Pesticide resistance

Last updated
Pesticide application can artificially select for resistant pests. In this diagram, the first generation happens to have an insect with a heightened resistance to a pesticide (red) After pesticide application, its descendants represent a larger proportion of the population, because sensitive pests (white) have been selectively killed. After repeated applications, resistant pests may comprise the majority of the population. Pest resistance labelled light.svg
Pesticide application can artificially select for resistant pests. In this diagram, the first generation happens to have an insect with a heightened resistance to a pesticide (red) After pesticide application, its descendants represent a larger proportion of the population, because sensitive pests (white) have been selectively killed. After repeated applications, resistant pests may comprise the majority of the population.

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. [1] If a pest has resistance then that will reduce the pesticide's efficacy efficacy and resistance are inversely related. [2]

Contents

Cases of resistance have been reported in all classes of pests (i.e. crop diseases, weeds, rodents, etc.), with 'crises' in insect control occurring early-on after the introduction of pesticide use in the 20th century. The Insecticide Resistance Action Committee (IRAC) definition of insecticide resistance is 'a heritable change in the sensitivity of a pest population that is reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species'. [3]

Pesticide resistance is increasing. Farmers in the US lost 7% of their crops to pests in the 1940s; over the 1980s and 1990s, the loss was 13%, even though more pesticides were being used. [1] Over 500 species of pests have evolved a resistance to a pesticide. [4] Other sources estimate the number to be around 1,000 species since 1945. [5]

Although the evolution of pesticide resistance is usually discussed as a result of pesticide use, it is important to keep in mind that pest populations can also adapt to non-chemical methods of control. For example, the northern corn rootworm ( Diabrotica barberi ) became adapted to a corn-soybean crop rotation by spending the year when the field is planted with soybeans in a diapause. [6]

As of 2014, few new weed killers are near commercialization, and none with a novel, resistance-free mode of action. [7] Similarly, as of January 2019 discovery of new insecticides is more expensive and difficult than ever. [8]

Causes

Pesticide resistance probably stems from multiple factors:

Examples

Resistance has evolved in multiple species: resistance to insecticides was first documented by A. L. Melander in 1914 when scale insects demonstrated resistance to an inorganic insecticide. Between 1914 and 1946, 11 additional cases were recorded. The development of organic insecticides, such as DDT, gave hope that insecticide resistance was a dead issue. However, by 1947 housefly resistance to DDT had evolved. With the introduction of every new insecticide class – cyclodienes, carbamates, formamidines, organophosphates, pyrethroids, even Bacillus thuringiensis – cases of resistance surfaced within two to 20 years.

Consequences

Insecticides are widely used across the world to increase agricultural productivity and quality in vegetables and grains (and to a lesser degree the use for vector control for livestock). The resulting resistance has reduced function for those very purposes, and in vector control for humans. [24]

Multiple and cross-resistance

Adaptation

Pests becomes resistant by evolving physiological changes that protect them from the chemical. [11]

One protection mechanism is to increase the number of copies of a gene, allowing the organism to produce more of a protective enzyme that breaks the pesticide into less toxic chemicals. [11] Such enzymes include esterases, glutathione transferases, and mixed microsomal oxidases (oxidases expressed within microsomes). [11]

Alternatively, the number and/or sensitivity of biochemical receptors that bind to the pesticide may be reduced. [11]

Behavioral resistance has been described for some chemicals. For example, some Anopheles mosquitoes evolved a preference for resting outside that kept them away from pesticide sprayed on interior walls. [25]

Resistance may involve rapid excretion of toxins, secretion of them within the body away from vulnerable tissues and decreased penetration through the body wall. [26]

Mutation in only a single gene can lead to the evolution of a resistant organism. In other cases, multiple genes are involved. Resistant genes are usually autosomal. This means that they are located on autosomes (as opposed to allosomes, also known as sex chromosomes). As a result, resistance is inherited similarly in males and females. Also, resistance is usually inherited as an incompletely dominant trait. When a resistant individual mates with a susceptible individual, their progeny generally has a level of resistance intermediate between the parents.[ citation needed ]

