Persistent organic pollutant

Last updated

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. [1] They are toxic and adversely affect human health and the environment around the world. [1] Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

Contents

The effect of POPs on human and environmental health was discussed, with intention to eliminate or severely restrict their production, by the international community at the Stockholm Convention on Persistent Organic Pollutants in 2001.

Most POPs are pesticides or insecticides, and some are also solvents, pharmaceuticals, and industrial chemicals. [1] Although some POPs arise naturally (e.g. from volcanoes), most are man-made. [2] The "dirty dozen" POPs identified by the Stockholm Convention include aldrin, chlordane, dieldrin, endrin, heptachlor, HCB, mirex, toxaphene, PCBs, DDT, dioxins, and polychlorinated dibenzofurans. However, there have since been many new POPs added (e.g. PFOS).

Consequences of persistence

POPs typically are halogenated organic compounds (see lists below) and as such exhibit high lipid solubility. For this reason, they bioaccumulate in fatty tissues. [3] [4] [5] [6] Halogenated compounds also exhibit great stability reflecting the nonreactivity of C-Cl bonds toward hydrolysis and photolytic degradation. The stability and lipophilicity of organic compounds often correlates with their halogen content, thus polyhalogenated organic compounds are of particular concern. [1] They exert their negative effects on the environment through two processes: long range transport, which allows them to travel far from their source, and bioaccumulation, which reconcentrates these chemical compounds to potentially dangerous levels. [7] Compounds that make up POPs are also classed as PBTs (persistent, bioaccumulative and toxic) or TOMPs (toxic organic micro pollutants). [8]

Long-range transport

POPs enter the gas phase under certain environmental temperatures and volatilize from soils, vegetation, and bodies of water into the atmosphere, resisting breakdown reactions in the air, to travel long distances before being re-deposited. [9] This results in accumulation of POPs in areas far from where they were used or emitted, specifically environments where POPs have never been introduced such as Antarctica, and the Arctic Circle. [10] POPs can be present as vapors in the atmosphere or bound to the surface of solid particles (aerosols). A determining factor for the long-range transport is the fraction of a POP that is adsorbed on aerosols. In adsorbed form it is – as opposed to the gas phase – protected from photo-oxidation, i.e. direct photolysis as well as oxidation by OH radicals or ozone. [11] [12]

POPs have low solubility in water but are easily captured by solid particles, and are soluble in organic fluids (oils, fats, and liquid fuels). POPs are not easily degraded in the environment due to their stability and low decomposition rates. Due to this capacity for long-range transport, POP environmental contamination is extensive, even in areas where POPs have never been used, and will remain in these environments years after restrictions implemented due to their resistance to degradation. [1] [13] [14]

Bioaccumulation

Bioaccumulation of POPs is typically associated with the compounds high lipid solubility and ability to accumulate in the fatty tissues of living organisms including human tissues for long periods of time. [13] [15] Persistent chemicals tend to have higher concentrations and are eliminated more slowly. Dietary accumulation or bioaccumulation is another hallmark characteristic of POPs, as POPs move up the food chain, they increase in concentration as they are processed and metabolized in certain tissues of organisms. The natural capacity for animals gastrointestinal tract to concentrate ingested chemicals, along with poorly metabolized and hydrophobic nature of POPs, makes such compounds highly susceptible to bioaccumulation. [16] Thus POPs not only persist in the environment, but also as they are taken in by animals they bioaccumulate, increasing their concentration and toxicity in the environment. [9] [17] This increase in concentration is called biomagnification, which is where organisms higher up in the food chain have a greater accumulation of POPs. [18] Bioaccumulation and long-range transport are the reason why POPs can accumulate in organisms like whales, even in remote areas like Antarctica. [19]

Stockholm Convention on Persistent Organic Pollutants

State parties to the Stockholm Convention on Persistent Organic Pollutants Map of Stockholm Convention on Persistent Organic Pollutants.svg
State parties to the Stockholm Convention on Persistent Organic Pollutants

The Stockholm Convention was adopted and put into practice by the United Nations Environment Programme (UNEP) on May 22, 2001. The UNEP decided that POP regulation needed to be addressed globally for the future. The purpose statement of the agreement is "to protect human health and the environment from persistent organic pollutants." As of 2024, there are 185 countries plus the European Union have ratified the Stockholm Convention. [20] The convention and its participants have recognized the potential human and environmental toxicity of POPs. They recognize that POPs have the potential for long-range transport and bioaccumulation and biomagnification. The convention seeks to study and then judge whether or not a number of chemicals that have been developed with advances in technology and science can be categorized as POPs. The initial meeting in 2001 made a preliminary list, termed the "dirty dozen", of chemicals that are classified as POPs. [21] As of 2024, the United States has signed the Stockholm Convention but has not ratified it. There are a handful of other countries that have not ratified the convention but most countries in the world have ratified the convention. [20]

