Ro 19-4603

Last updated
Ro 19-4603 [1]
Ro 19-4603.svg
Names
IUPAC name
tert-Butyl 8-methyl-7-oxo-5-thia-1,8,12-triazatricyclo[8.3.0.02,6]trideca-2(6),3,10,12-tetraene-11-carboxylate
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
PubChem CID
  • InChI=1S/C15H17N3O3S/c1-15(2,3)21-14(20)11-10-7-17(4)13(19)12-9(5-6-22-12)18(10)8-16-11/h5-6,8H,7H2,1-4H3
    Key: ZIGMMUKDYCABPW-UHFFFAOYSA-N
  • CC(C)(C)OC(=O)C1=C2CN(C(=O)C3=C(N2C=N1)C=CS3)C
Properties
C15H17N3O3S
Molar mass 319.38 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ro 19-4603 is an inverse agonist of the benzodiazepine binding site. It has effects antagonistic to those of benzodiazepines.

Contents

Chemistry

Despite acting at the benzodiazepine site, it does not possess the benzodiazepine structure. It is an imidazothienodiazepine: a thiophene ring, an imidazole ring, and a diazepine ring fused together.

Effects and pharmacodynamics

Ro 19-4603 is an inverse agonist at the benzodiazepine binding site. Due to this, it has effects similar to other benzodiazepine inverse agonists, notably: anxiogenesis [2] and convulsions. [3]

In animal studies, administration of this compound was able to decrease voluntary alcohol consumption. This was observed in rats selected for high alcohol preference. [4] In addition to decreasing its consumption, Ro 19-4603 is able to antagonize the intoxicating effects of alcohol. [5]

Related Research Articles

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

<span class="mw-page-title-main">Inverse agonist</span> Agent in biochemistry

In pharmacology, an inverse agonist is a drug that binds to the same receptor as an agonist but induces a pharmacological response opposite to that of the agonist.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions and, to a lesser extent, bicarbonate ions.

<span class="mw-page-title-main">Bretazenil</span> Chemical compound

Bretazenil (Ro16-6028) is an imidazopyrrolobenzodiazepine anxiolytic drug which is derived from the benzodiazepine family, and was invented in 1988. It is most closely related in structure to the GABA antagonist flumazenil, although its effects are somewhat different. It is classified as a high-potency benzodiazepine due to its high affinity binding to benzodiazepine binding sites where it acts as a partial agonist. Its profile as a partial agonist and preclinical trial data suggests that it may have a reduced adverse effect profile. In particular bretazenil has been proposed to cause a less strong development of tolerance and withdrawal syndrome. Bretazenil differs from traditional 1,4-benzodiazepines by being a partial agonist and because it binds to α1, α2, α3, α4, α5 and α6 subunit containing GABAA receptor benzodiazepine receptor complexes. 1,4-benzodiazepines bind only to α1, α2, α3 and α5GABAA benzodiazepine receptor complexes.

<span class="mw-page-title-main">Chlordiazepoxide</span> Benzodiazepine class sedative and hypnotic medication

Chlordiazepoxide, trade name Librium among others, is a sedative and hypnotic medication of the benzodiazepine class; it is used to treat anxiety, insomnia and symptoms of withdrawal from alcohol, benzodiazepines, and other drugs.

<span class="mw-page-title-main">DMCM</span> Chemical compound

DMCM is a drug from the β-carboline family that induces anxiety and convulsions by acting as a negative allosteric modulator of GABAA receptors — functionally opposite to benzodiazepines and related drugs which are positive allosteric modulators — and is used in scientific research for these properties to test new anxiolytic and anticonvulsant medications, respectively. It has also been shown to produce analgesic effects in animals, which is thought to be the drug's induced panic reducing the perception of pain.

<span class="mw-page-title-main">Ro15-4513</span> Chemical compound

Ro15-4513 is a weak partial inverse agonist of the benzodiazepine class of drugs, developed by Hoffmann–La Roche in the 1980s. It acts as an inverse agonist, and can therefore be an antidote to the acute impairment caused by alcohols, including ethanol, isopropanol, tert-butyl alcohol, tert-amyl alcohol, 3-methyl-3-pentanol, methylpentynol, and ethchlorvynol.