Adaptation to pesticides comes with an evolutionary cost, usually decreasing relative fitness of organisms in the absence of pesticides. Resistant individuals often have reduced reproductive output, life expectancy, mobility, etc. Non-resistant individuals sometimes grow in frequency in the absence of pesticides - but not always [27] - so this is one way that is being tried to combat resistance. [28]

Blowfly maggots produce an enzyme that confers resistance to organochloride insecticides. Scientists have researched ways to use this enzyme to break down pesticides in the environment, which would detoxify them and prevent harmful environmental effects. A similar enzyme produced by soil bacteria that also breaks down organochlorides works faster and remains stable in a variety of conditions. [29]

Resistance to gene drive forms of population control is expected to occur and methods of slowing its development are being studied. [30]

The molecular mechanisms of insecticide resistance only became comprehensible in 1997. Guerrero et al 1997 used the newest methods of the time to find mutations producing pyrethroid resistance in dipterans. Even so, these adaptations to pesticides were unusually rapid and may not necessarily represent the norm in wild populations, under wild conditions. Natural adaptation processes take much longer and almost always happen in response to gentler pressures. [31]

Management

In order to remediate the problem it first must be ascertained what is really wrong. Assaying of suspected pesticide resistance - and not merely field observation and experience - is necessary because it may be mistaken for failure to apply the pesticide as directed, or microbial degradation of the pesticide. [32]

The United Nations' World Health Organization established the Worldwide Insecticide resistance Network in March 2016, [33] [34] [35] [36] due to increasing need and increasing recognition, including the radical decline in function against pests of vegetables. [33] [34] [35] [36]

Integrated pest management

The Integrated pest management (IPM) approach provides a balanced approach to minimizing resistance.

Resistance can be managed by reducing use of a pesticide. This allows non-resistant organisms to out-compete resistant strains. They can later be killed by returning to use of the pesticide.

A complementary approach is to site untreated refuges near treated croplands where susceptible pests can survive. [37] [38]

When pesticides are the sole or predominant method of pest control, resistance is commonly managed through pesticide rotation. This involves switching among pesticide classes with different modes of action to delay or mitigate pest resistance. [39] The Resistance Action Committees monitor resistance across the world, and in order to do that, each maintains a list of modes of action and pesticides that fall into those categories: the Fungicide Resistance Action Committee, [40] the Weed Science Society of America [41] [42] (the Herbicide Resistance Action Committee no longer has its own scheme, and is contributing to WSSA's from now on), [43] and the Insecticide Resistance Action Committee. [44] The U.S. Environmental Protection Agency (EPA) also uses those classification schemes. [45]

Manufacturers may recommend no more than a specified number of consecutive applications of a pesticide class be made before moving to a different pesticide class. [46]

Two or more pesticides with different modes of action can be tankmixed on the farm to improve results and delay or mitigate existing pest resistance. [37]

Status

Glyphosate

Glyphosate-resistant weeds are now present in the vast majority of soybean, cotton, and corn farms in some U.S. states. Weeds resistant to multiple herbicide modes of action are also on the rise. [7]

Before glyphosate, most herbicides would kill a limited number of weed species, forcing farmers to continually rotate their crops and herbicides to prevent resistance. Glyphosate disrupts the ability of most plants to construct new proteins. Glyphosate-tolerant transgenic crops are not affected. [7]

A weed family that includes waterhemp ( Amaranthus rudis ) has developed glyphosate-resistant strains. A 2008 to 2009 survey of 144 populations of waterhemp in 41 Missouri counties revealed glyphosate resistance in 69%. Weed surveys from some 500 sites throughout Iowa in 2011 and 2012 revealed glyphosate resistance in approximately 64% of waterhemp samples. [7]

In response to the rise in glyphosate resistance, farmers turned to other herbicides—applying several in a single season. In the United States, most midwestern and southern farmers continue to use glyphosate because it still controls most weed species, applying other herbicides, known as residuals, to deal with resistance. [7]

The use of multiple herbicides appears to have slowed the spread of glyphosate resistance. From 2005 through 2010 researchers discovered 13 different weed species that had developed resistance to glyphosate. From 2010-2014 only two more were discovered. [7]

