PMID   16647701.
  2. Nasrallah FA, Griffin JL, Balcar VJ, Rae C (August 2007). "Understanding your inhibitions: modulation of brain cortical metabolism by GABA(B) receptors". Journal of Cerebral Blood Flow and Metabolism. 27 (8): 1510–20. doi:10.1038/sj.jcbfm.9600453. PMID   17293844. S2CID   16069846.
  3. Koek W, Mercer SL, Coop A, France CP (September 2009). "Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348)". The Journal of Pharmacology and Experimental Therapeutics. 330 (3): 876–83. doi:10.1124/jpet.109.151845. PMC   2729800 . PMID   19564487.
  4. Maurizio Raiteri (2006). "Functional Pharmacology in Human Brain". Pharmacological Reviews. 58 (2): 162–193. doi:10.1124/pr.58.2.5. PMID   16714485. S2CID   14404544.
  5. Koek W1, Mercer SL, Coop A. (June 2007). "Cataleptic effects of gamma-hydroxybutyrate (GHB), its precursor gamma-butyrolactone (GBL), and GABAB receptor agonists in mice: differential antagonism by the GABAB receptor antagonist CGP35348". Psychopharmacology. 192 (3): 407–14. doi:10.1007/s00213-007-0718-y. PMID   17277933. S2CID   25049526.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)