Compounds on the Stockholm Convention list

In May 1995, the UNEP Governing Council investigated POPs. [22] Initially the Convention recognized only twelve POPs for their adverse effects on human health and the environment, placing a global ban on these particularly harmful and toxic compounds and requiring its parties to take measures to eliminate or reduce the release of POPs in the environment. [2] [21] [23]

  1. Aldrin , an insecticide used in soils to kill termites, grasshoppers, Western corn rootworm, and others, is also known to kill birds, fish, and humans. Humans are primarily exposed to aldrin through dairy products and animal meats.
  2. Chlordane , an insecticide used to control termites and on a range of agricultural crops, is known to be lethal in various species of birds, including mallard ducks, bobwhite quail, and pink shrimp; it is a chemical that remains in the soil with a reported half-life of one year. Chlordane has been postulated to affect the human immune system and is classified as a possible human carcinogen. Chlordane air pollution is believed the primary route of human exposure.
  3. Dieldrin , a pesticide used to control termites, textile pests, insect-borne diseases and insects living in agricultural soils. In soil and insects, aldrin can be oxidized, resulting in rapid conversion to dieldrin. Dieldrin's half-life is approximately five years. Dieldrin is highly toxic to fish and other aquatic animals, particularly frogs, whose embryos can develop spinal deformities after exposure to low levels. Dieldrin has been linked to Parkinson's disease, breast cancer, and classified as immunotoxic, neurotoxic, with endocrine disrupting capacity. Dieldrin residues have been found in air, water, soil, fish, birds, and mammals. Human exposure to dieldrin primarily derives from food.
  4. Endrin , an insecticide sprayed on the leaves of crops, and used to control rodents. Animals can metabolize endrin, so fatty tissue accumulation is not an issue, however the chemical has a long half-life in soil for up to 12 years. Endrin is highly toxic to aquatic animals and humans as a neurotoxin. Human exposure results primarily through food.
  5. Heptachlor , a pesticide primarily used to kill soil insects and termites, along with cotton insects, grasshoppers, other crop pests, and malaria-carrying mosquitoes. Heptachlor, even at very low doses has been associated with the decline of several wild bird populations – Canada geese and American kestrels. In laboratory tests have shown high-dose heptachlor as lethal, with adverse behavioral changes and reduced reproductive success at low-doses, and is classified as a possible human carcinogen. Human exposure primarily results from food.
  6. Hexachlorobenzene (HCB) was first introduced in 1945–59 to treat seeds because it can kill fungi on food crops. HCB-treated seed grain consumption is associated with photosensitive skin lesions, colic, debilitation, and a metabolic disorder called porphyria turcica, which can be lethal. Mothers who pass HCB to their infants through the placenta and breast milk had limited reproductive success including infant death. Human exposure is primarily from food.
  7. Mirex , an insecticide used against ants and termites or as a flame retardant in plastics, rubber, and electrical goods. Mirex is one of the most stable and persistent pesticides, with a half-life of up to 10 years. Mirex is toxic to several plant, fish and crustacean species, with suggested carcinogenic capacity in humans. Humans are exposed primarily through animal meat, fish, and wild game.
  8. Toxaphene , an insecticide used on cotton, cereal, grain, fruits, nuts, and vegetables, as well as for tick and mite control in livestock. Widespread toxaphene use in the US and chemical persistence, with a half-life of up to 12 years in soil, results in residual toxaphene in the environment. Toxaphene is highly toxic to fish, inducing dramatic weight loss and reduced egg viability. Human exposure primarily results from food. While human toxicity to direct toxaphene exposure is low, the compound is classified as a possible human carcinogen.
  9. Polychlorinated biphenyls (PCBs), used as heat exchange fluids, in electrical transformers, and capacitors, and as additives in paint, carbonless copy paper, and plastics. Persistence varies with degree of halogenation, an estimated half-life of 10 years. PCBs are toxic to fish at high doses, and associated with spawning failure at low doses. Human exposure occurs through food, and is associated with reproductive failure and immune suppression. Immediate effects of PCB exposure include pigmentation of nails and mucous membranes and swelling of the eyelids, along with fatigue, nausea, and vomiting. Effects are transgenerational, as the chemical can persist in a mother's body for up to 7 years, resulting in developmental delays and behavioral problems in her children. Food contamination has led to large scale PCB exposure.
  10. Dichlorodiphenyltrichloroethane (DDT) is probably the most infamous POP. It was widely used as insecticide during WWII to protect against malaria and typhus. After the war, DDT was used as an agricultural insecticide. In 1962, the American biologist Rachel Carson published Silent Spring , describing the impact of DDT spraying on the US environment and human health. DDT's persistence in the soil for up to 10–15 years after application has resulted in widespread and persistent DDT residues throughout the world including the arctic, even though it has been banned or severely restricted in most of the world. DDT is toxic to many organisms including birds where it is detrimental to reproduction due to eggshell thinning. DDT can be detected in foods from all over the world and food-borne DDT remains the greatest source of human exposure. Short-term acute effects of DDT on humans are limited, however long-term exposure has been associated with chronic health effects including increased risk of cancer and diabetes, reduced reproductive success, and neurological disease.
  11. Dioxins are unintentional by-products of high-temperature processes, such as incomplete combustion and pesticide production. Dioxins are typically emitted from the burning of hospital waste, municipal waste, and hazardous waste, along with automobile emissions, peat, coal, and wood. Dioxins have been associated with several adverse effects in humans, including immune and enzyme disorders, chloracne, and are classified as a possible human carcinogen. In laboratory studies of dioxin effects an increase in birth defects and stillbirths, and lethal exposure have been associated with the substances. Food, particularly from animals, is the principal source of human exposure to dioxins. Dioxins were present in Agent Orange, which was used by the United States in chemical warfare against Vietnam and caused devastating multi-generational effects in both Vietnamese and American civilians.
  12. Polychlorinated dibenzofurans are by-products of high-temperature processes, such as incomplete combustion after waste incineration or in automobiles, pesticide production, and polychlorinated biphenyl production. Structurally similar to dioxins, the two compounds share toxic effects. Furans persist in the environment and classified as possible human carcinogens. Human exposure to furans primarily results from food, particularly animal products.