A 2013 Missouri survey showed that multiply-resistant weeds had spread. 43% of the sampled weed populations were resistant to two different herbicides, 6% to three and 0.5% to four. In Iowa a survey revealed dual resistance in 89% of waterhemp populations, 25% resistant to three and 10% resistant to five. [7]

Resistance increases pesticide costs. For southern cotton, herbicide costs climbed from between $50–$75 per hectare ($20–$30/acre) a few years ago to about $370 per hectare ($150/acre) in 2014. In the South, resistance contributed to the shift that reduced cotton planting by 70% in Arkansas and 60% in Tennessee. For soybeans in Illinois, costs rose from about $25–$160 per hectare ($10–$65/acre). [7]

Bacillus thuringiensis

During 2009 and 2010, some Iowa fields showed severe injury to corn producing Bt toxin Cry3Bb1 by western corn rootworm. During 2011, mCry3A corn also displayed insect damage, including cross-resistance between these toxins. Resistance persisted and spread in Iowa. Bt corn that targets western corn rootworm does not produce a high dose of Bt toxin, and displays less resistance than that seen in a high-dose Bt crop. [47]

Products such as Capture LFR (containing the pyrethroid bifenthrin) and SmartChoice (containing a pyrethroid and an organophosphate) have been increasingly used to complement Bt crops that farmers find alone to be unable to prevent insect-driven injury. Multiple studies have found the practice to be either ineffective or to accelerate the development of resistant strains. [48]

See also

Related Research Articles

<i>Bacillus thuringiensis</i> Species of bacteria used as an insecticide

Bacillus thuringiensis is a gram-positive, soil-dwelling bacterium, the most commonly used biological pesticide worldwide. B. thuringiensis also occurs naturally in the gut of caterpillars of various types of moths and butterflies, as well on leaf surfaces, aquatic environments, animal feces, insect-rich environments, and flour mills and grain-storage facilities. It has also been observed to parasitize other moths such as Cadra calidella—in laboratory experiments working with C. calidella, many of the moths were diseased due to this parasite.

<span class="mw-page-title-main">Genetically modified maize</span> Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

<span class="mw-page-title-main">Herbicide</span> Chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides can be used to clear waste ground, industrial and construction sites, railways and railway embankments as they kill all plant material with which they come into contact. Apart from selective/non-selective, other important distinctions include persistence, means of uptake, and mechanism of action. Historically, products such as common salt and other metal salts were used as herbicides, however, these have gradually fallen out of favor, and in some countries, a number of these are banned due to their persistence in soil, and toxicity and groundwater contamination concerns. Herbicides have also been used in warfare and conflict.

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Western corn rootworm</span> Subspecies of beetle

The Western corn rootworm, Diabrotica virgifera virgifera, is one of the most devastating corn rootworm species in North America, especially in the midwestern corn-growing areas such as Iowa. A related species, the Northern corn rootworm, D. barberi, co-inhabits in much of the range and is fairly similar in biology.

A biopesticide is a biological substance or organism that damages, kills, or repels organisms seen as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

Forest integrated pest management or Forest IPM is the practice of monitoring and managing pest and environmental information with pest control methods to prevent pest damage to forests and forest habitats by the most economical means.

Bt cotton is a genetically modified pest resistant plant cotton variety, which produce an insecticide to combat bollworm.

<span class="mw-page-title-main">Delta endotoxin</span> Group of insecticidal toxins produced by the bacteria Bacillus thuringiensis

Delta endotoxins (δ-endotoxins) are pore-forming toxins produced by Bacillus thuringiensis species of bacteria. They are useful for their insecticidal action and are the primary toxin produced by Bt maize/corn. During spore formation the bacteria produce crystals of such proteins that are also known as parasporal bodies, next to the endospores; as a result some members are known as a parasporin. The Cyt (cytolytic) toxin group is a group of delta-endotoxins different from the Cry group.

<span class="mw-page-title-main">Pesticide application</span>

Pesticide application refers to the practical way in which pesticides are delivered to their biological targets. Public concern about the use of pesticides has highlighted the need to make this process as efficient as possible, in order to minimise their release into the environment and human exposure. The practice of pest management by the rational application of pesticides is supremely multi-disciplinary, combining many aspects of biology and chemistry with: agronomy, engineering, meteorology, socio-economics and public health, together with newer disciplines such as biotechnology and information science.

