![]() | |||
| |||
Names | |||
---|---|---|---|
IUPAC name Phosphane | |||
Other names Hydrogen phosphide Phosphamine Phosphorus trihydride Phosphorated hydrogen | |||
Identifiers | |||
3D model (JSmol) | |||
ChEBI | |||
ChemSpider | |||
ECHA InfoCard | 100.029.328 | ||
EC Number |
| ||
287 | |||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 2199 | ||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
PH3 | |||
Molar mass | 33.99758 g/mol | ||
Appearance | Colourless gas | ||
Odor | odorless as pure compound; fish-like or garlic-like commercially [1] | ||
Density | 1.379 g/L, gas (25 °C) | ||
Melting point | −132.8 °C (−207.0 °F; 140.3 K) | ||
Boiling point | −87.7 °C (−125.9 °F; 185.5 K) | ||
31.2 mg/100 ml (17 °C) | |||
Solubility | Soluble in alcohol, ether, CS2 slightly soluble in benzene, chloroform, ethanol | ||
Vapor pressure | 41.3 atm (20 °C) [1] | ||
Conjugate acid | Phosphonium (chemical formula PH+ 4) | ||
Refractive index (nD) | 2.144 | ||
Viscosity | 1.1×10−5 Pa⋅s | ||
Structure | |||
Trigonal pyramidal | |||
0.58 D | |||
Thermochemistry | |||
Heat capacity (C) | 37 J/mol⋅K | ||
Std molar entropy (S⦵298) | 210 J/mol⋅K [2] | ||
Std enthalpy of formation (ΔfH⦵298) | 5 kJ/mol [2] | ||
Gibbs free energy (ΔfG⦵) | 13 kJ/mol | ||
Hazards | |||
GHS labelling: | |||
![]() ![]() ![]() ![]() | |||
NFPA 704 (fire diamond) | |||
Flash point | Flammable gas | ||
38 °C (100 °F; 311 K) (see text) | |||
Explosive limits | 1.79–98% [1] | ||
Lethal dose or concentration (LD, LC): | |||
LD50 (median dose) | 3.03 mg/kg (rat, oral) | ||
LC50 (median concentration) | 11 ppm (rat, 4 hr) [3] | ||
LCLo (lowest published) | 1000 ppm (mammal, 5 min) 270 ppm (mouse, 2 hr) 100 ppm (guinea pig, 4 hr) 50 ppm (cat, 2 hr) 2500 ppm (rabbit, 20 min) 1000 ppm (human, 5 min) [3] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible) | TWA 0.3 ppm (0.4 mg/m3) [1] | ||
REL (Recommended) | TWA 0.3 ppm (0.4 mg/m3), ST 1 ppm (1 mg/m3) [1] | ||
IDLH (Immediate danger) | 50 ppm [1] | ||
Safety data sheet (SDS) | ICSC 0694 | ||
Related compounds | |||
Other cations | |||
Related compounds | |||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula PH3, classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting fish, due to the presence of substituted phosphine and diphosphane (P2H4). With traces of P2H4 present, PH3 is spontaneously flammable in air (pyrophoric), burning with a luminous flame. Phosphine is a highly toxic respiratory poison, and is immediately dangerous to life or health at 50 ppm. Phosphine has a trigonal pyramidal structure.
Phosphines are compounds that include PH3 and the organophosphines, which are derived from PH3 by substituting one or more hydrogen atoms with organic groups. [4] They have the general formula PH3−nRn. Phosphanes are saturated phosphorus hydrides of the form PnHn+2, such as triphosphane. [5] Phosphine, PH3, is the smallest of the phosphines and the smallest of the phosphanes.