New POPs on the Stockholm Convention list

Since 2001, this list has been expanded to include some polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants, and other compounds. Additions to the initial 2001 Stockholm Convention list are the following POPs: [24] [21]

Health effects

POP exposure may cause developmental defects, chronic illnesses, and death. Some are carcinogens per IARC, possibly including breast cancer. [1] Many POPs are capable of endocrine disruption within the reproductive system, the central nervous system, or the immune system. [26] People and animals are exposed to POPs mostly through their diet, occupationally, or while growing in the womb. [1] For humans not exposed to POPs through accidental or occupational means, over 90% of exposure comes from animal product foods due to bioaccumulation in fat tissues and bioaccumulate through the food chain. In general, POP serum levels increase with age and tend to be higher in females than males. [15]

Studies have investigated the correlation between low level exposure of POPs and various diseases. In order to assess disease risk due to POPs in a particular location, government agencies may produce a human health risk assessment which takes into account the pollutants' bioavailability and their dose-response relationships. [27]

Endocrine disruption

The majority of POPs are known to disrupt normal functioning of the endocrine system. Low level exposure to POPs during critical developmental periods of fetus, newborn and child can have a lasting effect throughout their lifespan. A 2002 study [28] summarizes data on endocrine disruption and health complications from exposure to POPs during critical developmental stages in an organism's lifespan. The study aimed to answer the question whether or not chronic, low level exposure to POPs can have a health impact on the endocrine system and development of organisms from different species. The study found that exposure of POPs during a critical developmental time frame can produce a permanent changes in the organisms path of development. Exposure of POPs during non-critical developmental time frames may not lead to detectable diseases and health complications later in their life. In wildlife, the critical development time frames are in utero, in ovo, and during reproductive periods. In humans, the critical development timeframe is during fetal development. [28]

Reproductive system

The same study in 2002 [28] with evidence of a link from POPs to endocrine disruption also linked low dose exposure of POPs to reproductive health effects. The study stated that POP exposure can lead to negative health effects especially in the male reproductive system, such as decreased sperm quality and quantity, altered sex ratio and early puberty onset. For females exposed to POPs, altered reproductive tissues and pregnancy outcomes as well as endometriosis have been reported. [2]

Gestational weight gain and newborn head circumference

A Greek study from 2014 investigated the link between maternal weight gain during pregnancy, their PCB-exposure level and PCB level in their newborn infants, their birth weight, gestational age, and head circumference. The lower the birth weight and head circumference of the infants was, the higher POP levels during prenatal development had been, but only if mothers had either excessive or inadequate weight gain during pregnancy. No correlation between POP exposure and gestational age was found. [29] A 2013 case-control study conducted 2009 in Indian mothers and their offspring showed prenatal exposure of two types of organochlorine pesticides (HCH, DDT and DDE) impaired the growth of the fetus, reduced the birth weight, length, head circumference and chest circumference. [30] [31]

Health effects of PFAS

Effects of exposure to PFASs on human health Effects of exposure to PFASs on human health.svg
Effects of exposure to PFASs on human health
Short-chain PFASs, such as perfluorohexanoic acid (PFHxA) and perfluorobutanesulfonic acid (PFBS), have been found to be highly toxic[ citation needed ], [35] despite claims to the contrary by the chemical industry. In many cases where long-chain PFAS were phased out, they were replaced with toxic short-chain PFAS. [36]

Additive and synergistic effects

Evaluation of the effects of POPs on health is very challenging in the laboratory setting. For example, for organisms exposed to a mixture of POPs, the effects are assumed to be additive. [37] Mixtures of POPs can in principle produce synergistic effects. With synergistic effects, the toxicity of each compound is enhanced (or depressed) by the presence of other compounds in the mixture. When put together, the effects can far exceed the approximated additive effects of the POP compound mixture. [7]