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

<span class="mw-page-title-main">SmartStax</span> Seeds protected against bugs, weeds

SmartStax is a brand of genetically modified seed made through a collaboration between Monsanto Company and Dow Chemical Company. It takes advantage of multiple modes of insect protection and herbicide tolerance. SmartStax takes advantage of Yieldgard VT Triple (Monsanto), Herculex Xtra (Dow), RoundUp Ready 2 (Monsanto), and Liberty Link (Dow). The traits included protect against above-ground insects, below-ground insects, and provide broad herbicide tolerance. It is currently available for corn, but cotton, soybean, and specialty crop variations are to be released. Previously, the most genes artificially added to a single plant was three, but Smartstax includes eight. Smartstax also incorporates Monsanto's Acceleron Seed Treatment System which protects against insects at the earliest stages of development. Smartstax is sold under the Genuity (Monsanto) and Mycogen (Dow) brands.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are a class of herbicides that prevent growth in plants by blocking 4-Hydroxyphenylpyruvate dioxygenase, an enzyme in plants that breaks down the amino acid tyrosine into molecules that are then used by plants to create other molecules that plants need. This process of breakdown, or catabolism, and making new molecules from the results, or biosynthesis, is something all living things do. HPPD inhibitors were first brought to market in 1980, although their mechanism of action was not understood until the late 1990s. They were originally used primarily in Japan in rice production, but since the late 1990s have been used in Europe and North America for corn, soybeans, and cereals, and since the 2000s have become more important as weeds have become resistant to glyphosate and other herbicides. Genetically modified crops are under development that include resistance to HPPD inhibitors. There is a pharmaceutical drug on the market, nitisinone, that was originally under development as an herbicide as a member of this class, and is used to treat an orphan disease, type I tyrosinemia.

<span class="mw-page-title-main">Cry1Ac</span> Crystal protein

Cry1Ac protoxin is a crystal protein produced by the gram-positive bacterium, Bacillus thuringiensis (Bt) during sporulation. Cry1Ac is one of the delta endotoxins produced by this bacterium which act as insecticides. Because of this, the genes for these have been introduced into commercially important crops by genetic engineering in order to confer pest resistance on those plants.

Bacillus thuringiensis subsp. kurstaki (Btk) is a group of bacteria used as biological control agents against lepidopterans. Btk, along with other B. thuringiensis products, is one of the most widely used biological pesticides due to its high specificity; it is effective against lepidopterans, and it has little to no effect on nontarget species. During sporulation, Btk produces a crystal protein that is lethal to lepidopteran larvae. Once ingested by the insect, the dissolution of the crystal allows the protoxin to be released. The toxin is then activated by the insect gut juice, and it begins to break down the gut.

<span class="mw-page-title-main">Cry6Aa</span>

Cry6Aa is a toxic crystal protein generated by the bacterial family Bacillus thuringiensis during sporulation. This protein is a member of the alpha pore forming toxins family, which gives it insecticidal qualities advantageous in agricultural pest control. Each Cry protein has some level of target specificity; Cry6Aa has specific toxic action against coleopteran insects and nematodes. The corresponding B. thuringiensis gene, cry6aa, is located on bacterial plasmids. Along with several other Cry protein genes, cry6aa can be genetically recombined in Bt corn and Bt cotton so the plants produce specific toxins. Insects are developing resistance to the most commonly inserted proteins like Cry1Ac. Since Cry6Aa proteins function differently than other Cry proteins, they are combined with other proteins to decrease the development of pest resistance. Recent studies suggest this protein functions better in combination with other virulence factors such as other Cry proteins and metalloproteinases.>

Cry34Ab1 is one member of a binary Bacillus thuringiensis (Bt) crystal protein set isolated from Bt strain PS149B1. The protein exists as a 14 kDa aegerolysin that, in presence of Cry35Ab1, exhibits insecticidal activity towards Western Corn Rootworm. The protein has been transformed into maize plants under the commercialized events 4114 (DP-ØØ4114-3) by Pioneer Hi-Bred and 59122 (DAS-59122-7) by Dow AgroSciences. These events have, in turn, been bred into multiple trait stacks in additional products.

