Air pollution

Last updated

Air pollution from a coking oven AlfedPalmersmokestacks.jpg
Air pollution from a coking oven
2016 Environmental Performance Index - darker colors indicate lower concentrations of fine particulate matter and nitrogen dioxide, as well as better indoor air quality. 2016 EPI Environmental Health Objective - Air Quality (26170609658).jpg
2016 Environmental Performance Index – darker colors indicate lower concentrations of fine particulate matter and nitrogen dioxide, as well as better indoor air quality.
Deaths from air pollution per 100,000 inhabitants (IHME, 2019) Air pollution death rates.png
Deaths from air pollution per 100,000 inhabitants (IHME, 2019)

Air pollution is the contamination of air due to the presence of substances called pollutants in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. [1] It is also the contamination of the indoor or outdoor environment either by chemical, physical, or biological agents that alters the natural features of the atmosphere. [1] There are many different types of air pollutants, such as gases (including ammonia, carbon monoxide, sulfur dioxide, nitrous oxides, methane and chlorofluorocarbons), particulates (both organic and inorganic) and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and crops, and may damage the natural environment (for example, climate change, ozone depletion or habitat degradation) or built environment (for example, acid rain). [2] Air pollution can be caused by both human activities [3] and natural phenomena. [4]

Contents

Air quality is closely related to the Earth's climate and ecosystems globally. Many of the contributors of air pollution are also sources of greenhouse emission i.e., burning of fossil fuel. [1]

Air pollution is a significant risk factor for a number of pollution-related diseases, including respiratory infections, heart disease, chronic obstructive pulmonary disease (COPD), stroke, and lung cancer. [5] Growing evidence suggests that air pollution exposure may be associated with reduced IQ scores, impaired cognition, [6] increased risk for psychiatric disorders such as depression [7] and detrimental perinatal health. [8] The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. [9] [10] Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, [11] [12] the degree of exposure, and the individual's health status and genetics. [13]

Air pollution is the largest environmental risk factor for disease and premature death [5] [14] and the fourth largest risk factor overall for human health. [15] Air pollution causes the premature deaths of around 7 million people worldwide each year, [5] or a global mean loss of life expectancy (LLE) of 2.9 years, [16] and there has been no significant change in the number of deaths caused by all forms of pollution since at least 2015. [14] [17] [18] Outdoor air pollution attributable to fossil fuel use alone causes ~3.61 million deaths annually, [19] making it one of the top contributors to human death. [5] Anthropogenic ozone causes around 470,000 premature deaths a year and fine particulate (PM2.5) pollution around another 2.1 million. [20] The scope of the air pollution crisis is large: In 2018, WHO estimated that "9 out of 10 people breathe air containing high levels of pollutants." [21] Although the health consequences are extensive, the way the problem is handled is considered largely haphazard [22] [21] [23] or neglected. [14]

The World Bank has estimated that welfare losses (premature deaths) and productivity losses (lost labour) caused by air pollution cost the world economy $5 trillion per year. [24] [25] [26] The costs of air pollution are generally an externality to the contemporary economic system and most human activity, although they are sometimes recovered through monitoring, legislation, and regulation. [27] [28]

Many different technologies and strategies are available for reducing air pollution. [29] Although a majority of countries have air pollution laws, according to UNEP, 43 percent of countries lack a legal definition of air pollution, 31 percent lack outdoor air quality standards, 49 percent restrict their definition to outdoor pollution only, and just 31 percent have laws for tackling pollution originating from outside their borders. [30] National air quality laws have often been highly effective, notably the 1956 Clean Air Act in Britain and the US Clean Air Act, introduced in 1963. [31] [32] Some of these efforts have been successful at the international level, such as the Montreal Protocol, [33] which reduced the release of harmful ozone depleting chemicals, and the 1985 Helsinki Protocol, [34] which reduced sulfur emissions, [35] while others, such as international action on climate change, [36] [37] [38] have been less successful.

Sources of air pollution

There are many different sources of air pollution. Some air pollutants (such as nitrogen oxides) originate mainly from human activities, [39] while some (notably radon gas) come mostly from natural sources. [40] However, many air pollutants (including dust and sulfur dioxide) come from a mixture of natural and human sources. [41]

Anthropogenic (human-made) sources

Demolition of the cooling towers of a power station, Athlone, Cape Town, South Africa, 2010 Athlone cooling towers demolition 2010-08-22.gif
Demolition of the cooling towers of a power station, Athlone, Cape Town, South Africa, 2010
Controlled burning of a field outside of Statesboro, Georgia, US, in preparation for spring planting BurningOffFieldsInTheEveningInSouthGeorgia.jpg
Controlled burning of a field outside of Statesboro, Georgia, US, in preparation for spring planting
Smoking of fish over an open fire in Ghana, 2018 Fish smoking in Ghana.jpg
Smoking of fish over an open fire in Ghana, 2018
Burning of joss paper in a Chinese temple in Hong Kong Joss paper burning 2024.jpg
Burning of joss paper in a Chinese temple in Hong Kong

There are also sources from processes other than combustion:

Mean acidifying emissions (air pollution) of different foods per 100g of protein [82]
Food TypesAcidifying Emissions (g SO2eq per 100g protein)
Beef
343.6
Cheese
165.5
Pork
142.7
Lamb and mutton
139.0
Farmed crustaceans
133.1
Poultry
102.4
Farmed fish
65.9
Eggs
53.7
Groundnuts
22.6
Peas
8.5
Tofu
6.7

Natural sources

Dust storm approaching Stratford, Texas, in 1935 Dust storm approaching Stratford, Texas.jpg
Dust storm approaching Stratford, Texas, in 1935

Emission factors

Beijing air in 2005 after rain (left) and a smoggy day (right) Beijing smog comparison August 2005.png
Beijing air in 2005 after rain (left) and a smoggy day (right)

Air pollutant emission factors are reported representative values that aim to link the quantity of a pollutant released into the ambient air to an activity connected with that pollutant's release. [2] [87] [88] [89] The weight of the pollutant divided by a unit weight, volume, distance, or time of the activity generating the pollutant is how these factors are commonly stated (e.g., kilograms of particulate emitted per tonne of coal burned). These criteria make estimating emissions from diverse sources of pollution easier. Most of the time, these components are just averages of all available data of acceptable quality, and they are thought to be typical of long-term averages.

The Stockholm Convention on Persistent Organic Pollutants identified pesticides and other persistent organic pollutants of concern. These include dioxins and furans which are unintentionally created by combustion of organics, like open burning of plastics, and are endocrine disruptors and mutagens.

E-waste processing in Agbogbloshie, Ghana, using open-burning of electronics to access valuable metals like copper. Open burning of plastics is common in many parts of the world without the capacity for processing. Especially without proper protections, heavy metals and other contaminates can seep into the soil, and create water pollution and air pollution. Agbogbloshie, Ghana 2019.jpg
E-waste processing in Agbogbloshie, Ghana, using open-burning of electronics to access valuable metals like copper. Open burning of plastics is common in many parts of the world without the capacity for processing. Especially without proper protections, heavy metals and other contaminates can seep into the soil, and create water pollution and air pollution.

The United States Environmental Protection Agency has published a compilation of air pollutant emission factors for a wide range of industrial sources. [90] The United Kingdom, Australia, Canada, and many other countries have published similar compilations, as well as the European Environment Agency. [91] [92] [93] [94]

Pollutants

Schematic drawing, causes and effects of air pollution: (1) greenhouse effect, (2) particulate contamination, (3) increased UV radiation, (4) acid rain, (5) increased ground-level ozone concentration, (6) increased levels of nitrogen oxides Air Pollution-Causes&Effects.svg
Schematic drawing, causes and effects of air pollution: (1) greenhouse effect, (2) particulate contamination, (3) increased UV radiation, (4) acid rain, (5) increased ground-level ozone concentration, (6) increased levels of nitrogen oxides

An air pollutant is a material in the air that can have many effects on humans and the ecosystem. [95] The substance can be solid particles, liquid droplets, or gases, and often takes the form of an aerosol (solid particles or liquid droplets dispersed and carried by a gas). [96] A pollutant can be of natural origin or man-made. Pollutants are classified as primary or secondary. Primary pollutants are usually produced by processes such as ash from a volcanic eruption.