<span class="mw-page-title-main">Cirazoline</span> Chemical compound

Cirazoline is a full agonist at the α1A adrenergic receptor, a partial agonist at both the α1B and α1D adrenergic receptors, and a nonselective antagonist to the α2 adrenergic receptor. It is believed that this combination of properties could make cirazoline an effective vasoconstricting agent.

<span class="mw-page-title-main">Pazinaclone</span> Chemical compound

Pazinaclone (DN-2327) is a sedative and anxiolytic drug in the cyclopyrrolone family of drugs. Some other cyclopyrrolone drugs include zopiclone and eszopiclone.

<span class="mw-page-title-main">QH-II-66</span> Benzodiazepine sedative drug

QH-II-66 (QH-ii-066) is a sedative drug which is a benzodiazepine derivative. It produces some of the same effects as other benzodiazepines, but is much more selective than most other drugs of this class and so produces somewhat less sedation and ataxia than other related drugs such as diazepam and triazolam, although it still retains anticonvulsant effects.

<span class="mw-page-title-main">CGS-9896</span> Anxiolytic drug used in scientific research

CGS-9896 is an anxiolytic drug used in scientific research. It has similar effects to benzodiazepine drugs but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">Zacopride</span> Chemical compound

Zacopride is a potent antagonist at the 5-HT3 receptor and an agonist at the 5-HT4 receptor. It has anxiolytic and nootropic effects in animal models, with the (R)-(+)-enantiomer being the more active form. It also has antiemetic and pro-respiratory effects, both reducing sleep apnea and reversing opioid-induced respiratory depression in animal studies. Early animal trials have also revealed that administration of zacopride can reduce preference for and consumption of ethanol.

<span class="mw-page-title-main">L-655,708</span> Chemical compound

L-655,708 (FG-8094) is a nootropic drug invented in 1996 by a team working for Merck, Sharp and Dohme, that was the first compound developed which acts as a subtype-selective inverse agonist at the α5 subtype of the benzodiazepine binding site on the GABAA receptor. It acts as an inverse agonist at the α1, α2, α3 and α5 subtypes, but with much higher affinity for α5, and unlike newer α5 inverse agonists such as α5IA, L-655,708 exerts its subtype selectivity purely via higher binding affinity for this receptor subtype, with its efficacy as an inverse agonist being around the same at all the subtypes it binds to.

<span class="mw-page-title-main">ZK-93426</span> Chemical compound

ZK-93426 (ethyl-5-isopropoxy-4-methyl-beta-carboline-3-carboxylate) is a drug from the beta-carboline family. It acts as a weak partial inverse agonist of benzodiazepine receptors, meaning that it causes the opposite effects to the benzodiazepine class of drugs and has anxiogenic properties, although unlike most benzodiazepine antagonists it is not a convulsant and actually has weak anticonvulsant effects. In human tests it produced alertness, restlessness and feelings of apprehension, and reversed the effect of the benzodiazepine lormetazepam. It was also shown to produce nootropic effects and increased release of acetylcholine.

<span class="mw-page-title-main">Ro64-6198</span> Chemical compound

Ro64-6198 is an opioid drug used in scientific research. It acts as a potent and selective agonist for the nociceptin receptor, also known as the ORL-1 receptor, with over 100x selectivity over the other opioid receptors. It produces anxiolytic effects in animal studies equivalent to those of benzodiazepine drugs, but has no anticonvulsant effects and does not produce any overt effects on behaviour. However it does impair short-term memory, and counteracts stress-induced anorexia. It also has antitussive effects, and reduces the rewarding and analgesic effects of morphine, although it did not prevent the development of dependence. It has been shown to reduce alcohol self-administration in animals and suppressed relapses in animal models of alcoholism, and ORL-1 agonists may have application in the treatment of alcoholism.