In urban areas and indoor environments

Traditionally it was thought that human exposure to POPs occurred primarily through food, however indoor pollution patterns that characterize certain POPs have challenged this notion. Recent studies of indoor dust and air have implicated indoor environments as a major sources for human exposure via inhalation and ingestion. [38] Furthermore, significant indoor POP pollution must be a major route of human POP exposure, considering the modern trend in spending larger proportions of life indoors. Several studies have shown that indoor (air and dust) POP levels to exceed outdoor (air and soil) POP concentrations. [37]

In rainwater

In 2022, levels of at least four perfluoroalkyl acids (PFAAs) in rain water worldwide greatly exceeded the EPA's lifetime drinking water health advisories as well as comparable Danish, Dutch, and European Union safety standards, leading to the conclusion that "the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded". [39]

It had been thought that PFAAs would eventually end up in the oceans, where they would be diluted over decades, but a field study published in 2021 by researchers at Stockholm University found that they are often transferred from water to air when waves reach land, are a significant source of air pollution, and eventually get into rain. The researchers concluded that pollution may impact large areas. [40] [41] [42]

In 2024, a worldwide study of 45,000 ground water samples found that 31% of samples contained levels of PFAS that were harmful to human health; these samples were taken from areas not near any obvious source of contamination. [43]

Soil is also contaminated and the chemicals have been found in remote areas such as Antarctica. [44] Soil contamination can result in higher levels of PFAs found in foods such as white rice, coffee, and animals reared on contaminated ground. [45] [46] [47]

Control and removal in the environment

Current studies aimed at minimizing POPs in the environment are investigating their behavior in photocatalytic oxidation reactions. [48] POPs that are found in humans and in aquatic environments the most are the main subjects of these experiments. Aromatic and aliphatic degradation products have been identified in these reactions. Photochemical degradation is negligible compared to photocatalytic degradation. [2] A method of removal of POPs from marine environments that has been explored is adsorption. It occurs when an absorbable solute comes into contact with a solid with a porous surface structure. This technique was investigated by Mohamed Nageeb Rashed of Aswan University, Egypt. [49] Current efforts are more focused on banning the use and production of POPs worldwide rather than removal of POPs. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Acaricides, which kill mites and ticks, are not strictly insecticides, but are usually classified together with insecticides. The major use of Insecticides is agriculture, but they are also used in home and garden, industrial buildings, vector control and control of insect parasites of animals and humans. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

Chlordane, or chlordan, is an organochlorine compound that was used as a pesticide. It is a white solid. In the United States, chlordane was used for termite-treatment of approximately 30 million homes until it was banned in 1988. Chlordane was banned 10 years earlier for food crops like corn and citrus, and on lawns and domestic gardens.

<span class="mw-page-title-main">Lindane</span> Organochlorine chemical and an isomer of hexachlorocyclohexane

Lindane, also known as gamma-hexachlorocyclohexane (γ-HCH), gammaxene, Gammallin and benzene hexachloride (BHC), is an organochlorine chemical and an isomer of hexachlorocyclohexane that has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies.

<span class="mw-page-title-main">Endocrine disruptor</span> Chemicals that can interfere with endocrine or hormonal systems

Endocrine disruptors, sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds are chemicals that can interfere with endocrine systems. These disruptions can cause numerous adverse human health outcomes, including alterations in sperm quality and fertility; abnormalities in sex organs‚ endometriosis‚ early puberty‚ altered nervous system or immune function; certain cancers; respiratory problems; metabolic issues; diabetes, obesity, or cardiovascular problems; growth, neurological and learning disabilities, and more. Found in many household and industrial products, endocrine disruptors "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis ."

<span class="mw-page-title-main">Stockholm Convention on Persistent Organic Pollutants</span> International environmental treaty

Stockholm Convention on Persistent Organic Pollutants is an international environmental treaty, signed on 22 May 2001 in Stockholm and effective from 17 May 2004, that aims to eliminate or restrict the production and use of persistent organic pollutants (POPs).

Organochlorine chemistry is concerned with the properties of organochlorine compounds, or organochlorides, organic compounds containing at least one covalently bonded atom of chlorine. The chloroalkane class includes common examples. The wide structural variety and divergent chemical properties of organochlorides lead to a broad range of names, applications, and properties. Organochlorine compounds have wide use in many applications, though some are of profound environmental concern, with TCDD being one of the most notorious.

<span class="mw-page-title-main">Biomagnification</span> Process of progressive accumulation in food chain

Biomagnification, also known as bioamplification or biological magnification, is the increase in concentration of a substance, e.g a pesticide, in the tissues of organisms at successively higher levels in a food chain. This increase can occur as a result of:

<span class="mw-page-title-main">Dieldrin</span> Chemical compound

Dieldrin is an organochlorine compound originally produced in 1948 by J. Hyman & Co, Denver, as an insecticide. Dieldrin is closely related to aldrin, which reacts further to form dieldrin. Aldrin is not toxic to insects; it is oxidized in the insect to form dieldrin which is the active compound. Both dieldrin and aldrin are named after the Diels-Alder reaction which is used to form aldrin from a mixture of norbornadiene and hexachlorocyclopentadiene.