Other examples include carbon monoxide gas from motor vehicle exhausts or sulfur dioxide released from factories. Secondary pollutants are not emitted directly. Rather, they form in the air when primary pollutants react or interact. Ground level ozone is a prominent example of a secondary pollutant. Some pollutants may be both primary and secondary: they are both emitted directly and formed from other primary pollutants.

Primary pollutants

Pollutants emitted into the atmosphere by human activity include:

Secondary pollutants

Secondary pollutants include:

Other pollutants

There are many other chemicals classed as hazardous air pollutants. Some of these are regulated in the USA under the Clean Air Act and in Europe under numerous directives (including the Air "Framework" Directive, 96/62/EC, on ambient air quality assessment and management, Directive 98/24/EC, on risks related to chemical agents at work, and Directive 2004/107/EC covering heavy metals and polycyclic aromatic hydrocarbons in ambient air). [128] [129]

To display all pages, subcategories and images click on the "►":

Exposure

The risk of air pollution is determined by the pollutant's hazard and the amount of exposure to that pollutant. Air pollution exposure can be measured for a person, a group, such as a neighborhood or a country's children, or an entire population. For example, one would want to determine a geographic area's exposure to a dangerous air pollution, taking into account the various microenvironments and age groups. This can be calculated [130] as an inhalation exposure. This would account for daily exposure in various settings, e.g. different indoor micro-environments and outdoor locations. The exposure needs to include different ages and other demographic groups, especially infants, children, pregnant women, and other sensitive subpopulations. [130]

For each specific time that the subgroup is in the setting and engaged in particular activities, the exposure to an air pollutant must integrate the concentrations of the air pollutant with regard to the time spent in each setting and the respective inhalation rates for each subgroup, playing, cooking, reading, working, spending time in traffic, etc. A little child's inhaling rate, for example, will be lower than that of an adult. A young person engaging in strenuous exercise will have a faster rate of breathing than a child engaged in sedentary activity. The daily exposure must therefore include the amount of time spent in each micro-environmental setting as well as the kind of activities performed there. The air pollutant concentration in each microactivity/microenvironmental setting is summed to indicate the exposure. [130]

For some pollutants such as black carbon, traffic related exposures may dominate total exposure despite short exposure times since high concentrations coincide with proximity to major roads or participation in (motorized) traffic. [131] A large portion of total daily exposure occurs as short peaks of high concentrations, but it remains unclear how to define peaks and determine their frequency and health impact. [132]

In 2021, the WHO halved its recommended guideline limit for tiny particles from burning fossil fuels. The new limit for nitrogen dioxide (NO2) is 75% lower. [133] Growing evidence that air pollution—even when experienced at very low levels—hurts human health, led the WHO to revise its guideline (from 10 μg/m3 to 5 μg/m3) for what it considers a safe level of exposure of particulate pollution, bringing most of the world—97.3 percent of the global population—into the unsafe zone. [134]

Indoor air quality

The share of total deaths from indoor air pollution, 2017 Share of deaths from indoor air pollution, OWID.svg
The share of total deaths from indoor air pollution, 2017
Air quality monitoring, New Delhi, India New Delhi Met Office, India 02.jpg
Air quality monitoring, New Delhi, India

A lack of ventilation indoors concentrates air pollution where people often spend the majority of their time. Indoor air pollution can pose a significant health risk. According to EPA reports, the concentrations of many air pollutants can be two to five times higher in indoor air than in outdoor air. Indoor air pollutants can be up to 100 times higher in some cases than they are inside. People can spend up to 90% of their time indoors, according to the American Lung Association; the US Consumer Product Safety Commission (CPSC) 2012; and the US Environmental Protection Agency 2012a. [135]

Indoor contaminants that can cause pollution include asbestos, biologic agents, building materials, radon, tobacco smoke, and wood stoves, gas ranges, or other heating systems. [135]

Radon (Rn) gas, a carcinogen, is exuded from the Earth in certain locations and trapped inside houses. Building materials including carpeting and plywood emit formaldehyde (H-CHO) gas. Paint and solvents give off volatile organic compounds (VOCs) as they dry. Lead paint can degenerate into dust and be inhaled. [136] [137]

Intentional air pollution is introduced with the use of air fresheners, incense, and other scented items. Controlled wood fires in cook stoves and fireplaces can add significant amounts of harmful smoke particulates into the air, inside and out. [136] [137] Indoor pollution fatalities may be caused by using pesticides and other chemical sprays indoors without proper ventilation. Also the kitchen in a modern produce harmful particles and gases, with equipment like toasters being one of the worst sources. [138]

Carbon monoxide poisoning and fatalities are often caused by faulty vents and chimneys, or by the burning of charcoal indoors or in a confined space, such as a tent. [139] Chronic carbon monoxide poisoning can result even from poorly-adjusted pilot lights. Traps are built into all domestic plumbing to keep sewer gas and hydrogen sulfide, out of interiors. Clothing emits tetrachloroethylene, or other dry cleaning fluids, for days after dry cleaning.

Though its use has now been banned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. Asbestosis is a chronic inflammatory medical condition affecting the tissue of the lungs. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Those with asbestosis have severe dyspnea (shortness of breath) and are at an increased risk regarding several different types of lung cancer. As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the World Health Organization, [140] these may be defined as asbestosis, lung cancer, and peritoneal mesothelioma (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).

Biological sources of air pollution are also found indoors, as gases and airborne particulates. Pets produce dander, people produce dust from minute skin flakes and decomposed hair, dust mites in bedding, carpeting and furniture produce enzymes and micrometre-sized fecal droppings, inhabitants emit methane, mold forms on walls and generates mycotoxins and spores, air conditioning systems can incubate Legionnaires' disease and mold, and houseplants, soil and surrounding gardens can produce pollen, dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.

Health effects

Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs but principally affect the body's respiratory system and the cardiovascular system. Afflictions include minor to chronic upper respiratory irritation such as difficulty in breathing, wheezing, coughing, asthma [141] and heart disease, lung cancer, stroke, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks.

Short and long term exposures have been linked with premature mortality and reduced life expectancy [142] and can result in increased medication use, increased doctor or emergency department visits, more hospital admissions and premature death. [130] [ better source needed ] Diseases that develop from persistent exposure to air pollution are environmental health diseases, which develop when a health environment is not maintained. [143]

Even at levels lower than those considered safe by United States regulators, exposure to three components of air pollution, fine particulate matter, nitrogen dioxide and ozone, correlates with cardiac and respiratory illness. [144] Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, and the individual's health status and genetics. [130] The most common sources of air pollution include particulates and ozone (often from burning fossil fuels), [145] nitrogen dioxide, and sulfur dioxide. Children aged less than five years who live in developing countries are the most vulnerable population to death attributable to indoor and outdoor air pollution. [146]

Under the Clean Air Act, U.S. EPA sets limits on certain air pollutants, including setting limits on how much can be in the air anywhere in the United States. [147] Mixed exposure to both carbon black and ozone could result in significantly greater health affects. [148]

Mortality

Estimates of the death toll from air pollution vary across publications. How-many-people-die-from-air-pollution-1-1.png
Estimates of the death toll from air pollution vary across publications.
2021 Death rates, by energy source.svg
Deaths caused by accidents and air pollution from fossil fuel use in power plants exceed those caused by production of renewable energy. [149]
Air-pollution-deaths-country (OWID 0012).png
Estimated annual number of deaths attributed to air pollution in 2019. This includes three categories of air pollution: indoor household, outdoor particulate matter and ozone.