Philippe Gengembre (1764–1838), a student of Lavoisier, first obtained phosphine in 1783 by heating white phosphorus in an aqueous solution of potash (potassium carbonate). [6] [NB 1]
Perhaps because of its strong association with elemental phosphorus, phosphine was once regarded as a gaseous form of the element, but Lavoisier (1789) recognised it as a combination of phosphorus with hydrogen and described it as phosphure d'hydrogène (phosphide of hydrogen). [NB 2]
In 1844, Paul Thénard, son of the French chemist Louis Jacques Thénard, used a cold trap to separate diphosphine from phosphine that had been generated from calcium phosphide, thereby demonstrating that P2H4 is responsible for spontaneous flammability associated with PH3, and also for the characteristic orange/brown color that can form on surfaces, which is a polymerisation product. [7] He considered diphosphine's formula to be PH2, and thus an intermediate between elemental phosphorus, the higher polymers, and phosphine. Calcium phosphide (nominally Ca3P2) produces more P2H4 than other phosphides because of the preponderance of P-P bonds in the starting material.
The name "phosphine" was first used for organophosphorus compounds in 1857, being analogous to organic amines (NR3). [NB 3] [8] The gas PH3 was named "phosphine" by 1865 (or earlier). [9]
PH3 is a trigonal pyramidal molecule with C3v molecular symmetry. The length of the P−H bond is 1.42 Å, the H−P−H bond angles are 93.5°. The dipole moment is 0.58 D, which increases with substitution of methyl groups in the series: CH3PH2, 1.10 D; (CH3)2PH, 1.23 D; (CH3)3P, 1.19 D. In contrast, the dipole moments of amines decrease with substitution, starting with ammonia, which has a dipole moment of 1.47 D. The low dipole moment and almost orthogonal bond angles lead to the conclusion that in PH3 the P−H bonds are almost entirely pσ(P) – sσ(H) and phosphorus 3s orbital contributes little to the bonding between phosphorus and hydrogen in this molecule. For this reason, the lone pair on phosphorus may be regarded as predominantly formed by the 3s orbital of phosphorus. The upfield chemical shift of the phosphorus atom in the 31P NMR spectrum accords with the conclusion that the lone pair electrons occupy the 3s orbital (Fluck, 1973). This electronic structure leads to a lack of nucleophilicity in general and lack of basicity in particular (pKaH = –14), [10] as well as an ability to form only weak hydrogen bonds. [11]
The aqueous solubility of PH3 is slight; 0.22 cm3 of gas dissolves in 1 cm3 of water. Phosphine dissolves more readily in non-polar solvents than in water because of the non-polar P−H bonds. It is technically amphoteric in water, but acid and base activity is poor. Proton exchange proceeds via a phosphonium (PH+4) ion in acidic solutions and via phosphanide (PH−2) at high pH, with equilibrium constants Kb = 4×10−28 and Ka = 41.6×10−29.
Phosphine upon contact with water at high pressure and temperature produces phosphoric acid and hydrogen: [12] [13]
Burning phosphine in the air produced phosphorus pentoxide (P2O5) (which reacts with water to produce phosphoric acid): [14] [12]
Phosphine may be prepared in a variety of ways. [15] Industrially it can be made by the reaction of white phosphorus with sodium or potassium hydroxide, producing potassium or sodium hypophosphite as a by-product.
Alternatively, the acid-catalyzed disproportionation of white phosphorus yields phosphoric acid and phosphine. Both routes have industrial significance; the acid route is the preferred method if further reaction of the phosphine to substituted phosphines is needed. The acid route requires purification and pressurizing.
It is prepared in the laboratory by disproportionation of phosphorous acid: [16]
Phosphine evolution occurs at around 200 °C.