Xenoestrogens are a type of xenohormone that imitates estrogen. They can be either synthetic or natural chemical compounds. Synthetic xenoestrogens include some widely used industrial compounds, such as PCBs, BPA, and phthalates, which have estrogenic effects on a living organism even though they differ chemically from the estrogenic substances produced internally by the endocrine system of any organism. Natural xenoestrogens include phytoestrogens which are plant-derived xenoestrogens. Because the primary route of exposure to these compounds is by consumption of phytoestrogenic plants, they are sometimes called "dietary estrogens". Mycoestrogens, estrogenic substances from fungi, are another type of xenoestrogen that are also considered mycotoxins.

<span class="mw-page-title-main">Aldrin</span> Chemical compound

Aldrin is an organochlorine insecticide that was widely used until the 1990s, when it was banned in most countries. Aldrin is a member of the so-called "classic organochlorines" (COC) group of pesticides. COCs enjoyed a very sharp rise in popularity during and after World War II. Other noteworthy examples of COCs include dieldrin and DDT. After research showed that organochlorines can be highly toxic to the ecosystem through bioaccumulation, most were banned from use. Before the ban, it was heavily used as a pesticide to treat seed and soil. Aldrin and related "cyclodiene" pesticides became notorious as persistent organic pollutants.

<span class="mw-page-title-main">Endrin</span> Chemical compound

Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.

<span class="mw-page-title-main">Mirex</span> Chemical compound

Mirex is an organochloride that was commercialized as an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of cyclopentadiene. It was popularized to control fire ants but by virtue of its chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. The spread of the red imported fire ant was encouraged by the use of mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976. It is prohibited by the Stockholm Convention on Persistent Organic Pollutants.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Methoxychlor</span> Synthetic organochloride insecticide, now obsolete.

Methoxychlor is a synthetic organochloride insecticide, now obsolete. Tradenames for methoxychlor include Chemform, Maralate, Methoxo, Methoxcide, Metox, and Moxie.

<span class="mw-page-title-main">Polychlorinated dibenzofurans</span> Family of organic compounds

Polychlorinated dibenzofurans (PCDFs) are a family of organic compounds with one or several of the hydrogens in the dibenzofuran structure replaced by chlorines. For example, 2,3,7,8-tetrachlorodibenzofuran (TCDF) has chlorine atoms substituted for each of the hydrogens on the number 2, 3, 7, and 8 carbons. Polychlorinated dibenzofurans with chlorines at least in positions 2,3,7 and 8 are much more toxic than the parent compound dibenzofurane, with properties and chemical structures similar to polychlorinated dibenzodioxins. These groups together are often inaccurately called dioxins. They are known developmental toxicants, and suspected human carcinogens. PCDFs tend to co-occur with polychlorinated dibenzodioxins (PCDDs). PCDFs can be formed by pyrolysis or incineration at temperatures below 1200 °C of chlorine containing products, such as PVC, PCBs, and other organochlorides, or of non-chlorine containing products in the presence of chlorine donors. Dibenzofurans are known persistent organic pollutants (POP), classified among the dirty dozen in the Stockholm Convention on Persistent Organic Pollutants.

<span class="mw-page-title-main">Environmental toxicology</span> Multidisciplinary field of science

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

<span class="mw-page-title-main">Dioxins and dioxin-like compounds</span> Class of chemical compounds

Dioxins and dioxin-like compounds (DLCs) are a group of chemical compounds that are persistent organic pollutants (POPs) in the environment. They are mostly by-products of burning or various industrial processes or, in the case of dioxin-like PCBs and PBBs, unwanted minor components of intentionally produced mixtures.

Xenohormones or environmental hormones are compounds produced outside of the human body which exhibit endocrine hormone-like properties. They may be either of natural origin, such as phytoestrogens, which are derived from plants, or of synthetic origin. These compounds can cause endocrine disruption by multiple mechanisms including acting directly on hormone receptors, affecting the levels of natural hormones in the body, and by altering the expression of hormone receptors. The most commonly occurring xenohormones are xenoestrogens, which mimic the effects of estrogen. Other xenohormones include xenoandrogens and xenoprogesterones. Xenohormones are used for a variety of purposes including contraceptive & hormonal therapies, and agriculture. However, exposure to certain xenohormones early in childhood development can lead to a host of developmental issues including infertility, thyroid complications, and early onset of puberty. Exposure to others later in life has been linked to increased risks of testicular, prostate, ovarian, and uterine cancers.

Persistent, bioaccumulative and toxic substances (PBTs) are a class of compounds that have high resistance to degradation from abiotic and biotic factors, high mobility in the environment and high toxicity. Because of these factors PBTs have been observed to have a high order of bioaccumulation and biomagnification, very long retention times in various media, and widespread distribution across the globe. Most PBTs in the environment are either created through industry or are unintentional byproducts.