Estimates of deaths toll due to air pollution vary. [150] In 2014 the World Health Organization estimated that every year air pollution causes the premature death of 7 million people worldwide, [5] 1 in 8 deaths worldwide. [151] A study published in 2019 indicated that in 2015 the number may be closer to 8.8 million, with 5.5 million of these premature deaths due to air pollution from anthropogenic sources. [152] [153] A 2022 review concluded that in 2019 air pollution was responsible for approximately 9 million premature deaths. It concluded that since 2015 little real progress against pollution has been made. [14] [154] Causes of deaths include strokes, heart disease, COPD, lung cancer, and lung infections. [5] Children are particularly at risk. [155]

In 2021, the WHO reported that outdoor air pollution was estimated to cause 4.2 million premature deaths worldwide in 2019. [156]

The global mean loss of life expectancy (LLE; similar to YPLL) from air pollution in 2015 was 2.9 years, substantially more than, for example, 0.3 years from all forms of direct violence. [16] Communities with persons that live beyond 85 years have low ambient air pollution, suggesting a link between air pollution levels and longevity. [157]

Primary mechanisms

The WHO estimates that in 2016, ~58% of outdoor air pollution-related premature deaths were due to ischaemic heart disease and stroke. [156] The mechanisms linking air pollution to increased cardiovascular mortality are uncertain, but probably include pulmonary and systemic inflammation. [158]

By region

India and China have the highest death rate due to air pollution. [159] [160] India also has more deaths from asthma than any other nation according to the World Health Organization. In 2019, 1.6 million deaths in India were caused by air pollution. [161] In 2013, air pollution was estimated to kill 500,000 people in China each year. [162] In 2012, 2.48% of China's total air pollution emissions were caused by exports due to US demand, causing an additional 27,963 deaths across 30 provinces. [163]

Annual premature European deaths caused by air pollution are estimated at 430,000 [164] to 800,000. [153] An important cause of these deaths is nitrogen dioxide and other nitrogen oxides (NOx) emitted by road vehicles. [164] Across the European Union, air pollution is estimated to reduce life expectancy by almost nine months. [165] In a 2015 consultation document the UK government disclosed that nitrogen dioxide is responsible for 23,500 premature UK deaths per annum. [166] There is a positive correlation between pneumonia-related deaths and air pollution from motor vehicle emissions in England. [167]

Eliminating energy-related fossil fuel emissions in the United States would prevent 46,900–59,400 premature deaths each year and provide $537–$678 billion in benefits from avoided PM2.5-related illness and death. [168]

A study published in 2023 in Science focused on sulfur dioxide emissions by coal power plants (coal PM2.5) and concluded that "exposure to coal PM2.5 was associated with 2.1 times greater mortality risk than exposure to PM2.5 from all sources." [169] From 1999 to 2020, a total of 460,000 deaths in the US were attributed to coal PM2.5. [169]

Air pollution deaths by nation due to fossil fuels Pollution-deaths-from-fossil-fuels (OWID 0831).png
Air pollution deaths by nation due to fossil fuels

Major causes

A comparison of footprint-based and transboundary pollution-based relationships among G20 nations for the number of PM2.5-related premature deaths Comparison of footprint-based and transboundary pollution-based relationships among G20 nations for the number of PM2.5-related premature deaths.webp
A comparison of footprint-based and transboundary pollution-based relationships among G20 nations for the number of PM2.5-related premature deaths

The largest cause of air pollution is fossil fuel combustion [171]  – mostly the production and use of cars, electricity production, and heating. [172] There are estimated 4.5 million annual premature deaths worldwide due to pollutants released by high-emission power stations and vehicle exhausts. [173]

Diesel exhaust (DE) is a major contributor to combustion-derived particulate matter air pollution. In several human experimental studies, using a well-validated exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation. [174] [175]

A study concluded that PM2.5 air pollution induced by the contemporary free trade and consumption by the 19 G20 nations causes two million premature deaths annually, suggesting that the average lifetime consumption of about ~28 people in these countries causes at least one premature death (average age ~67) while developing countries "cannot be expected" to implement or be able to implement countermeasures without external support or internationally coordinated efforts. [176] [170]

Guidelines

The US EPA has estimated that limiting ground-level ozone concentration to 65 parts per billion (ppb), would avert 1,700 to 5,100 premature deaths nationwide in 2020 compared with the 75 ppb standard. The agency projected the more protective standard would also prevent an additional 26,000 cases of aggravated asthma, and more than a million cases of missed work or school. [177] [178] Following this assessment, the EPA acted to protect public health by lowering the National Ambient Air Quality Standards (NAAQS) for ground-level ozone to 70 ppb. [179]

A 2008 economic study of the health impacts and associated costs of air pollution in the Los Angeles Basin and San Joaquin Valley of Southern California shows that more than 3,800 people die prematurely (approximately 14 years earlier than normal) each year because air pollution levels violate federal standards. The number of annual premature deaths is considerably higher than the fatalities related to auto collisions in the same area, which average fewer than 2,000 per year. [180] [181] [182] A 2021 study found that outdoor air pollution is associated with substantially increased mortality "even at low pollution levels below the current European and North American standards and WHO guideline values" shortly before the WHO adjusted its guidelines. [183] [184]

Cardiovascular disease

According to the Global Burden of Disease Study, air pollution is responsible for 19% of all cardiovascular deaths. [185] [186] There is strong evidence linking both short- and long-term exposure to air pollution with cardiovascular disease mortality and morbidity, stroke, blood pressure, and ischemic heart diseases (IHD). [186]

Air pollution is a leading risk factor for stroke, particularly in developing countries where pollutant levels are highest. [187] A systematic analysis of 17 different risk factors in 188 countries found air pollution is associated with nearly one in three strokes (29%) worldwide (33.7% of strokes in developing countries versus 10.2% in developed countries). [187] [188] In women, air pollution is not associated with hemorrhagic but with ischemic stroke. [189] Air pollution was found to be associated with increased incidence and mortality from coronary stroke. [190] Associations are believed to be causal and effects may be mediated by vasoconstriction, low-grade inflammation and atherosclerosis. [191] Other mechanisms such as autonomic nervous system imbalance have also been suggested. [192] [193]

Lung disease

Research has demonstrated increased risk of developing asthma [194] and chronic obstructive pulmonary disease (COPD) [195] from increased exposure to traffic-related air pollution. Air pollution has been associated with increased hospitalization and mortality from asthma and COPD. [196] [197]

COPD comprises a spectrum of clinical disorders that include emphysema, bronchiectasis, and chronic bronchitis. [198] COPD risk factors are both genetic and environmental. Elevated particle pollution contributes to the exacerbation of this disease and likely its pathogenesis. [199]

The risk of lung disease from air pollution is greatest for infants and young children, whose normal breathing is faster than that of older children and adults; the elderly; those who work outside or spend a lot of time outside; and those who have heart or lung disease comorbidities. [200]

A study conducted in 1960–1961 in the wake of the Great Smog of 1952 compared 293 London residents with 477 residents of Gloucester, Peterborough, and Norwich, three towns with low reported death rates from chronic bronchitis. All subjects were male postal truck drivers aged 40 to 59. Compared to the subjects from the outlying towns, the London subjects exhibited more severe respiratory symptoms (including cough, phlegm, and dyspnea), reduced lung function (FEV1 and peak flow rate), and increased sputum production and purulence. The differences were more pronounced for subjects aged 50 to 59. The study controlled for age and smoking habits, so concluded that air pollution was the most likely cause of the observed differences. [201] More studies have shown that air pollution exposure from traffic reduces lung function development in children [202] and lung function may be compromised by air pollution even at low concentrations. [203]

It is believed that, much like cystic fibrosis, serious health hazards become more apparent when living in a more urban environment. Studies have shown that in urban areas people experience mucus hypersecretion, lower levels of lung function, and more self-diagnosis of chronic bronchitis and emphysema. [204]

Cancer

Dark factory-emitted clouds obscuring the Clark Avenue Bridge in Cleveland, Ohio in July 1973 DARK CLOUDS OF FACTORY SMOKE OBSCURE CLARK AVENUE BRIDGE - NARA - 550179.jpg
Dark factory-emitted clouds obscuring the Clark Avenue Bridge in Cleveland, Ohio in July 1973

Around 300,000 lung cancer deaths were attributed globally in 2019 to exposure to fine particulate matter, PM2.5, suspended in the air. [205] PM2.5 exposure, such as from car exhausts, activates dormant mutations in lung cells, causing them to become cancerous. [206] [205] Unprotected exposure to PM2.5 air pollution can be equivalent to smoking multiple cigarettes per day, [207] [ dead link ] potentially increasing the risk of cancer, which is mainly the result of environmental factors. [208]

