BSPP (drug)

Last updated
BSPP
Bspp.svg
Clinical data
ATC code
  • none
Identifiers
  • 2,6-di-tert-butyl-4-{[1-(hydroxymethyl)cyclopentyl]methyl}phenol
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H34O2
Molar mass 318.501 g·mol−1
3D model (JSmol)
  • C(C)(C)(C)C1=C(C(=CC(=C1)CC1(CCCC1)CO)C(C)(C)C)O
  • InChI=1S/C21H34O2/c1-19(2,3)16-11-15(12-17(18(16)23)20(4,5)6)13-21(14-22)9-7-8-10-21/h11-12,22-23H,7-10,13-14H2,1-6H3 Yes check.svgY
  • Key:CTFKOMUXSHQLLL-UHFFFAOYSA-N Yes check.svgY
   (verify)

BSPP is a compound used in scientific research which acts as a positive allosteric modulator at the GABAB receptor. [1] It has a synergistic effect with GABAB agonists such as baclofen at GABAB autoreceptors but not heteroreceptors, suggesting it may be useful for distinguishing between these GABAB receptor subtypes. [2]

Related Research Articles

<span class="mw-page-title-main">GABA receptor</span> Receptors that respond to gamma-aminobutyric acid

The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels ; whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors.

<span class="mw-page-title-main">Baclofen</span> Medication for muscle movement disorders

Baclofen, sold under the brand name Lioresal among others, is a medication used to treat muscle spasticity such as from a spinal cord injury or multiple sclerosis. It may also be used for hiccups and muscle spasms near the end of life, and off-label to treat alcohol use disorder or opioid withdrawal symptoms. It is taken orally or by intrathecal pump. It is also sometimes used transdermally in combination with gabapentin and clonidine prepared at a compounding pharmacy.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions and, to a lesser extent, bicarbonate ions.

GABAB receptors (GABABR) are G-protein coupled receptors for gamma-aminobutyric acid (GABA), therefore making them metabotropic receptors, that are linked via G-proteins to potassium channels. The changing potassium concentrations hyperpolarize the cell at the end of an action potential. The reversal potential of the GABAB-mediated IPSP is −100 mV, which is much more hyperpolarized than the GABAA IPSP. GABAB receptors are found in the central nervous system and the autonomic division of the peripheral nervous system.

The GABAA-rho receptor is a subclass of GABAA receptors composed entirely of rho (ρ) subunits. GABAA receptors including those of the ρ-subclass are ligand-gated ion channels responsible for mediating the effects of gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter in the brain. The GABAA-ρ receptor, like other GABAA receptors, is expressed in many areas of the brain, but in contrast to other GABAA receptors, the GABAA-ρ receptor has especially high expression in the retina.

<span class="mw-page-title-main">Saclofen</span> GABAB receptor antagonist

Saclofen is a competitive antagonist for the GABAB receptor. This drug is an analogue of the GABAB agonist baclofen. The GABAB receptor is heptahelical receptor, expressed as an obligate heterodimer, which couples to the Gi/o class of heterotrimeric G-proteins. The action of saclofen on the central nervous system is understandably modest, because G-proteins rely on an enzyme cascade to alter cell behavior while ionotropic receptors immediately change the ionic permeability of the neuronal plasma membrane, thus changing its firing patterns. These particular receptors, presynaptically inhibit N- and P/Q- voltage-gated calcium channels (VGCCs) via a direct interaction of the dissociated beta gamma subunit of the g-protein with the intracellular loop between the 1st and 2nd domain of the VGCC's alpha-subunit; postsynaptically, these potentiate Kir currents. Both result in inhibitory effects.

<span class="mw-page-title-main">GABA receptor agonist</span> Category of drug

A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are permeable to chloride ions which reduces neuronal excitability. The GABA-β receptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to decreased cyclic adenosine monophosphate (cAMP). GABA-α and GABA-ρ receptors produce sedative and hypnotic effects and have anti-convulsion properties. GABA-β receptors also produce similar effects. Furthermore, they lead to changes in gene transcription, and are mainly found in autonomic nervous system centers.

