Chemical nomenclature

Last updated

Chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC).


IUPAC Nomenclature ensures that each compound (and its various isomers) have only one formally accepted name known as the systematic IUPAC name, however, some compounds may have alternative names that are also accepted, known as the recommended IUPAC name which is generally taken from the common name of that compound. Preferably, the name should also represent the structure or chemistry of a compound.

For example, the main constituent of white vinegar is CH
, which is commonly called acetic acid and is also its recommended IUPAC name, but its formal, systematic IUPAC name is ethanoic acid.

The IUPAC's rules for naming organic and inorganic compounds are contained in two publications, known as the Blue Book [1] [2] and the Red Book , [3] respectively. A third publication, known as the Green Book , [4] recommends the use of symbols for physical quantities (in association with the IUPAP), while a fourth, the Gold Book , [5] defines many technical terms used in chemistry. Similar compendia exist for biochemistry [6] (the White Book, in association with the IUBMB), analytical chemistry [7] (the Orange Book ), macromolecular chemistry [8] (the Purple Book), and clinical chemistry [9] (the Silver Book). These "color books" are supplemented by specific recommendations published periodically in the journal Pure and Applied Chemistry .

Purpose of chemical nomenclature

The main purpose of chemical nomenclature is to disambiguate the spoken or written names of chemical compounds: each name should refer to one compound. Secondarily, each compound should have only one name, although in some cases some alternative names are accepted.

Preferably, the name should also represent the structure or chemistry of a compound. This is achieved by the International Chemical Identifier (InChI) nomenclature. However, the American Chemical Society's CAS numbers nomenclature does not represent a compound's structure.

The nomenclature used depends on the needs of the user, so no single correct nomenclature exists. Rather, different nomenclatures are appropriate for different circumstances.

A common name will successfully identify a chemical compound, given context. Without context, the name should indicate at least the chemical composition. To be more specific, the name may need to represent the three-dimensional arrangement of the atoms. This requires adding more rules to the standard IUPAC system (the Chemical Abstracts Service system (CAS system) is the one used most commonly in this context), at the expense of having names which are longer and less familiar.

The IUPAC system is often criticized for failing to distinguish relevant compounds (for example, for differing reactivity of sulfur allotropes, which IUPAC does not distinguish). While IUPAC has a human-readable advantage over CAS numbering, IUPAC names for some larger, relevant molecules (such as rapamycin) are barely human-readable, so common names are used instead.

Differing needs of chemical nomenclature and lexicography

It is generally understood that the purposes of lexicography versus chemical nomenclature vary and are to an extent at odds. Dictionaries of words, whether in traditional print or on the internet, collect and report the meanings of words as their uses appear and change over time. For internet dictionaries with limited or no formal editorial process, definitions —in this case, definitions of chemical names and terms— can change rapidly without concern for the formal or historical meanings. Chemical nomenclature however (with IUPAC nomenclature as the best example) is necessarily more restrictive: Its purpose is to standardize communication and practice so that, when a chemical term is used it has a fixed meaning relating to chemical structure, thereby giving insights into chemical properties and derived molecular functions. These differing purposes can affect understanding, especially with regard to chemical classes that have achieved popular attention. Examples of the effect of these are as follows:

The rapid pace at which meanings can change on the internet, in particular for chemical compounds with perceived health benefits, ascribed rightly or wrongly, complicate the monosemy of nomenclature (and so access to SAR understanding). Specific examples appear in the polyphenols article, where varying internet and common-use definitions conflict with any accepted chemical nomenclature connecting polyphenol structure and bioactivity).


First page of Lavoisier's Chymical Nomenclature in English. Lavoisier Nomenclature01.gif
First page of Lavoisier's Chymical Nomenclature in English.

The nomenclature of alchemy is descriptive, but does not effectively represent the functions mentioned above. Opinions differ about whether this was deliberate on the part of the early practitioners of alchemy or whether it was a consequence of the particular (and often esoteric) theories according to which they worked. While both explanations are probably valid to some extent, it is remarkable that the first "modern" system of chemical nomenclature appeared at the same time as the distinction (by Lavoisier) between elements and compounds, during the late eighteenth century.

The French chemist Louis-Bernard Guyton de Morveau published his recommendations [10] in 1782, hoping that his "constant method of denomination" would "help the intelligence and relieve the memory". The system was refined in collaboration with Berthollet, de Fourcroy and Lavoisier, [11] and promoted by the latter in a textbook that would survive long after his death by guillotine in 1794. [12] The project was also endorsed by Jöns Jakob Berzelius, [13] [14] who adapted the ideas for the German-speaking world.