Long-term exposure to PM2.5 (fine particulates) increases the overall risk of non-accidental mortality by 6% per 10 μg/m3 increase. Exposure to PM2.5 is also associated with an increased risk of mortality from lung cancer (range: 15–21% per 10 μg/m3 increase) and total cardiovascular mortality (range: 12–14% per 10 μg/m3 increase). [209]

The review further noted that living close to busy traffic appears to be associated with elevated risks of these three outcomes – increase in lung cancer deaths, cardiovascular deaths, and overall non-accidental deaths. The reviewers also found suggestive evidence that exposure to PM2.5 is positively associated with mortality from coronary heart diseases and exposure to SO2 increases mortality from lung cancer, but the data was insufficient to provide solid conclusions. [209] Another investigation showed that higher activity level increases deposition fraction of aerosol particles in human lung and recommended avoiding heavy activities like running in outdoor space at polluted areas. [210]

In 2011, a large Danish epidemiological study found an increased risk of lung cancer for people who lived in areas with high nitrogen oxide concentrations. [211] Another Danish study, likewise noted evidence of possible associations between air pollution and other forms of cancer, including cervical cancer and brain cancer. [212]

Kidney disease

A study of 163,197 Taiwanese residents over the period of 2001–2016 estimated that every 5 μg/m3 decrease (from an approximate peak of 30μg/m3) in the ambient concentration of PM2.5 was associated with a 25% reduced risk of chronic kidney disease development. [213] According to a cohort study involving 10,997 atherosclerosis patients, higher PM 2.5 exposure is associated with increased albuminuria. [214]

Fertility

Nitrogen dioxide (NO2)

An increase in NO2 is significantly associated with a lower live birth rate in women undergoing IVF treatment. [215] In the general population, there is a significant increase in miscarriage rate in women exposed to NO2 compared to those not exposed. [215]

Carbon monoxide (CO)

CO exposure is significantly associated with stillbirth in the second and third trimester. [215]

Standard line-angle structure of benzo-a-pyrene (BaP) Benzo-a-pyrene chemical structure.png
Standard line-angle structure of benzo-a-pyrene (BaP)

Polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) have been associated with reduced fertility. Benzo(a)pyrene (BaP) is a well-known PAH and carcinogen which is often found in exhaust fumes and cigarette smoke. [216] PAHs have been reported to administer their toxic effects through oxidative stress by increasing the production of Reactive Oxygen Species (ROS) which can result in inflammation and cell death. More long-term exposure to PAHs can result in DNA damage and reduced repair. [217]

Exposure to BaP has been reported to reduce sperm motility and increasing the exposure worsens this effect. Research has demonstrated that more BaPs were found in men with reported fertility issues compared to men without. [218]

Studies have shown that BaPs can affect folliculogenesis and ovarian development by reducing the number of ovarian germ cells via triggering cell death pathways and inducing inflammation which can lead to ovarian damage. [219]

Particulate matter

Particulate matter (PM) refers to the collection of solids and liquids suspended in the air. These can be harmful to humans, and more research has shown that these effects may be more extensive than first thought; particularly on male fertility. PM can be different sizes, such as PM2.5 which are tiny particles of 2.5 microns in width or smaller, compared with PM10 which are classified as 10 microns in diameter or less.

A study in California found that increased exposure to PM2.5 led to decreased sperm motility and increased abnormal morphology. Similarly, in Poland exposure to PM2.5 and PM10 led to an increase in the percentage of cells with immature chromatin (DNA that has not fully developed or has developed abnormally). [220]

In Turkey, a study examined the fertility of men who work as toll collectors and are therefore exposed to high levels of traffic pollutants daily. Traffic pollution often has high levels of PM10 alongside carbon monoxide and nitrogen oxides. [220] There were significant differences in sperm count and motility in this study group compared to a control group with limited air pollution exposure.

In women, while overall effects on fertility do not appear significant there is an association between increased exposure to PM10 and early miscarriage. Exposure to smaller particulate matter, PM2.5, appears to have an effect on conception rates in women undergoing IVF but does not affect live birth rates. [215]

Ozone structure showing three oxygen atoms Ozone-structure.png
Ozone structure showing three oxygen atoms

Ground-level ozone pollution

Ground-level ozone (O3), when in high concentrations, is regarded as an air pollutant and is often found in smog in industrial areas.

There is limited research about the effect that ozone pollution has on fertility. [215] At present, there is no evidence to suggest that ozone exposure poses a deleterious effect on spontaneous fertility in either females or males. However, there have been studies which suggest that high levels of ozone pollution, often a problem in the summer months, exert an effect on in vitro fertilisation (IVF) outcomes. Within an IVF population, NOx and ozone pollutants were linked with reduced rates of live birth. [215]

While most research on this topic is focused on the direct human exposure of air pollution, other studies have analysed the impact of air pollution on gametes and embryos within IVF laboratories. Multiple studies have reported a marked improvement in embryo quality, implantation and pregnancy rates after IVF laboratories have implemented air filters in a concerted effort to reduce levels of air pollution. [221] Therefore, ozone pollution is considered to have a negative impact on the success of assisted reproductive technologies (ART) when occurring at high levels.

Ozone is thought to act in a biphasic manner where a positive effect on live birth is observed when ozone exposure is limited to before IVF embryo implantation. Conversely, a negative effect is demonstrated upon exposure to ozone after embryo implantation. However, after adjusting for NO2, the association between O3 and IVF live birth rate was no longer significant. [222] [223]

In terms of male fertility, ozone is reported to cause a significant decrease in the concentration and count of sperm in semen after exposure. [224] Similarly, sperm vitality, the proportion of live spermatozoa in a sample, was demonstrated to be diminished as a result of exposure to air pollution. [223] However, findings on the effect of ozone exposure on male fertility are somewhat discordant, highlighting the need for further research. [223]

Children

Children and infants are among the most vulnerable to air pollution. Polluted air leads to the poisoning of millions of children under the age of 15, resulting in the death of some 600,000 children annually (543,000 under 5 years of age and 52,000 aged 5-15 years). [225] Children in low or middle income countries are exposed to higher levels of fine particulate matter than those in high income countries. [225]

Health effects of air pollution on children include asthma, pneumonia and lower respiratory tract infections and low birth weight. [226] A study in Europe found that exposure to ultrafine particles can increase blood pressure in children. [227]

Prenatal exposure

Prenatal exposure to polluted air has been linked to a variety of neurodevelopmental disorders in children. For example, exposure to polycyclic aromatic hydrocarbons (PAH) was associated with reduced IQ scores and symptoms of anxiety and depression. [228] They can also lead to detrimental perinatal health outcomes that are often fatal in developing countries. [8] A 2014 study found that PAHs might play a role in the development of childhood attention deficit hyperactivity disorder (ADHD). [229]

Researchers have found a correlation between air pollution and risk of autism spectrum disorder (ASD) diagnosis, although definitive causality has not yet been established. In Los Angeles, children living in areas with high levels of traffic-related air pollution were more likely to be diagnosed with autism between three–five years of age. [230] A cohort study in Southern California linked in-utero exposure to near-roadway air pollution to an increased risk of ASD diagnosis [231] and a study in Sweden concluded that exposure to PM2.5 during pregnancy was associated with ASD. [232] A Danish study linked exposure to air pollution during infancy, but not during pregnancy, to an increased risk of ASD diagnosis. [233]

The connection between air pollution and neurodevelopmental disorders in children is thought to be related to epigenetic dysregulation of the primordial germ cells, embryo, and fetus during a critical period. Some PAHs are considered endocrine disruptors and are lipid soluble. When they build up in adipose tissue they can be transferred across the placenta can exert a genotoxic effect, cauding DNA damange and mutations. [234] Air pollution has been associated with the prevalence of preterm births. [235]

Infants

Ambient levels of air pollution have been associated with preterm birth and low birth weight. A 2014 WHO worldwide survey on maternal and perinatal health found a statistically significant association between low birth weights (LBW) and increased levels of exposure to PM2.5. Women in regions with greater than average PM2.5 levels had statistically significant higher odds of pregnancy resulting in a low-birth weight infant even when adjusted for country-related variables. [236] The effect is thought to be from stimulating inflammation and increasing oxidative stress.