Alternative methods are the hydrolysis of tris(trimethylsilyl)phosphine, or of metal phosphides such as aluminium phosphide, or calcium phosphide:
Pure samples of phosphine, free from P2H4, may be prepared using the action of potassium hydroxide on phosphonium iodide :
Phosphine is a worldwide constituent of the Earth's atmosphere at very low and highly variable concentrations. [17] It may contribute significantly to the global phosphorus biochemical cycle. The most likely source is reduction of phosphate in decaying organic matter, possibly via partial reductions and disproportionations, since environmental systems do not have known reducing agents of sufficient strength to directly convert phosphate to phosphine. [18]
It is also found in Jupiter's atmosphere. [19]
In 2020 a spectroscopic analysis was reported to show signs of phosphine in the atmosphere of Venus in quantities that could not be explained by known abiotic processes. [20] [21] [22] Later re-analysis of this work showed interpolation errors had been made, re-analysis of data with the fixed algorithm either do not result in the detection of phosphine. [23] [24] The authors of the original study then claimed to detect it with a much lower concentration of 1 ppb. [25] [ disputed ]
Phosphine is a precursor to many organophosphorus compounds. It reacts with formaldehyde in the presence of hydrogen chloride to give tetrakis(hydroxymethyl)phosphonium chloride, which is used in textiles. The hydrophosphination of alkenes is versatile route to a variety of phosphines. For example, in the presence of basic catalysts PH3 adds of Michael acceptors. Thus with acrylonitrile, it reacts to give tris(cyanoethyl)phosphine: [26]
Acid catalysis is applicable to hydrophosphination with isobutylene and related analogues:
Phosphine is used as a dopant in the semiconductor industry, and a precursor for the deposition of compound semiconductors. Commercially significant products include gallium phosphide and indium phosphide. [27]
For farm use, pellets of aluminium phosphide (AlP), calcium phosphide (Ca3P2), or zinc phosphide (Zn3P2) release phosphine upon contact with atmospheric water or rodents' stomach acid. These pellets also contain agents to reduce the potential for ignition or explosion of the released phosphine. A more recent alternative is the use of phosphine gas itself which requires dilution with either CO2 or N2 or even air to bring it below the flammability point. Use of the gas avoids the issues related with the solid residues left by metal phosphide and results in faster, more efficient control of the target pests.
Because the previously popular fumigant methyl bromide has been phased out in some countries under the Montreal Protocol, phosphine is the only widely used, cost-effective, rapidly acting fumigant that does not leave residues on the stored product. Pests with high levels of resistance toward phosphine have become common in Asia, Australia and Brazil. High level resistance is also likely to occur in other regions, but has not been as closely monitored. Genetic variants that contribute to high level resistance to phosphine have been identified in the dihydrolipoamide dehydrogenase gene. [28] Identification of this gene now allows rapid molecular identification of resistant insects.
Deaths have resulted from accidental exposure to fumigation materials containing aluminium phosphide or phosphine. [29] [30] [31] [32] It can be absorbed either by inhalation or transdermally. [29] As a respiratory poison, it affects the transport of oxygen or interferes with the utilization of oxygen by various cells in the body. [31] Exposure results in pulmonary edema (the lungs fill with fluid). [32] Phosphine gas is heavier than air so it stays near the floor. [33]
Phosphine appears to be mainly a redox toxin, causing cell damage by inducing oxidative stress and mitochondrial dysfunction. [34] Resistance in insects is caused by a mutation in a mitochondrial metabolic gene. [28]
Phosphine can be absorbed into the body by inhalation. Direct contact with phosphine liquid – although unlikely to occur – may cause frostbite, like other cryogenic liquids. The main target organ of phosphine gas is the respiratory tract. [35] According to the 2009 U.S. National Institute for Occupational Safety and Health (NIOSH) pocket guide, and U.S. Occupational Safety and Health Administration (OSHA) regulation, the 8 hour average respiratory exposure should not exceed 0.3 ppm. NIOSH recommends that the short term respiratory exposure to phosphine gas should not exceed 1 ppm. The Immediately Dangerous to Life or Health level is 50 ppm. Overexposure to phosphine gas causes nausea, vomiting, abdominal pain, diarrhea, thirst, chest tightness, dyspnea (breathing difficulty), muscle pain, chills, stupor or syncope, and pulmonary edema. [36] [37] Phosphine has been reported to have the odor of decaying fish or garlic at concentrations below 0.3 ppm. The smell is normally restricted to laboratory areas or phosphine processing since the smell comes from the way the phosphine is extracted from the environment. However, it may occur elsewhere, such as in industrial waste landfills. Exposure to higher concentrations may cause olfactory fatigue. [38]
Phosphine gas is denser than air and hence may collect in low-lying areas. It can form explosive mixtures with air, and may also self-ignite. [12]
Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Earth. It has a concentration in the Earth's crust of about one gram per kilogram. In minerals, phosphorus generally occurs as phosphate.
The compound hydrogen chloride has the chemical formula HCl and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride gas and hydrochloric acid are important in technology and industry. Hydrochloric acid, the aqueous solution of hydrogen chloride, is also commonly given the formula HCl.