References

  1. 1 2 3 4 5 6 7 Ritter L; Solomon KR; Forget J; Stemeroff M; O'Leary C. "Persistent organic pollutants" (PDF). United Nations Environment Programme. Archived from the original (PDF) on 2007-09-26. Retrieved 2007-09-16.
  2. 1 2 3 4 El-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. (15 March 2010). "An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants". Talanta. 80 (5): 1587–1597. doi:10.1016/j.talanta.2009.09.055. PMID   20152382.
  3. Leonards, P. E. G.; Broekhuizen, S.; de Voogt, P.; Van Straalen, N. M.; Brinkman, U. A.Th.; Cofino, W. P.; van Hattum, B. (1998-11-01). "Studies of Bioaccumulation and Biotransformation of PCBs in Mustelids Based on Concentration and Congener Patterns in Predators and Preys". Archives of Environmental Contamination and Toxicology. 35 (4): 654–665. Bibcode:1998ArECT..35..654L. doi:10.1007/s002449900428. ISSN   1432-0703. PMID   9776784.
  4. Elliott, Kyle Hamish; Cesh, Lillian S.; Dooley, Jessica A.; Letcher, Robert J.; Elliott, John E. (2009-06-01). "PCBs and DDE, but not PBDEs, increase with trophic level and marine input in nestling bald eagles". Science of the Total Environment. Thematic Issue - BioMicroWorld Conference. 407 (12): 3867–3875. Bibcode:2009ScTEn.407.3867E. doi:10.1016/j.scitotenv.2009.02.027. ISSN   0048-9697. PMID   19339036.
  5. Gobas, Frank A.P.C.; Arnot, Jon A. (2010-05-14). "Food web bioaccumulation model for polychlorinated biphenyls in San Francisco Bay, California, USA". Environmental Toxicology and Chemistry. 29 (6): 1385–1395. doi:10.1002/etc.164. ISSN   0730-7268. PMID   20821583.
  6. Huang, Andrew C.; Nelson, Cait; Elliott, John E.; Guertin, Daniel A.; Ritland, Carol; Drouillard, Ken; Cheng, Kimberly M.; Schwantje, Helen M. (2018-07-01). "River otters (Lontra canadensis) "trapped" in a coastal environment contaminated with persistent organic pollutants: Demographic and physiological consequences". Environmental Pollution. 238: 306–316. Bibcode:2018EPoll.238..306H. doi: 10.1016/j.envpol.2018.03.035 . ISSN   0269-7491. PMID   29573713.
  7. 1 2 Walker, C.H., "Organic Pollutants: An Ecotoxicological Perspective" (2001).
  8. "Persistent, Bioaccumulative and Toxic Chemicals (PBTs)". Safer Chemicals Healthy Families. 2013-08-20. Retrieved 2022-02-01.
  9. 1 2 Kelly, Barry C.; Ikonomou, Michael G.; Blair, Joel D.; Morin, Anne E.; Gobas, Frank A. P. C. (13 July 2007). "Food Web–Specific Biomagnification of Persistent Organic Pollutants". Science. 317 (5835): 236–239. Bibcode:2007Sci...317..236K. doi:10.1126/science.1138275. PMID   17626882. S2CID   52835862.
  10. Beyer A.; Mackay D.; Matthies M.; Wania F.; Webster E. (2000). "Assessing Long-Range Transport Potential of Persistent Organic Pollutants". Environmental Science & Technology. 34 (4): 699–703. Bibcode:2000EnST...34..699B. doi:10.1021/es990207w.
  11. Koester, Carolyn J.; Hites, Ronald A. (March 1992). "Photodegradation of polychlorinated dioxins and dibenzofurans adsorbed to fly ash". Environmental Science & Technology. 26 (3): 502–507. Bibcode:1992EnST...26..502K. doi:10.1021/es00027a008. ISSN   0013-936X.
  12. Raff, Jonathan D.; Hites, Ronald A. (October 2007). "Deposition versus Photochemical Removal of PBDEs from Lake Superior Air". Environmental Science & Technology. 41 (19): 6725–6731. Bibcode:2007EnST...41.6725R. doi:10.1021/es070789e. ISSN   0013-936X. PMID   17969687.
  13. 1 2 Wania F., Mackay D. (1996). "Tracking the Distribution of Persistent Organic Pollutants". Environmental Science & Technology. 30 (9): 390A–396A. doi:10.1021/es962399q. PMID   21649427.
  14. Astoviza, Malena J. (15 April 2014). Evaluación de la distribución de contaminantes orgánicos persistentes (COPs) en aire en la zona de la cuenca del Plata mediante muestreadores pasivos artificiales (Tesis) (in Spanish). Universidad Nacional de La Plata. p. 160. doi: 10.35537/10915/34729 . Retrieved 16 April 2014.