A study found that in 2010 exposure to PM2.5 was strongly associated with 18% of preterm births globally, which was approximately 2.7 million premature births. The countries with the highest air pollution associated preterm births were in South and East Asia, the Middle East, North Africa, and West sub-Saharan Africa. [237] In 2019, ambient particulate matter pollution in Africa resulted in at least 383,000 early deaths, according to new estimates of the cost of air pollution in the continent. This increased from 3.6% in 1990 to around 7.4% of all premature deaths in the area. [238] [239] [240]

The source of PM2.5 differs greatly by region. In South and East Asia, pregnant women are frequently exposed to indoor air pollution because of wood and other biomass fuels being used for cooking, which are responsible for more than 80% of regional pollution. In the Middle East, North Africa and West sub-Saharan Africa, fine PM comes from natural sources, such as dust storms. [237] The United States had an estimated 50,000 preterm births associated with exposure to PM2.5 in 2010. [237]

A study between 1988 and 1991 found a correlation between sulfur dioxide (SO2) and total suspended particulates (TSP) and preterm births and low birth weights in Beijing. A group of 74,671 pregnant women, in four separate regions of Beijing, were monitored from early pregnancy to delivery along with daily air pollution levels of SO2 and TSP (along with other particulates). The estimated reduction in birth weight was 7.3 g for every 100 μg/m3 increase in SO2 and 6.9 g for each 100 μg/m3 increase in TSP. These associations were statistically significant in both summer and winter, although summer was greater. The proportion of low birth weight attributable to air pollution, was 13%. This is the largest attributable risk ever reported for the known risk factors of low birth weight. [241] Coal stoves, which are in 97% of homes, are a major source of air pollution in this area.

Brauer et al. studied the relationship between air pollution and proximity to a highway with pregnancy outcomes in a Vancouver cohort of pregnant women using addresses to estimate exposure during pregnancy. Exposure to NO, NO2, CO, PM10 and PM2.5 were associated with infants born small for gestational age (SGA). Women living less than 50 meters away from an expressway or highway were 26% more likely to give birth to a SGA infant. [242]

Central nervous system

Data is accumulating that air pollution exposure also affects the central nervous system. [243]

Air pollution increases the risk of dementia in people over 50 years old. [244] Indoor air pollution exposure during childhood may negatively affect cognitive function and neurodevelopment. [245] [246] Prenatal exposure may also affect neurodevelopment. [247] [248] Studies show that air pollution is associated with a variety of developmental disabilities, oxidative stress, and neuro-inflammation and that it may contribute to Alzheimer's disease and Parkinson's disease. [246]

Researchers found that early exposure to air pollution causes the same changes in the brain as autism and schizophrenia in mice. It also showed that air pollution also affected short-term memory, learning ability, and impulsivity. In this study, air pollution had a larger negative impact on male mice than on females. [249] [250] Lead researcher on the study, Deborah Cory-Slechta, said that: [251]

When we looked closely at the ventricles, we could see that the white matter that normally surrounds them hadn't fully developed. It appears that inflammation had damaged those brain cells and prevented that region of the brain from developing, and the ventricles simply expanded to fill the space. Our findings add to the growing body of evidence that air pollution may play a role in autism, as well as in other neurodevelopmental disorders.

Exposure to fine particulate matter can increase levels of cytokines - neurotransmitters produced in response to infection and inflammation that are also associated with depression and suicide. Pollution has been associated with inflammation of the brain, which may disrupt mood regulation. Heightened PM2.5 levels are linked to more self-reported depressive symptoms, and increases in daily suicide rates. [252] [253]

In 2015, experimental studies reported the detection of significant episodic (situational) cognitive impairment from impurities in indoor air breathed by test subjects who were not informed about changes in the air quality. Significant deficits were observed in the performance scores achieved in increasing concentrations of either volatile organic compounds (VOCs) or carbon dioxide, while keeping other factors constant. The highest impurity levels reached are not uncommon in some classroom or office environments. [254] [255] Higher PM2.5 and CO2 concentrations were shown to be associated with slower response times and reduced accuracy in tests. [256]

PM2.5 Levels Across the World's 5 Most Populated Nations in 2019 Air Quality (PM 2.5) Regional Overview.svg
PM2.5 Levels Across the World's 5 Most Populated Nations in 2019

"Clean" areas

Share of the population exposed to air pollution levels above WHO guidelines, 2017 Share-above-who-pollution-guidelines (OWID 0948).png
Share of the population exposed to air pollution levels above WHO guidelines, 2017

Even in areas with relatively low levels of air pollution, public health effects can be significant and costly, since a large number of people breathe in such pollutants. A study found that even in areas of the U.S. where ozone and PM2.5 meet federal standards, Medicare recipients who are exposed to more air pollution have higher mortality rates. [257]

Rural populations in India, like those in urban areas, are also exposed to high levels of air pollution. [258] In 2020, scientists found that the boundary layer air over the Southern Ocean around Antarctica is 'unpolluted' by humans. [259]

Agricultural effects

Various studies have estimated the impacts of air pollution on agriculture, especially ozone. A 2020 study showed that ozone pollution in California may reduce yields of certain perennial crops such as table grapes by as much as 22% per year, translating into economic damages of more than $1 billion per year. [260] After air pollutants enter the agricultural environment, they not only directly affect agricultural production and quality, but also enter agricultural waters and soil. [261] The COVID-19 induced lockdown served as a natural experiment to expose the close links between air quality and surface greenness. In India, the lockdown induced improvement in air quality, enhanced surface greenness and photosynthetic activity, with the positive response of vegetation to reduce air pollution was dominant in croplands. [262] On the other hand, agriculture in its traditional form is one of the primary contributors to the emission of trace gases like atmospheric ammonia. [263]

Economic effects

Air pollution costs the world economy $5 trillion per year as a result of productivity losses and degraded quality of life. [24] [25] [26] These productivity losses are caused by deaths due to diseases caused by air pollution. One out of ten deaths in 2013 was caused by diseases associated with air pollution and the problem is getting worse.

A small improvement in air quality (1% reduction of ambient PM2.5 and ozone concentrations) would produce $29 million in annual savings in the lower Fraser Valley region in 2010. [264] This finding is based on health valuation of lethal (death) and sub-lethal (illness) affects.

The problem is even more acute in the developing world. "Children under age 5 in lower-income countries are more than 60 times as likely to die from exposure to air pollution as children in high-income countries." [24] [25] The report states that additional economic losses caused by air pollution, including health costs [265] and the adverse effect on agricultural and other productivity were not calculated in the report, and thus the actual costs to the world economy are far higher than $5 trillion.