<span class="mw-page-title-main">ZK-93423</span> Chemical compound

ZK-93423 is an anxiolytic drug from the β-Carboline family, closely related to abecarnil. It is a nonbenzodiazepine GABAA agonist which is not subtype selective and stimulates α1, α2, α3, and α5-subunit containing GABAA receptors equally. It has anticonvulsant, muscle relaxant and appetite stimulating properties comparable to benzodiazepine drugs. ZK-93423 has also been used as a base to develop new and improved beta-carboline derivatives and help map the binding site of the GABAA receptor.

<span class="mw-page-title-main">A-77636</span> Chemical compound

A-77636 is a synthetic drug which acts as a selective D1 receptor full agonist. It has nootropic, anorectic, rewarding and antiparkinsonian effects in animal studies, but its high potency and long duration of action causes D1 receptor downregulation and tachyphylaxis, and unlike other D1 full agonists such as SKF-82,958, it does not produce place preference in animals. A-77636 partially substituted for cocaine in animal studies, and has been suggested for use as a possible substitute drug in treating addiction, but it is better known for its use in studying the role of D1 receptors in the brain.

<span class="mw-page-title-main">PNU-99,194</span> Chemical compound

PNU-99,194(A) (or U-99,194(A)) is a drug which acts as a moderately selective D3 receptor antagonist with ~15-30-fold preference for D3 over the D2 subtype. Though it has substantially greater preference for D3 over D2, the latter receptor does still play some role in its effects, as evidenced by the fact that PNU-99,194 weakly stimulates both prolactin secretion and striatal dopamine synthesis, actions it does not share with the more selective (100-fold) D3 receptor antagonists S-14,297 and GR-103,691.

<span class="mw-page-title-main">Indorenate</span> Chemical compound

Indorenate (TR-3369), is a tryptamine derivative which acts as an agonist at the 5-HT1A, 5-HT1B and 5-HT2C serotonin receptors. It has anxiolytic, antihypertensive and anorectic effects, predominantly through action at 5-HT1A, but with some contribution from the 5-HT1B and 5-HT2C subtypes, and possibly some other non-serotonergic targets also.

<span class="mw-page-title-main">Irazepine</span> Chemical compound

Irazepine is a benzodiazepine derivative containing isothiocyanate functional group. It is a non-competitive benzodiazepine binding site antagonist. Irazepine and other alkylating benzodiazepines, such as kenazepine, bind to brain benzodiazepine receptors in a non-competitive (covalent) fashion in vitro, and may exert a long-lasting anticonvulsant effect.

References

  1. "Tert-butyl 5-methyl-6-oxo-5,6-dihydro-4h-imidazo[1,5-a]thieno[2,3-f][1,4]diazepine-3-carboxylate".
  2. Belzung, C.; Misslin, R.; Vogel, E. (July 1990). "Anxiogenic effects of a benzodiazepine receptor partial inverse agonist, RO 19-4603, in a light/dark choice situation". Pharmacology, Biochemistry, and Behavior. 36 (3): 593–596. doi:10.1016/0091-3057(90)90260-o. ISSN   0091-3057. PMID   2165618. S2CID   9881393.
  3. Kubová, H.; Mares, P. (October 1994). "Convulsant action of a benzodiazepine receptor agonist/inverse agonist Ro 19-4603 in developing rats". Naunyn-Schmiedeberg's Archives of Pharmacology. 350 (4): 393–397. doi:10.1007/BF00178957. ISSN   0028-1298. PMID   7845475. S2CID   1751486.
  4. Balakleevsky, A.; Colombo, G.; Fadda, F.; Gessa, G. L. (1990). "Ro 19-4603, a benzodiazepine receptor inverse agonist, attenuates voluntary ethanol consumption in rats selectively bred for high ethanol preference". Alcohol and Alcoholism (Oxford, Oxfordshire). 25 (5): 449–452. ISSN   0735-0414. PMID   1965120.
  5. Lister, R. G.; Durcan, M. J. (1989-03-13). "Antagonism of the intoxicating effects of ethanol by the potent benzodiazepine receptor ligand Ro 19-4603". Brain Research. 482 (1): 141–144. doi:10.1016/0006-8993(89)90551-9. ISSN   0006-8993. PMID   2539880. S2CID   22770686.