  15. 1 2 3 Vallack, Harry W.; Bakker, Dick J.; Brandt, Ingvar; Broström-Lundén, Eva; Brouwer, Abraham; Bull, Keith R.; Gough, Clair; Guardans, Ramon; Holoubek, Ivan; Jansson, Bo; Koch, Rainer; Kuylenstierna, Johan; Lecloux, André; Mackay, Donald; McCutcheon, Patrick; Mocarelli, Paolo; Taalman, Rob D.F. (November 1998). "Controlling persistent organic pollutants–what next?". Environmental Toxicology and Pharmacology. 6 (3): 143–175. Bibcode:1998EnvTP...6..143V. doi:10.1016/S1382-6689(98)00036-2. PMID   21781891.
  16. Yu, George W.; Laseter, John; Mylander, Charles (2011). "Persistent Organic Pollutants in Serum and Several Different Fat Compartments in Humans". Journal of Environmental and Public Health. 2011: 417980. doi: 10.1155/2011/417980 . PMC   3103883 . PMID   21647350.
  17. Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek (November 2007). "Global fate of POPs: Current and future research directions". Environmental Pollution. 150 (1): 150–165. Bibcode:2007EPoll.150..150L. doi:10.1016/j.envpol.2007.06.051. PMID   17698265.
  18. US EPA, OITA (2014-04-02). "Persistent Organic Pollutants: A Global Issue, A Global Response". www.epa.gov. Retrieved 2022-02-01.
  19. Remili, Anaïs; Gallego, Pierre; Pinzone, Marianna; Castro, Cristina; Jauniaux, Thierry; Garigliany, Mutien-Marie; Malarvannan, Govindan; Covaci, Adrian; Das, Krishna (2020-12-01). "Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches". Environmental Pollution. 267: 115575. Bibcode:2020EPoll.26715575R. doi:10.1016/j.envpol.2020.115575. hdl: 10067/1744230151162165141 . ISSN   0269-7491. PMID   33254700. S2CID   225008427.
  20. 1 2 United Nations Treaty Collection: CHAPTER XXVII – ENVIRONMENT – 15. Stockholm Convention on Persistent Organic Pollutants
  21. 1 2 3 "STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS" (PDF). pp. 1–43. Retrieved 27 March 2014.
  22. "The Dirty Dozen". United Nations Industrial Development Organization. Archived from the original on 4 March 2016. Retrieved 27 March 2014.
  23. "Website of the Stockholm Convention".
  24. Depositary notification (PDF), Secretary-General of the United Nations, 26 August 2009, retrieved 2009-12-17.
  25. Vijgen, John; de Borst, Bram; Weber, Roland; Stobiecki, Tomasz; Forter, Martin (2019). "HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue". Environmental Pollution. 248: 696–705. Bibcode:2019EPoll.248..696V. doi:10.1016/j.envpol.2019.02.029. PMID   30849587.
  26. Cheek, A O; Vonier, P M; Oberdörster, E; Burow, B C; McLachlan, J A (1998-02-01). "Environmental signaling: a biological context for endocrine disruption". Environmental Health Perspectives. 106 (suppl 1): 5–10. doi:10.1289/ehp.106-1533276. ISSN   0091-6765. PMC   1533276 . PMID   9539003.
  27. Szabo DT, Loccisano AE (March 30, 2012). "POPs and Human Health Risk Assessment". In Schecter A (ed.). Dioxins and Health: Including Other Persistent Organic Pollutants and Endocrine Disruptors. Vol. 3rd. John Wiley & Sons. pp. 579–618. doi:10.1002/9781118184141.ch19. ISBN   9781118184141.
  28. 1 2 3 Damstra T (2002). "Potential Effects of Certain Persistent Organic Pollutants and Endocrine Disrupting Chemicals on Health of Children". Clinical Toxicology. 40 (4): 457–465. doi:10.1081/clt-120006748. PMID   12216998. S2CID   23550634.
  29. Vafeiadi, M; Vrijheid M; Fthenou E; Chalkiadaki G; Rantakokko P; Kiviranta H; Kyrtopoulos SA; Chatzi L; Kogevinas M (2014). "Persistent organic pollutants exposure during pregnancy, maternal gestational weight gain, and birth outcomes in the mother-child cohort in Crete, Greece (RHEA study)". Environ. Int. 64: 116–123. Bibcode:2014EnInt..64..116V. doi: 10.1016/j.envint.2013.12.015 . PMID   24389008.
  30. Dewan, Jain V; Gupta P; Banerjee BD. (February 2013). "Organochlorine pesticide residues in maternal blood, cord blood, placenta, and breastmilk and their relation to birth size". Chemosphere. 90 (5): 1704–1710. Bibcode:2013Chmsp..90.1704D. doi:10.1016/j.chemosphere.2012.09.083. PMID   23141556.
  31. Damstra T (2002). "Potential Effects of Certain Persistent Organic Pollutants and Endocrine Disrupting Chemicals on Health of Children". Clinical Toxicology. 40 (4): 457–465. doi:10.1081/clt-120006748. PMID   12216998. S2CID   23550634.