The recommendations of Guyton were only for what would be known now as inorganic compounds. With the massive expansion of organic chemistry during the mid-nineteenth century and the greater understanding of the structure of organic compounds, the need for a less ad hoc system of nomenclature was felt just as the theoretical basis became available to make this possible. An international conference was convened in Geneva in 1892 by the national chemical societies, from which the first widely accepted proposals for standardization developed. [15]

A commission was established in 1913 by the Council of the International Association of Chemical Societies, but its work was interrupted by World War I. After the war, the task passed to the newly formed International Union of Pure and Applied Chemistry, which first appointed commissions for organic, inorganic, and biochemical nomenclature in 1921 and continues to do so to this day.

Types of nomenclature

Nomenclature has been developed for both organic and inorganic chemistry. There are also designations having to do with structure see Descriptor (chemistry).

Organic chemistry

Inorganic chemistry

Compositional nomenclature

Type-I ionic binary compounds

For type-I ionic binary compounds, the cation (a metal in most cases) is named first, and the anion (usually a nonmetal) is named second. The cation retains its elemental name (e.g., iron or zinc), but the suffix of the nonmetal changes to -ide. For example, the compound LiBr is made of Li+ cations and Br anions; thus, it is called lithium bromide. The compound BaO, which is composed of Ba2+ cations and O2− anions, is referred to as barium oxide.

The oxidation state of each element is unambiguous. When these ions combine into a type-I binary compound, their equal-but-opposite charges are neutralized, so the compound's net charge is zero.

Type-II ionic binary compounds

Type-II ionic binary compounds are those in which the cation does not have just one oxidation state. This is common among transition metals. To name these compounds, one must determine the charge of the cation and then render the name as would be done with Type-I ionic compounds, except that a Roman numeral (indicating the charge of the cation) is written in parentheses next to the cation name (this is sometimes referred to as Stock nomenclature). For example, for the compound FeCl3, the cation, iron, can occur as Fe2+ and Fe3+. In order for the compound to have a net charge of zero, the cation must be Fe3+ so that the three Cl anions can be balanced (3+ and 3− balance to 0). Thus, this compound is termed iron(III) chloride. Another example could be the compound PbS2. Because the S2− anion has a subscript of 2 in the formula (giving a 4− charge), the compound must be balanced with a 4+ charge on the Pb cation (lead can form cations with a 4+ or a 2+ charge). Thus, the compound is made of one Pb4+ cation to every two S2− anions, the compound is balanced, and its name is written as lead(IV) sulfide.

An older system – relying on Latin names for the elements – is also sometimes used to name Type-II ionic binary compounds. In this system, the metal (instead of a Roman numeral next to it) has a suffix "-ic" or "-ous" added to it to indicate its oxidation state ("-ous" for lower, "-ic" for higher). For example, the compound FeO contains the Fe2+ cation (which balances out with the O2− anion). Since this oxidation state is lower than the other possibility (Fe3+), this compound is sometimes called ferrous oxide. For the compound, SnO2, the tin ion is Sn4+ (balancing out the 4− charge on the two O2− anions), and because this is a higher oxidation state than the alternative (Sn2+), this compound is termed stannic oxide.

Some ionic compounds contain polyatomic ions, which are charged entities containing two or more covalently bonded types of atoms. It is important to know the names of common polyatomic ions; these include:

The formula Na2SO3 denotes that the cation is sodium, or Na+, and that the anion is the sulfite ion (SO2−3). Therefore, this compound is named sodium sulfite. If the given formula is Ca(OH)2, it can be seen that OH is the hydroxide ion. Since the charge on the calcium ion is 2+, it makes sense there must be two OH ions to balance the charge. Therefore, the name of the compound is calcium hydroxide. If one is asked to write the formula for copper(I) chromate, the Roman numeral indicates that copper ion is Cu+ and one can identify that the compound contains the chromate ion (CrO2−4). Two of the 1+ copper ions are needed to balance the charge of one 2− chromate ion, so the formula is Cu2CrO4.

Type-III binary compounds

Type-III binary compounds are bonded covalently. Covalent bonding occurs between nonmetal elements. Compounds bonded covalently are also known as molecules . For the compound, the first element is named first and with its full elemental name. The second element is named as if it were an anion (base name of the element + -ide suffix). Then, prefixes are used to indicate the numbers of each atom present: these prefixes are mono- (one), di- (two), tri- (three), tetra- (four), penta- (five), hexa- (six), hepta- (seven), octa- (eight), nona- (nine), and deca- (ten). The prefix mono- is never used with the first element. Thus, NCl3 is termed nitrogen trichloride, BF3 is termed boron trifluoride, and P2O5 is termed diphosphorus pentoxide (although the a of the prefix penta- should actually not be omitted before a vowel: the IUPAC Red Book 2005 page 69 states, "The final vowels of multiplicative prefixes should not be elided (although "monoxide", rather than "monooxide", is an allowed exception because of general usage).").