A study published in 2022 found "a strong and significant connection between air pollution and construction site accidents" and that "a 10-ppb increase in NO2 levels increases the likelihood of an accident by as much as 25%". [266]

Other effects

Artificial air pollution may be detectable on Earth from distant vantage points such as other planetary systems via atmospheric SETI  – including NO2 pollution levels and with telescopic technology close to today. It may also be possible to detect extraterrestrial civilizations this way. [267] [268] [269]

Historical disasters

The world's worst short-term civilian pollution crisis was the 1984 Bhopal Disaster in India. [270] Leaked industrial vapours from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A. (later bought by Dow Chemical Company), killed at least 3787 people and injured from 150,000 to 600,000. The United Kingdom suffered its worst air pollution event when the 4 December Great Smog of 1952 formed over London. In six days more than 4,000 died and more recent estimates put the figure at nearer 12,000. [271]

An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Yekaterinburg (formerly Sverdlovsk) is believed to have caused at least 64 deaths. [272] The worst single incident of air pollution to occur in the US occurred in Donora, Pennsylvania, in late October 1948, when 20 people died and over 7,000 were injured. [273]

Reduction and regulation

Global depletion of the surrounding air pollution will require valiant leadership, a surplus of combined resources from the international community, and extensive societal changes. [274] Pollution prevention seeks to prevent pollution such as air pollution and could include adjustments to industrial and business activities such as designing sustainable manufacturing processes (and the products' designs) [275] and related legal regulations as well as efforts towards renewable energy transitions. [276] [277]

Efforts to reduce particulate matter in the air may result in better health. [278]

The 9-Euro-Ticket scheme in Germany which allowed people to buy a monthly pass allowing use on all local and regional transport (trains, trams and busses) for 9 euro (€) for one month of unlimited travel saved 1.8 million tons of CO2 emissions during its three-month implementation from June to August 2022. [279]

Pollution control

Burning of items polluting Jamestown environment in Accra, Ghana Air pollution in Ghana 2.jpg
Burning of items polluting Jamestown environment in Accra, Ghana

Various pollution control technologies and strategies are available to reduce air pollution. [280] [281] At its most basic level, land-use planning is likely to involve zoning and transport infrastructure planning. In most developed countries, land-use planning is an important part of social policy, ensuring that land is used efficiently for the benefit of the wider economy and population, as well as to protect the environment. [282] Stringent environmental regulations, effective control technologies and shift towards the renewable source of energy also helping countries like China and India to reduce their sulfur dioxide pollution. [283]

Titanium dioxide has been researched for its ability to reduce air pollution. Ultraviolet light will release free electrons from material, thereby creating free radicals, which break up VOCs and NOx gases. One form is superhydrophilic. [284]

Pollution-eating nanoparticles placed near a busy road were shown to absorb toxic emission from around 20 cars each day. [285]

Energy transition

Since a large share of air pollution is caused by combustion of fossil fuels such as coal and oil, the reduction of these fuels can reduce air pollution drastically. Most effective is the switch to clean power sources such as wind power, solar power, hydro power which do not cause air pollution. [286] Efforts to reduce pollution from mobile sources includes expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as string trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use of hybrid vehicles), conversion to cleaner fuels, and conversion to electric vehicles. For example, buses in New Delhi, India, have run on compressed natural gas since 2000, to help eliminate the city's "pea-soup" smog. [226] [287]

A very effective means to reduce air pollution is the transition to renewable energy. According to a study published in Energy and Environmental Science in 2015 the switch to 100% renewable energy in the United States would eliminate about 62,000 premature mortalities per year and about 42,000 in 2050, if no biomass were used. This would save about $600 billion in health costs a year due to reduced air pollution in 2050, or about 3.6% of the 2014 U.S. gross domestic product. [286] Air quality improvement is a near-term benefit among the many societal benefits from climate change mitigation.

Alternatives to pollution

Support for a ban on high-emission vehicles in city centres in Europe, China and the US from respondents to the European Investment Bank Climate Survey Within cities, make public transport more efficient and ban high-emission vehicles..svg
Support for a ban on high-emission vehicles in city centres in Europe, China and the US from respondents to the European Investment Bank Climate Survey
Support, use and infrastructure-expansion of forms of public transport that do not cause air pollution may be a critical key alternative to pollution. NET tram 201-03.jpg
Support, use and infrastructure-expansion of forms of public transport that do not cause air pollution may be a critical key alternative to pollution.

There are now practical alternatives to the principal causes of air pollution:

Control devices

Tarps and netting are often used to reduce the amount of dust released from construction sites. Debris netting.JPG
Tarps and netting are often used to reduce the amount of dust released from construction sites.
Air pollution from a car Atmospheric pollution.jpg
Air pollution from a car

The following items are commonly used as pollution control devices in industry and transportation. They can either destroy contaminants or remove them from an exhaust stream before it is emitted into the atmosphere.

Monitoring

Spatiotemporal monitoring of air quality may be necessary for improving air quality, and thereby the health and safety of the public, and assessing impacts of interventions. [301] Such monitoring is done to different extents with different regulatory requirements with discrepant regional coverage by a variety of organizations and governance entities such as using a variety of technologies for use of the data and sensing such mobile IoT sensors, [302] [303] satellites, [304] [305] [306] and monitoring stations. [307] [308] Some websites attempt to map air pollution levels using available data. [309] [310] [311]

Air quality modeling

Numerical models either on a global scale using tools such as GCMs (general circulation models coupled with a pollution module) or CTMs (Chemical transport model) can be used to simulate the levels of different pollutants in the atmosphere. These tools can have several types (Atmospheric model) and different uses. These models can be used in forecast mode which can help policy makers to decide on appropriate actions when an air pollution episode is detected. They can also be used for climate modeling including evolution of air quality in the future, for example the IPCC (Intergovernmental Panel on Climate Change) provides climate simulations including air quality assessments in their reports (latest report accessible through their site).

Regulations

Smog in Cairo Cairo in smog.jpg
Smog in Cairo

In general, there are two types of air quality standards. The first class of standards (such as the U.S. National Ambient Air Quality Standards and E.U. Air Quality Directive [312] ) set maximum atmospheric concentrations for specific pollutants. Environmental agencies enact regulations which are intended to result in attainment of these target levels. The second class (such as the North American air quality index) take the form of a scale with various thresholds, which is used to communicate to the public the relative risk of outdoor activity. The scale may or may not distinguish between different pollutants.

Canada

In Canada, air pollution and associated health risks are measured with the Air Quality Health Index (AQHI). [313] It is a health protection tool used to make decisions to reduce short-term exposure to air pollution by adjusting activity levels during increased levels of air pollution.

The AQHI is a federal program jointly coordinated by Health Canada and Environment Canada. However, the AQHI program would not be possible without the commitment and support of the provinces, municipalities and NGOs. From air quality monitoring to health risk communication and community engagement, local partners are responsible for the vast majority of work related to AQHI implementation. The AQHI provides a number from 1 to 10+ to indicate the level of health risk associated with local air quality. Occasionally, when the amount of air pollution is abnormally high, the number may exceed 10. The AQHI provides a local air quality current value as well as a local air quality maximums forecast for today, tonight and tomorrow and provides associated health advice.

12345678910+
Risk:Low (1–3)Moderate (4–6)High (7–10)Very high (above 10)

As it is now known that even low levels of air pollution can trigger discomfort for the sensitive population, the index has been developed as a continuum: The higher the number, the greater the health risk and need to take precautions. The index describes the level of health risk associated with this number as 'low', 'moderate', 'high' or 'very high', and suggests steps that can be taken to reduce exposure. [314]

Health riskAir Quality Health IndexHealth messages [315]
At risk populationGeneral population
Low1–3Enjoy your usual outdoor activities.Ideal air quality for outdoor activities
Moderate4–6Consider reducing or rescheduling strenuous activities outdoors if you are experiencing symptoms.No need to modify your usual outdoor activities unless you experience symptoms such as coughing and throat irritation.
High7–10Reduce or reschedule strenuous activities outdoors. Children and the elderly should also take it easy.Consider reducing or rescheduling strenuous activities outdoors if you experience symptoms such as coughing and throat irritation.
Very highAbove 10Avoid strenuous activities outdoors. Children and the elderly should also avoid outdoor physical exertion and should stay indoors.Reduce or reschedule strenuous activities outdoors, especially if you experience symptoms such as coughing and throat irritation.

The measurement is based on the observed relationship of nitrogen dioxide (NO2), ground-level ozone (O3) and particulates (PM2.5) with mortality, from an analysis of several Canadian cities. Significantly, all three of these pollutants can pose health risks, even at low levels of exposure, especially among those with pre-existing health problems.

When developing the AQHI, Health Canada's original analysis of health effects included five major air pollutants: particulates, ozone, and nitrogen dioxide (NO2), as well as sulfur dioxide (SO2), and carbon monoxide (CO). The latter two pollutants provided little information in predicting health effects and were removed from the AQHI formulation.

The AQHI does not measure the effects of odour, pollen, dust, heat or humidity.