γ-Amino-β-hydroxybutyric acid Anticonvulsant drug

γ-Amino-β-hydroxybutyric acid (GABOB), also known as β-hydroxy-γ-aminobutyric acid (β-hydroxy-GABA), sold under the brand name Gamibetal among others, is an anticonvulsant which is used for the treatment of epilepsy in Europe, Japan, and Mexico. It is a GABA analogue, or an analogue of the neurotransmitter γ-aminobutyric acid (GABA), and has been found to be an endogenous metabolite of GABA.

Dopamine receptor D<sub>2</sub> Main receptor for most antipsychotic drugs

Dopamine receptor D2, also known as D2R, is a protein that, in humans, is encoded by the DRD2 gene. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon H. Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D2 receptor. The dopamine D2 receptor is the main receptor for most antipsychotic drugs. The structure of DRD2 in complex with the atypical antipsychotic risperidone has been determined.

Muscarinic acetylcholine receptor M<sub>4</sub> Protein-coding gene

The muscarinic acetylcholine receptor M4, also known as the cholinergic receptor, muscarinic 4 (CHRM4), is a protein that, in humans, is encoded by the CHRM4 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 4</span> Mammalian protein found in humans

Metabotropic glutamate receptor 4 is a protein that in humans is encoded by the GRM4 gene.

<span class="mw-page-title-main">Homotaurine</span> Chemical compound

Homotaurine is a natural sulfonic acid found in seaweed. It is analogous to taurine, but with an extra carbon in its chain. It has GABAergic activity, apparently by mimicking GABA, which it resembles.

<span class="mw-page-title-main">Phaclofen</span> GABAB receptor antagonist

Phaclofen, or phosphonobaclofen, is a selective antagonist for the GABAB receptor. It was the first selective GABAB antagonist discovered, but its utility was limited by the fact that it does not cross the blood brain barrier.

<span class="mw-page-title-main">CGP-7930</span> Chemical compound

CGP-7930 was the first positive allosteric modulator of GABAB receptors described in literature. CGP7930 is also a GABAA receptor positive allosteric modulator and a blocker of Potassium channels.

<span class="mw-page-title-main">GS-39783</span> Chemical compound

GS-39783 is a compound used in scientific research which acts as a positive allosteric modulator at the GABAB receptor. It has been shown to produce anxiolytic effects in animal studies, and reduces self-administration of alcohol, cocaine and nicotine.

<span class="mw-page-title-main">BHFF</span> Chemical compound

BHFF is a compound used in scientific research which acts as a positive allosteric modulator at the GABAB receptor. It has anxiolytic effects in animal studies, and good oral bioavailability.

<span class="mw-page-title-main">BHF-177</span> Chemical compound

BHF-177 is a compound used in scientific research which acts as a positive allosteric modulator at the GABAB receptor. It was shown to reduce self-administration of nicotine in animal studies.

<span class="mw-page-title-main">MRK-016</span> Chemical compound

MRK-016 is a selective α5 subunit-containing GABAA negative allosteric modulator, that has nootropic properties. It has been found to produce rapid, ketamine-like antidepressant effects in animal models of depression.

<span class="mw-page-title-main">TBPS</span> Chemical compound

TBPS (tert-butylbicyclophosphorothionate) is a bicyclic phosphate convulsant. It is an extremely potent GABA receptor antagonist.

<span class="mw-page-title-main">ADX-71441</span> Chemical compound

ADX-71441 is a GABAB receptor positive allosteric modulator currently being investigated as a potential treatment for anxiety, epilepsy, pain and other conditions.

References

  1. Kerr DI, Khalafy J, Ong J, Perkins MV, Prager RH, Puspawati NM, Rimaz M (September 2006). "Synthesis and biological activity of allosteric modulators of GABAB receptors, part 2. 3-(2, 6-bis-tert-butyl-4-hydroxyphenyl) propanols". Australian Journal of Chemistry. 59 (7): 457–62. doi:10.1071/CH06164.
  2. Parker DA, Marino V, Ong J, Puspawati NM, Prager RH (September 2008). "The CGP7930 analogue 2,6-di-tert-butyl-4-(3-hydroxy-2-spiropentylpropyl)-phenol (BSPP) potentiates baclofen action at GABA(B) autoreceptors". Clinical and Experimental Pharmacology & Physiology. 35 (9): 1113–5. doi:10.1111/j.1440-1681.2008.04948.x. PMID   18430050. S2CID   25608408.