Carbon dioxide is written CO2; sulfur tetrafluoride is written SF4. A few compounds, however, have common names that prevail. H2O, for example, is usually termed water rather than dihydrogen monoxide , and NH3 is preferentially termed ammonia rather than nitrogen trihydride.

Substitutive nomenclature

This naming method generally follows established IUPAC organic nomenclature. Hydrides of the main group elements (groups 13–17) are given the base name ending with -ane, e.g. borane ( B H 3), oxidane ( H 2 O ), phosphane ( P H 3) (Although the name phosphine is also in common use, it is not recommended by IUPAC). The compound P Cl 3 would thus be named substitutively as trichlorophosphane (with chlorine "substituting"). However, not all such names (or stems) are derived from the element name. For example, N H 3 is termed "azane".

Additive nomenclature

This method of naming has been developed principally for coordination compounds although it can be applied more widely. An example of its application is [CoCl(NH3)5]Cl2, pentaamminechloridocobalt(III) chloride.

Ligands, too, have a special naming convention. Whereas chloride becomes the prefix chloro- in substitutive naming, for a ligand it becomes chlorido-.

See also

Related Research Articles

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name since it does not contain any words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<span class="mw-page-title-main">Functional group</span> Group of atoms giving a molecule characteristic properties

In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition. This enables systematic prediction of chemical reactions and behavior of chemical compounds and the design of chemical synthesis. The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis.

<span class="mw-page-title-main">Polyatomic ion</span> Ion containing two or more atoms

A polyatomic ion is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zero. The term molecule may or may not be used to refer to a polyatomic ion, depending on the definition used. The prefix poly- carries the meaning "many" in Greek, but even ions of two atoms are commonly described as polyatomic.

<span class="mw-page-title-main">Salt (chemistry)</span> Chemical compound involving ionic bonding

In chemistry, a salt or ionic compound is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a neutral compound with no net electric charge. The constituent ions are held together by electrostatic forces termed ionic bonds.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

<span class="mw-page-title-main">Acyl group</span> Chemical group (R–C=O)

In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an organyl group or hydrogen in the case of formyl group. In organic chemistry, the acyl group is usually derived from a carboxylic acid, in which case it has the formula R−C(=O)−, where R represents an organyl group or hydrogen. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids and phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond.

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

An oxyanion, or oxoanion, is an ion with the generic formula A
. Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H
. The structures of condensed oxyanions can be rationalized in terms of AOn polyhedral units with sharing of corners or edges between polyhedra. The oxyanions adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) are important in biology.

In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry. Ideally, every possible organic compound should have a name from which an unambiguous structural formula can be created. There is also an IUPAC nomenclature of inorganic chemistry.

In chemistry, the valence or valency of an atom is a measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Valence is generally understood to be the number of chemical bonds that each atom of a given chemical element typically forms. Double bonds are considered to be two bonds, triple bonds to be three, quadruple bonds to be four, quintuple bonds to be five and sextuple bonds to be six. In most compounds, the valence of hydrogen is 1, of oxygen is 2, of nitrogen is 3, and of carbon is 4. Valence is not to be confused with the related concepts of the coordination number, the oxidation state, or the number of valence electrons for a given atom.

<span class="mw-page-title-main">Manganate</span> Chemical compound

In inorganic nomenclature, a manganate is any negatively charged molecular entity with manganese as the central atom. However, the name is usually used to refer to the tetraoxidomanganate(2−) anion, MnO2−
, also known as manganate(VI) because it contains manganese in the +6 oxidation state. Manganates are the only known manganese(VI) compounds.

<span class="mw-page-title-main">Tellurate</span> Compound containing an oxyanion of tellurium

In chemistry tellurate is a compound containing an oxyanion of tellurium where tellurium has an oxidation number of +6. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central tellurium atom.

In chemistry an antimonate is a compound which contains a metallic element, oxygen, and antimony in an oxidation state of +5. These compounds adopt polymeric structures with M-O-Sb linkages. They can be considered to be derivatives of the hypothetical antimonic acid H3SbO4, or combinations of metal oxides and antimony pentoxide, Sb2O5.

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H+ cation and the anion of the acid.

Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 is the 2005 version of Nomenclature of Inorganic Chemistry. It is a collection of rules for naming inorganic compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC).