Germany

TA Luft is the German air quality regulation. [316]

Governing urban air pollution

In Europe, Council Directive 96/62/EC on ambient air quality assessment and management provides a common strategy against which member states can "set objectives for ambient air quality in order to avoid, prevent or reduce harmful effects on human health and the environment ... and improve air quality where it is unsatisfactory". [317]

In July 2008, in the case Dieter Janecek v. Freistaat Bayern, the European Court of Justice ruled that under this directive [317] citizens have the right to require national authorities to implement a short term action plan that aims to maintain or achieve compliance to air quality limit values. [318] [319]

This important case law appears to confirm the role of the EC as centralised regulator to European nation-states as regards air pollution control. It places a supranational legal obligation on the UK to protect its citizens from dangerous levels of air pollution, furthermore superseding national interests with those of the citizen.

In 2010, the European Commission (EC) threatened the UK with legal action against the successive breaching of PM10 limit values. [320] The UK government has identified that if fines are imposed, they could cost the nation upwards of £300 million per year. [321]

In March 2011, the Greater London Built-up Area remained the only UK region in breach of the EC's limit values, and was given three months to implement an emergency action plan aimed at meeting the EU Air Quality Directive. [322] The City of London has dangerous levels of PM10 concentrations, estimated to cause 3000 deaths per year within the city. [323] As well as the threat of EU fines, in 2010 it was threatened with legal action for scrapping the western congestion charge zone, which is claimed to have led to an increase in air pollution levels. [324]

In response to these charges, mayor of London Boris Johnson has criticised the current need for European cities to communicate with Europe through their nation state's central government, arguing that in future "A great city like London" should be permitted to bypass its government and deal directly with the European Commission regarding its air quality action plan. [322]

This can be interpreted as recognition that cities can transcend the traditional national government organisational hierarchy and develop solutions to air pollution using global governance networks, for example through transnational relations. Transnational relations include but are not exclusive to national governments and intergovernmental organisations, [325] allowing sub-national actors including cities and regions to partake in air pollution control as independent actors.

Global city partnerships can be built into networks, for example the C40 Cities Climate Leadership Group, of which London is a member. The C40 is a public 'non-state' network of the world's leading cities that aims to curb their greenhouse emissions. [326] The C40 has been identified as 'governance from the middle' and is an alternative to intergovernmental policy. [327] It has the potential to improve urban air quality as participating cities "exchange information, learn from best practices and consequently mitigate carbon dioxide emissions independently from national government decisions". [326] A criticism of the C40 network is that its exclusive nature limits influence to participating cities and risks drawing resources away from less powerful city and regional actors.

Indigenous people

Because Indigenous people [328] frequently experience a disproportionate share of the effects of environmental degradation and climate change, even while they have made very little contribution to the processes causing these changes, environmental justice is especially important to them. Indigenous peoples have been marginalized and their lands and resources have been exploited as a result of historical and continuing colonization, institutional injustices, and inequality.

Indigenous groups frequently lack the political and financial clout to influence policy decisions that impact their lands and means of subsistence or to lessen the effects of climate change. This makes the already-existing inequalities in these communities' social, economic, and health conditions worse. Furthermore, traditional ecological knowledge and Indigenous knowledge systems provide insightful information about sustainable resource management and climate change adaptation techniques. To promote persistence and environmental justice, Indigenous viewpoints must be acknowledged and integrated into efforts to mitigate the effects of climate change and adapt to them.

Combating climate change necessitates an all-encompassing strategy that recognizes the interdependence of social, economic, and environmental elements. This entails defending treaty rights, advancing Indigenous sovereignty and self-determination, and aiding Indigenous-led projects for sustainable development and environmental preservation.

Hotspots

Air pollution hotspots are areas where air pollution emissions expose individuals to increased negative health effects. [329] They are particularly common in highly populated, urban areas, where there may be a combination of stationary sources (e.g. industrial facilities) and mobile sources (e.g. cars and trucks) of pollution. Emissions from these sources can cause respiratory disease, childhood asthma, [141] cancer, and other health problems. Fine particulate matter such as diesel soot, which contributes to more than 3.2 million premature deaths around the world each year, is a significant problem. It is very small and can lodge itself within the lungs and enter the bloodstream. Diesel soot is concentrated in densely populated areas, and one in six people in the U.S. live near a diesel pollution hot spot. [330]

External videos
Nuvola apps kaboodle.svg AirVisual Earth – realtime map of global wind and air pollution [331]

While air pollution hotspots affect a variety of populations, some groups are more likely to be located in hotspots. Previous studies have shown disparities in exposure to pollution by race and/or income. Hazardous land uses (toxic storage and disposal facilities, manufacturing facilities, major roadways) tend to be located where property values and income levels are low. Low socioeconomic status can be a proxy for other kinds of social vulnerability, including race, a lack of ability to influence regulation and a lack of ability to move to neighborhoods with less environmental pollution. These communities bear a disproportionate burden of environmental pollution and are more likely to face health risks such as cancer or asthma. [332]

Studies show that patterns in race and income disparities not only indicate a higher exposure to pollution but also higher risk of adverse health outcomes. [333] Communities characterized by low socioeconomic status and racial minorities can be more vulnerable to cumulative adverse health impacts resulting from elevated exposure to pollutants than more privileged communities. [333] Blacks and Latinos generally face more pollution than Whites and Asians, and low-income communities bear a higher burden of risk than affluent ones. [332] Racial discrepancies are particularly distinct in suburban areas of the Southern United States and metropolitan areas of the Midwestern and Western United States. [334] Residents in public housing, who are generally low-income and cannot move to healthier neighborhoods, are highly affected by nearby refineries and chemical plants. [335]

Cities

Nitrogen dioxide concentrations as measured from satellite 2002-2004 Global air pollution map.png
Nitrogen dioxide concentrations as measured from satellite 2002–2004

Air pollution is usually concentrated in densely populated metropolitan areas, especially in developing countries where cities are experiencing rapid growth and environmental regulations are relatively lax or nonexistent. Urbanization leads to a rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities. [336] However, even populated areas in developed countries attain unhealthy levels of pollution, with Los Angeles and Rome being two examples. [337] Between 2002 and 2011 the incidence of lung cancer in Beijing near doubled. While smoking remains the leading cause of lung cancer in China, the number of smokers is falling while lung cancer rates are rising . [338]

[339]
World's Most Polluted Cities 20202020 Average2019 Average
Hotan, China110.2110.1
Ghaziabad, India106.6110.2
Bulandshahr, India98.489.4
Bisrakh Jalalpur, India96.0-
Bhiwadi, India95.583.4

Tehran was declared the most polluted city in the world on May 24, 2022. [340]

Projections

In a 2019 projection, by 2030 half of the world's pollution emissions could be generated by Africa. [341] Potential contributors to such an outcome include increased burning activities (such as the burning of open waste), traffic, agri-food and chemical industries, sand dust from the Sahara, and overall population growth.

In a 2012 study, by 2050 outdoor air pollution (particulate matter and ground-level ozone) is projected to become the top cause of environmentally related deaths worldwide. [342]

See also

Source

Measurement

Others

Related Research Articles

<span class="mw-page-title-main">Pollution</span> Introduction of contaminants that cause adverse change

Pollution is the introduction of contaminants into the natural environment that cause adverse change. Pollution can take the form of any substance or energy. Pollutants, the components of pollution, can be either foreign substances/energies or naturally occurring contaminants.

<span class="mw-page-title-main">Smog</span> Smoke-like, fog-like air pollutions

Smog, or smoke fog, is a type of intense air pollution. The word "smog" was coined in the early 20th century, and is a portmanteau of the words smoke and fog to refer to smoky fog due to its opacity, and odor. The word was then intended to refer to what was sometimes known as pea soup fog, a familiar and serious problem in London from the 19th century to the mid-20th century, where it was commonly known as a London particular or London fog. This kind of visible air pollution is composed of nitrogen oxides, sulfur oxide, ozone, smoke and other particulates. Man-made smog is derived from coal combustion emissions, vehicular emissions, industrial emissions, forest and agricultural fires and photochemical reactions of these emissions.

<span class="mw-page-title-main">Indoor air quality</span> Air quality within and around buildings and structures

Indoor air quality (IAQ) is the air quality within buildings and structures. Poor indoor air quality due to indoor air pollution is known to affect the health, comfort, and well-being of building occupants. It has also been linked to sick building syndrome, respiratory issues, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide, ozone and particulates.