References

  1. 1 2 3 PBS (2001), Pesticide resistance. Retrieved on September 15, 2007.
  2. Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. (2016-03-11). "Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs". Annual Review of Entomology . Annual Reviews. 61 (1): 43–62. doi:10.1146/annurev-ento-010715-023646. ISSN   0066-4170. PMID   26473315. S2CID   207747295.
  3. "Resistance Definition". Insecticide Resistance Action Committee. 2007.
  4. Grapes at Missouri State University (MSU) How pesticide resistance develops Archived 2007-08-17 at the Wayback Machine . Excerpt from: Larry Gut, Annemiek Schilder, Rufus Isaacs and Patricia McManus. Fruit Crop Ecology and Management, Chapter 2: "Managing the Community of Pests and Beneficials." Retrieved on September 15, 2007.
  5. 1 2 3 Miller GT (2004), Sustaining the Earth, 6th edition. Thompson Learning, Inc. Pacific Grove, California. Chapter 9, Pages 211-216.
  6. Levine, E; Oloumi-Sadeghi, H; Fisher, JR (1992). "Discovery of multiyear diapause in Illinois and South Dakota Northern corn rootworm (Coleoptera: Cerambycidae) eggs and incidence of the prolonged diapause trait in Illinois". Journal of Economic Entomology. 85: 262–267. doi:10.1093/jee/85.1.262.
  7. 1 2 3 4 5 6 7 8 Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID   24052282.
  8. Guedes, R. N. C.; Roditakis, E.; Campos, M. R.; Haddi, K.; Bielza, P.; Siqueira, H. A. A.; Tsagkarakou, A.; Vontas, J.; Nauen, R. (2019-01-31). "Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook". Journal of Pest Science . Springer. 92 (4): 1329–1342. doi: 10.1007/s10340-019-01086-9 . ISSN   1612-4758. S2CID   59524736.
  9. Ferro, DN (1993). "Potential for resistance to Bacillus thuringiensis: Colorado potato beetle (Coleoptera: Chrysomelidae) – a model system". American Entomologist. 39: 38–44. doi:10.1093/ae/39.1.38.
  10. Bishop, B. A.; Grafius, E. J. (1996). "Insecticide resistance in the Colorado potato beetle". In Jolivet, Pierre H. A.; Cox, M. L. (eds.). Chrysomelidae biology. Vol. 1. New York, N.Y: SPB Academic Publishing. ISBN   978-9051031232. OCLC   36335993. ISBN   90-5103-123-8. AGRIS id US201300312340.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
  12. Enserink, Martin; Hines, Pamela J.; Vignieri, Sacha N.; Wigginton, Nicholas S.; Yeston, Jake S. (2013-08-16). "The Pesticide Paradox". Science. 341 (6147): 728–729. doi:10.1126/science.341.6147.728. ISSN   0036-8075. PMID   23950523.
  13. Hedlund, John; Longo, Stefano B.; York, Richard (2019-09-08). "Agriculture, Pesticide Use, and Economic Development: A Global Examination (1990–2014)". Rural Sociology. 85 (2): 519–544. doi:10.1111/ruso.12303. ISSN   0036-0112.
  14. 1 2 Jørgensen, Peter Søgaard; Folke, Carl; Carroll, Scott P. (2019-11-02). "Evolution in the Anthropocene: Informing Governance and Policy". Annual Review of Ecology, Evolution, and Systematics . Annual Reviews. 50 (1): 527–546. doi:10.1146/annurev-ecolsys-110218-024621. ISSN   1543-592X. S2CID   202846760.
  15. Doris Stanley (January 1996), Natural product outdoes malathion - alternative pest control strategy. Retrieved on September 15, 2007.
  16. Mouchet, Jean (1988). "Agriculture and Vector Resistance". International Journal of Tropical Insect Science . Cambridge University Press (CUP). 9 (3): 297–302. doi:10.1017/s1742758400006238. ISSN   1742-7584. S2CID   85650599.
  17. Roberts, Donald R.; Manguin, S; Mouchet, J (2000). "DDT house spraying and re-emerging malaria". The Lancet . Elsevier. 356 (9226): 330–332. doi:10.1016/s0140-6736(00)02516-2. ISSN   0140-6736. PMID   11071203. S2CID   19359748.