Methylamine is an organic compound with a formula of CH3NH2. This colorless gas is a derivative of ammonia, but with one hydrogen atom being replaced by a methyl group. It is the simplest primary amine.
In polyatomic cations with the chemical formula PR+
4. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.
Ethylbenzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as an reaction intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99% of ethylbenzene produced was consumed in the production of styrene.
Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.
Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.
Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.
Phosphorous acid (or phosphonic acid (singular)) is the compound described by the formula H3PO3. This acid is diprotic (readily ionizes two protons), not triprotic as might be suggested by this formula. Phosphorous acid is an intermediate in the preparation of other phosphorus compounds. Organic derivatives of phosphorous acid, compounds with the formula RPO3H2, are called phosphonic acids.
Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic selenium compound with an exposure limit of 0.05 ppm over an 8-hour period. Even at extremely low concentrations, this compound has a very irritating smell resembling that of decayed horseradish or 'leaking gas', but smells of rotten eggs at higher concentrations.
Hypophosphorous acid (HPA), or phosphinic acid, is a phosphorus oxyacid and a powerful reducing agent with molecular formula H3PO2. It is a colorless low-melting compound, which is soluble in water, dioxane and alcohols. The formula for this acid is generally written H3PO2, but a more descriptive presentation is HOP(O)H2, which highlights its monoprotic character. Salts derived from this acid are called hypophosphites.
Phosphoryl chloride is a colourless liquid with the formula POCl3. It hydrolyses in moist air releasing phosphoric acid and fumes of hydrogen chloride. It is manufactured industrially on a large scale from phosphorus trichloride and oxygen or phosphorus pentoxide. It is mainly used to make phosphate esters such as tricresyl phosphate.
Germane is the chemical compound with the formula GeH4, and the germanium analogue of methane. It is the simplest germanium hydride and one of the most useful compounds of germanium. Like the related compounds silane and methane, germane is tetrahedral. It burns in air to produce GeO2 and water. Germane is a group 14 hydride.
Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.
Aluminium phosphide is a highly toxic inorganic compound with the chemical formula AlP, used as a wide band gap semiconductor and a fumigant. This colorless solid is generally sold as a grey-green-yellow powder due to the presence of impurities arising from hydrolysis and oxidation.
Zinc phosphide (Zn3P2) is an inorganic chemical compound. It is a grey solid, although commercial samples are often dark or even black. It is used as a rodenticide. Zn3P2 is a II-V semiconductor with a direct band gap of 1.5 eV and may have applications in photovoltaic cells. A second compound exists in the zinc-phosphorus system, zinc diphosphide (ZnP2).
Phosphine oxides are phosphorus compounds with the formula OPX3. When X = alkyl or aryl, these are organophosphine oxides. Triphenylphosphine oxide is an example. An inorganic phosphine oxide is phosphoryl chloride (POCl3).
Organophosphines are organophosphorus compounds with the formula PRnH3−n, where R is an organic substituent. These compounds can be classified according to the value of n: primary phosphines (n = 1), secondary phosphines (n = 2), tertiary phosphines (n = 3). All adopt pyramidal structures. Organophosphines are generally colorless, lipophilic liquids or solids. The parent of the organophosphines is phosphine (PH3).
Phenylphosphine is an organophosphorus compound with the chemical formula C6H5PH2. It is the phosphorus analog of aniline. Like other primary phosphines, phenylphosphine has an intense penetrating odor and is highly oxidizable. It is mainly used as a precursor to other organophosphorus compounds. It can function as a ligand in coordination chemistry.
Dimethylphenylphosphine is an organophosphorus compound with a formula P(C6H5)(CH3)2. The phosphorus is connected to a phenyl group and two methyl groups, making it the simplest aromatic alkylphosphine. It is colorless air sensitive liquid. It is a member of series (CH3)3-n(C6H5)2P that also includes n = 0, n = 2, and n = 3 that are often employed as ligands in metal phosphine complexes.
(From page 524:) The bases Me3P and E3P, the products of this reaction, which we propose to call respectively trimethylphosphine and triethylphosphine, ...