<span class="mw-page-title-main">Molybdate</span> Chemical compound of the form –O–MoO₂–O–

In chemistry, a molybdate is a compound containing an oxyanion with molybdenum in its highest oxidation state of 6: O−Mo(=O)2−O. Molybdenum can form a very large range of such oxyanions, which can be discrete structures or polymeric extended structures, although the latter are only found in the solid state. The larger oxyanions are members of group of compounds termed polyoxometalates, and because they contain only one type of metal atom are often called isopolymetalates. The discrete molybdenum oxyanions range in size from the simplest MoO2−
, found in potassium molybdate up to extremely large structures found in isopoly-molybdenum blues that contain for example 154 Mo atoms. The behaviour of molybdenum is different from the other elements in group 6. Chromium only forms the chromates, CrO2−
, Cr
, Cr
and Cr
ions which are all based on tetrahedral chromium. Tungsten is similar to molybdenum and forms many tungstates containing 6 coordinate tungsten.


  1. "1958 (A: Hydrocarbons, and B: Fundamental Heterocyclic Systems), 1965 (C: Characteristic Groups)", Nomenclature of Organic Chemistry (3rd ed.), London: Butterworths, 1971, ISBN   978-0-408-70144-0 .
  2. Rigaudy, J.; Klesney, S. P., eds. (1979). Nomenclature of Organic Chemistry . IUPAC/Pergamon Press. ISBN   0-08022-3699.. Panico, R.; Powell, W. H.; Richer, J. C., eds. (1993). A Guide to IUPAC Nomenclature of Organic Compounds . IUPAC/Blackwell Science. ISBN   0-632-03488-2.. IUPAC, Chemical Nomenclature and Structure Representation Division (27 October 2004). Nomenclature of Organic Chemistry (Provisional Recommendations). IUPAC.
  3. International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSC IUPAC . ISBN   0-85404-438-8 . Electronic version..
  4. International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry , 2nd edition, Oxford: Blackwell Science. ISBN   0-632-03583-8 . Electronic version..
  5. Compendium of Chemical Terminology, IMPACT Recommendations (2nd Ed.), Oxford:Blackwell Scientific Publications. (1997)
  6. Biochemical Nomenclature and Related Documents, London: Portland Press, 1992.
  7. International Union of Pure and Applied Chemistry (1998). Compendium of Analytical Nomenclature (definitive rules 1997, 3rd. ed.). Oxford: Blackwell Science. ISBN   0-86542-6155 .
  8. Compendium of Macromolecular Nomenclature, Oxford: Blackwell Scientific Publications, 1991.
  9. Compendium of Terminology and Nomenclature of Properties in Clinical Laboratory Sciences, IMPACT Recommendations 1995, Oxford: Blackwell Science, 1995, ISBN   978-0-86542-612-2 .
  10. Guyton de Morveau, L. B. (1782), "Mémoire sur les dénominations chimiques, la necessité d'en perfectionner le système et les règles pour y parvenir", Observations Sur la Physique, 19: 370–382
  11. Guyton de Morveau, L. B.; Lavoisier, A. L.; Berthollet, C. L.; Fourcroy, A. F. de (1787), Méthode de Nomenclature Chimique, Paris: Cuchet, archived from the original on 2011-07-21.
  12. Lavoisier, A. L. (1801), Traité Élémentaire de Chimie (3e ed.), Paris: Deterville.
  13. Berzelius, J. J. (1811), "Essai sur la nomenclature chimique", Journal de Physique, 73: 253–286.
  14. Wisniak, Jaime (2000), "Jöns Jacob Berzelius A Guide to the Perplexed Chemist", The Chemical Educator, 5 (6): 343–50, doi:10.1007/s00897000430a, S2CID   98774420 .
  15. "Congrès de nomenclature chimique, Genève 1892", Bulletin de la Société Chimique de Paris, Série 3, 8: xiii–xxiv, 1892.

[1] [2] [3]

  1. Jensen, William B (2007). "The Origin of the Oxidation-State Concept". Journal of Chemical Education. 84 (9): 1418. Bibcode:2007JChEd..84.1418J. doi:10.1021/ed084p1418.
  2. Anderson, Wilda (September 2001). "Men of History, Men of Category". MLN. 116 (4): 739–749. doi:10.1353/mln.2001.0049. JSTOR   3251756.
  3. Ford, Peter B (April 2007). "Aestheticizing the Laboratory: "Delirium," the Chemists, and the Boundaries of Language". European Romantic Review. 18 (2): 247–254. doi:10.1080/10509580701298016.