  18. Andrew Leonard (August 27, 2008). "Monsanto's bane: The evil pigweed". Salon .
  19. "Palmer Amaranth (Pigweed)". Take Action Pesticide Resistance Management . 2020-09-21. Retrieved 2021-09-22.
  20. Alyokhin, A.; Baker, M.; Mota-Sanchez, D.; Dively, G.; Grafius, E. (2008). "Colorado potato beetle resistance to insecticides". American Journal of Potato Research. 85 (6): 395–413. doi:10.1007/s12230-008-9052-0. S2CID   41206911.
  21. Janmaat, Alida F.; Myers, Judith (2003-11-07). "Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni". Proceedings of the Royal Society of London B: Biological Sciences. 270 (1530): 2263–2270. doi:10.1098/rspb.2003.2497. ISSN   0962-8452. PMC   1691497 . PMID   14613613.
  22. Soberon, Mario; Gao, Yulin; Bravo, Alejandra (2015). Soberón, M.; Gao, A.; Bravo, A. (eds.). Bt Resistance : Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins. CABI biotechnology series 4. CABI (Centre for Agriculture and Bioscience International). pp. 88–89/xii–213. doi:10.1079/9781780644370.0000. ISBN   9781780644370.
    This book cites this research.
    Kain, Wendy C.; Zhao, Jian-Zhou; Janmaat, Alida F.; Myers, Judith; Shelton, Anthony M.; Wang, Ping (2004). "Inheritance of Resistance to Bacillus thuringiensis Cry1Ac Toxin in a Greenhouse-Derived Strain of Cabbage Looper (Lepidoptera: Noctuidae)". Journal of Economic Entomology . 97 (6): 2073–2078. doi:10.1603/0022-0493-97.6.2073. PMID   15666767. S2CID   13920351.[ permanent dead link ]
  23. Endepols, Stefan; Buckle, Alan; Eason, Charlie; Pelz, Hans-Joachim; Meyer, Adrian; Berny, Philippe; Baert, Kristof; Prescott, Colin (September 2015). "RRAC guidelines on Anticoagulant Rodenticide Resistance Management" (PDF). RRAC . Brussels: CropLife. pp. 1–29.
  24. Roberts, Donald R.; Andre, Richard G. (1994-01-01). "Insecticide Resistance Issues in Vector-Borne Disease Control". The American Journal of Tropical Medicine and Hygiene . American Society of Tropical Medicine and Hygiene. 50 (6 Supplemental): 21–34. doi:10.4269/ajtmh.1994.50.21. ISSN   0002-9637. PMID   8024082.
  25. Berenbaum, May (1995). Bugs In The System: Insects And Their Impact On Human Affairs. Reading, Mass: Addison-Wesley. pp. xvi+377. ISBN   978-0-201-62499-1. OCLC   30157272.
  26. Yu, Simon J. (2008). The Toxicology and Biochemistry of Insecticides. Boca Raton: CRC Press/Taylor & Francis. p. 296. ISBN   978-1-4200-5975-5. OCLC   190620703. ISBN   1420059750.
  27. David, Mariana Rocha; Garcia, Gabriela Azambuja; Valle, Denise; Maciel-De-Freitas, Rafael (2018). "Insecticide Resistance and Fitness: The Case of Four Aedes aegypti Populations from Different Brazilian Regions". BioMed Research International. 2018: 1–12. doi: 10.1155/2018/6257860 . PMC   6198578 . PMID   30402487.
  28. Stenersen, J. 2004. Chemical Pesticides: Mode of Action and Toxicology. CRC Press, Boca Raton.
  29. Marino M. (August 2007), Blowies inspire pesticide attack: Blowfly maggots and dog-wash play starring roles in the story of a remarkable environmental clean-up technology Archived 2008-02-18 at the Wayback Machine . Solve, Issue 12. CSIRO Enquiries. Retrieved on 2007-10-03.
  30. Dhole, Sumit; Lloyd, Alun L.; Gould, Fred (2020-11-02). "Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex". Annual Review of Ecology, Evolution, and Systematics . Annual Reviews. 51 (1): 505–531. arXiv: 2005.01838 . doi:10.1146/annurev-ecolsys-031120-101013. ISSN   1543-592X. PMC   8340601 . PMID   34366722.