  32. "Emerging chemical risks in Europe — 'PFAS'". European Environment Agency . December 12, 2019.
  33. "Some Chemicals Used as Solvents and in Polymer Manufacture". IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 110. 2016. Archived from the original on March 24, 2020.
  34. Fenton SE, Reiner JL, Nakayama SF, Delinsky AD, Stanko JP, Hines EP, et al. (June 2009). "Analysis of PFOA in dosed CD-1 mice. Part 2. Disposition of PFOA in tissues and fluids from pregnant and lactating mice and their pups". Reproductive Toxicology. 27 (3–4): 365–372. Bibcode:2009RepTx..27..365F. doi:10.1016/j.reprotox.2009.02.012. PMC   3446208 . PMID   19429407.
  35. Zheng, Guomao; Eick, Stephanie M.; Salamova, Amina (2023). "Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People". Environmental Science & Technology. 57 (42): 15782–15793. Bibcode:2023EnST...5715782Z. doi:10.1021/acs.est.2c06715. PMC   10603771 . PMID   37818968.
  36. Brendel, Stephan; Fetter, Éva; Staude, Claudia; Vierke, Lena; Biegel-Engler, Annegret (27 February 2018). "Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH". Environmental Sciences Europe . 30 (1): 9. doi: 10.1186/s12302-018-0134-4 . PMC   5834591 . PMID   29527446.
  37. 1 2 ed. Harrad, S., "Persistent Organic Pollutants" (2010).
  38. Walker, C.H., "Organic Pollutants: An Ecotoxicological Perspective" (2001)
  39. Cousins IT, Johansson JH, Salter ME, Sha B, Scheringer M (August 2022). "Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS)". Environmental Science & Technology . 56 (16). American Chemical Society: 11172–11179. Bibcode:2022EnST...5611172C. doi:10.1021/acs.est.2c02765. PMC   9387091 . PMID   35916421.
  40. Perkins, Tom (18 December 2021). "PFAS 'forever chemicals' constantly cycle through ground, air and water, study finds". The Guardian .
  41. Sha B, Johansson JH, Tunved P, Bohlin-Nizzetto P, Cousins IT, Salter ME (January 2022). "Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring". Environmental Science & Technology . 56 (1). American Chemical Society: 228–238. Bibcode:2022EnST...56..228S. doi:10.1021/acs.est.1c04277. PMC   8733926 . PMID   34907779.
  42. Sha, Bo; Johansson, Jana H.; Salter, Matthew E.; Blichner, Sara M.; Cousins, Ian T. (2024). "Constraining global transport of perfluoroalkyl acids on sea spray aerosol using field measurements". Science Advances . 10 (14): eadl1026. Bibcode:2024SciA...10L1026S. doi:10.1126/sciadv.adl1026. PMC   10997204 . PMID   38579007.
  43. Erdenesanaa, Delger (April 8, 2024). "PFAS 'Forever Chemicals' Are Pervasive in Water Worldwide" . The New York Times .
  44. McGrath, Matt (August 2, 2022). "Pollution: 'Forever chemicals' in rainwater exceed safe levels". BBC News .
  45. Perkins, Tom (2022-03-22). "'I don't know how we'll survive': the farmers facing ruin in America's 'forever chemicals' crisis". The Guardian. ISSN   0261-3077 . Retrieved 2024-07-04.
  46. Wang, Yuting; Gui, Jiang; Howe, Caitlin G.; Emond, Jennifer A.; Criswell, Rachel L.; Gallagher, Lisa G.; Huset, Carin A.; Peterson, Lisa A.; Botelho, Julianne Cook; Calafat, Antonia M.; Christensen, Brock; Karagas, Margaret R.; Romano, Megan E. (July 2024). "Association of diet with per- and polyfluoroalkyl substances in plasma and human milk in the New Hampshire Birth Cohort Study". Science of the Total Environment. 933: 173157. Bibcode:2024ScTEn.93373157W. doi:10.1016/j.scitotenv.2024.173157. ISSN   0048-9697. PMC  11247473. PMID   38740209.
  47. Perkins, Tom (2024-07-04). "Coffee, eggs and white rice linked to higher levels of PFAS in human body". The Guardian. ISSN   0261-3077 . Retrieved 2024-07-04.
  48. Bertucci, Simone; Lova, Paola (May 2024). "Exploring Solar Energy Solutions for Per- and Polyfluoroalkyl Substances Degradation: Advancements and Future Directions in Photocatalytic Processes". Solar RRL. 8 (9). doi:10.1002/solr.202400116. ISSN   2367-198X.
  49. Rashed, M.N. Organic pollutants - Monitoring, risk and treatment. Intech. London (2013). Chapter 7 - Adsorption techniques for the removal of persistent organic pollutants from water and wastewater.