  31. Jakobson, Christopher M.; Jarosz, Daniel F. (2020-11-23). "What Has a Century of Quantitative Genetics Taught Us About Nature's Genetic Tool Kit?". Annual Review of Genetics . Annual Reviews. 54 (1): 439–464. doi:10.1146/annurev-genet-021920-102037. ISSN   0066-4197. PMID   32897739. S2CID   221570237.
  32. Waddington, Donald V; Carrow, Robert N; Shearman, Robert C (1992). Turfgrass. Madison, Wisconsin, United States: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. p. 682. ISBN   978-0-89118-108-8. OCLC   25048047. [It] is necessary to determine if the cause of the problem is actually resistance, an application problem, or perhaps enhanced microbial degradation of the pesticide.
  33. 1 2 Corbel, Vincent; Achee, Nicole L.; Chandre, Fabrice; Coulibaly, Mamadou B.; Dusfour, Isabelle; Fonseca, Dina M.; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J.; Moyes, Catherine; Ng, Lee Ching; Pinto, João; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Weetman, David; Fouque, Florence; Velayudhan, Raman; David, Jean-Philippe (2016-12-01). Barrera, Roberto (ed.). "Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN)". PLOS Neglected Tropical Diseases . Public Library of Science (PLoS). 10 (12): e0005054. doi: 10.1371/journal.pntd.0005054 . ISSN   1935-2735. PMC   5131894 . PMID   27906961.
  34. 1 2 "WIN network / IRD". WIN network / Research Institute for Development (in French). 2020-12-02. Retrieved 2021-01-03.
  35. 1 2 "Worldwide Insecticide Resistance Network (WIN)". MIVEGEC (in French). Retrieved 2021-01-03.
  36. 1 2 "New global network tracking insecticide resistance on vectors of arboviruses". World Health Organization . 2016-03-30. Retrieved 2021-01-03.
  37. 1 2 Chris Boerboom (March 2001), Glyphosate resistant weeds. Weed Science - University of Wisconsin. Retrieved on September 15, 2007
  38. Onstad, D.W. 2008. Insect Resistance Management. Elsevier: Amsterdam.
  39. Graeme Murphy (December 1, 2005), Resistance Management - Pesticide Rotation Archived 2007-10-13 at the Wayback Machine . Ontario Ministry of Agriculture, Food and Rural Affairs. Retrieved on September 15, 2007
  40. FRAC (Fungicide Resistance Action Committee) (March 2021). "FRAC Code List ©*2021: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groups on product labels)" (PDF).
  41. Weed Science Society of America. "Summary of Herbicide Mechanism of Action According to the Weed Science Society of America (WSSA)" (PDF).
  42. Heap, Ian. "HERBICIDE MODE OF ACTION TABLE".
  43. "HRAC MOA 2020 Revision Description and Master Herbicide List". Herbicide Resistance Action Committee . 2020-09-14. Retrieved 2021-04-01.
  44. "Interactive MoA Classification". Insecticide Resistance Action Committee . 2020-09-16. Retrieved 2021-04-01.
  45. United States Environmental Protection Agency. "PESTICIDE REGISTRATION NOTICE (PRN) 2017-1 NOTICE TO MANUFACTURERS, PRODUCERS, PRODUCERS AND REGISTRANTS OF PESTICIDE PRODUCTS AND DEVICES" (PDF).
  46. "Colorado Potato Beetle Damage and Life History". Archived from the original on 2011-06-06.
  47. Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Clifton, Eric H.; Dunbar, Mike W.; Hoffmann, Amanda M.; Ingber, David A.; Keweshan, Ryan S. (April 8, 2014). "Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize" (PDF). PNAS. 111 (14): 5141–5146. Bibcode:2014PNAS..111.5141G. doi: 10.1073/pnas.1317179111 . PMC   3986160 . PMID   24639498.
  48. Kaskey, Jack (June 11, 2014). "War on Cornfield Pest Sparks Clash Over Insecticide". Bloomberg News.

Further reading