<span class="mw-page-title-main">Exhaust gas</span> Gases emitted as a result of fuel reactions in combustion engines

Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume.

<span class="mw-page-title-main">Air quality index</span> Measure of air pollution

An air quality index (AQI) is an indicator developed by government agencies to communicate to the public how polluted the air currently is or how polluted it is forecast to become. As air pollution levels rise, so does the AQI, along with the associated public health risk. Children, the elderly and individuals with respiratory or cardiovascular problems are typically the first groups affected by poor air quality. When the AQI is high, governmental bodies generally encourage people to reduce physical activity outdoors, or even avoid going out altogether. When wildfires result in a high AQI, the use of a mask outdoors and an air purifier indoors are also encouraged.

Environmental toxicants and fetal development is the impact of different toxic substances from the environment on the development of the fetus. This article deals with potential adverse effects of environmental toxicants on the prenatal development of both the embryo or fetus, as well as pregnancy complications. The human embryo or fetus is relatively susceptible to impact from adverse conditions within the mother's environment. Substandard fetal conditions often cause various degrees of developmental delays, both physical and mental, for the growing baby. Although some variables do occur as a result of genetic conditions pertaining to the father, a great many are directly brought about from environmental toxins that the mother is exposed to.

Air stagnation is a meteorological condition that occurs when there is a lack of atmospheric movement, leading to the accumulation of pollutants and particles that can decline the air quality in a particular region. This condition typically correlates with air pollution and poor air quality due to the possible health risks it can cause to humans and the environment. Due to light winds and lack of precipitation, pollutants cannot be cleared from the air, either gaseous or particulate.

<span class="mw-page-title-main">Pollutant Standards Index</span> Index to describe air quality

The Pollutant Standards Index (PSI) is a type of air quality index used in Singapore, which is a number used to indicate the level of pollutants in air. Initially PSI was based on five air pollutants, but since 1 April 2014 it has also included fine particulate matter (PM2.5).

Air pollution is the introduction of chemicals, particulate matter, or biological materials into the atmosphere that cause harm or discomfort to humans or other living organisms, or damage ecosystems. Health problems attributed to air pollution include premature death, cancer, organ failure, infections, behavioral changes, and other diseases. These health effects are not equally distributed across the U.S. population; there are demographic disparities by race, ethnicity, socioeconomic status, and education. Air pollution can derive from natural sources, such as wildfires and volcanoes, or from anthropogenic sources. Anthropogenic air pollution has affected the United States since the beginning of the Industrial Revolution.

<span class="mw-page-title-main">Pollution in California</span> Overview of pollution in the U.S. state of California

Pollution in California relates to the degree of pollution in the air, water, and land of the U.S. state of California. Pollution is defined as the addition of any substance or any form of energy to the environment at a faster rate than it can be dispersed, diluted, decomposed, recycled, or stored in some harmless form. The combination of three main factors is the cause of notable unhealthy levels of air pollution in California: the activities of over 39 million people, a mountainous terrain that traps pollution, and a warm climate that helps form ozone and other pollutants. Eight of the ten cities in the US with the highest year-round concentration of particulate matter between 2013 and 2015 were in California, and seven out of the ten cities in the US with the worst ozone pollution were also in California. Studies show that pollutants prevalent in California are linked to several health issues, including asthma, lung cancer, birth complications, and premature death. In 2016, Bakersfield, California recorded the highest level of airborne pollutants of any city in the United States.

<span class="mw-page-title-main">Air pollution in Mexico City</span> Poor quality of air in the capital and largest city of Mexico

Air Pollution in Mexico City has been of concern to the city's population and health officials for decades. In the 20th century, Mexico City's population rapidly increased as industrialization brought thousands of migrants from all over the world. Such a rapid and unexpected growth led to the UN declaring Mexico City as the most polluted city in the world in 1992. This was partly due to Mexico City's high altitude, which causes its oxygen levels to be 25% lower. Carbon-based fuels also do not combust completely. Other factors include the proliferation of vehicles, rapid industrial growth, and the population boom. The Mexican government has several active plans to reduce emission levels which require citizen participation, vehicular restrictions, increase of green areas, and expanded bicycle accessibility.

<span class="mw-page-title-main">Air pollution in Canada</span> Overview of the air pollution in Canada

Air pollution is the release of pollutants into the air that are detrimental to human health and the Earth. In Canada, air pollution is regulated by standards set by the Canadian Council of Ministers of the Environment (CCME), an inter-governmental body of federal, provincial and territorial Ministers responsible for the environment. Air pollution from the United States and to lesser extent Canada; caused by metal smelting, coal-burning for utilities, and vehicle emissions has resulted in acid rain, has severely impacted Canadian waterways, forest growth, and agricultural productivity.

<span class="mw-page-title-main">Particulates</span> Microscopic solid or liquid matter suspended in the Earths atmosphere

Particulates or atmospheric particulate matter are microscopic particles of solid or liquid matter suspended in the air. The term aerosol refers to the particulate/air mixture, as opposed to the particulate matter alone, though it is sometimes defined as a subset of aerosol terminology. Sources of particulate matter can be natural or anthropogenic. They have impacts on climate and precipitation that adversely affect human health, in ways additional to direct inhalation.

The health of a mother directly affects the fetus during pregnancy. High levels of vehicle pollution where pregnant women reside can have adverse health effects on fetuses.

<span class="mw-page-title-main">Air pollution measurement</span>

Air pollution measurement is the process of collecting and measuring the components of air pollution, notably gases and particulates. The earliest devices used to measure pollution include rain gauges, Ringelmann charts for measuring smoke, and simple soot and dust collectors known as deposit gauges. Modern air pollution measurement is largely automated and carried out using many different devices and techniques. These range from simple absorbent test tubes known as diffusion tubes through to highly sophisticated chemical and physical sensors that give almost real-time pollution measurements, which are used to generate air quality indexes.

<span class="mw-page-title-main">Nitrogen dioxide poisoning</span> Medical condition

Nitrogen dioxide poisoning is the illness resulting from the toxic effect of nitrogen dioxide. It usually occurs after the inhalation of the gas beyond the threshold limit value. Nitrogen dioxide is reddish-brown with a very harsh smell at high concentrations, at lower concentrations it is colorless but may still have a harsh odour. Nitrogen dioxide poisoning depends on the duration, frequency, and intensity of exposure.

<span class="mw-page-title-main">Air quality guideline</span>

The World Health Organization guidelines were most recently updated in 2021. The guidelines offer guidance about these air pollutants: particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO). The WHO first released the air quality guidelines in 1987, then updated them in 1997. The reports provide guidelines intending to give guidelines to reduce the health effects of air pollution.

AirQ+ is a free software for Windows and Linux operating systems developed by the World Health Organization (WHO) Regional Office for Europe. The program calculates the magnitude of several health effects associated to exposure to the most relevant air pollutants in a given population. AirQ+ has been used in the BreatheLife campaign and in numerous studies aimed at measuring long-term exposure to ambient particulate matter PM2.5. The first version of the program, AirQ, was distributed in a Microsoft Excel spreadsheet program in 1999, followed by another version of AirQ for Windows in 2000, 2004 and 2005. AirQ+ 1.0 was released in May 2016. A substantial difference between AirQ and AirQ+ is that AirQ+ contains a new graphical user interface with several help texts and various features to input and analyse data and illustrate results. AirQ+ version AirQ+ 1.2 was released in May 2017, followed by 1.3 in October 2018. Version 2.0 was released in November 2019, version 2.1 in May 2021 and version 2.2 in March 2023. It is available in the official languages of the WHO EURO region: English, French, German and Russian. A Polish version of AirQ+ is also available since 2023 and Spanish, Arab and Parsi versions are planned to be available in 2024.

Particulate pollution is pollution of an environment that consists of particles suspended in some medium. There are three primary forms: atmospheric particulate matter, marine debris, and space debris. Some particles are released directly from a specific source, while others form in chemical reactions in the atmosphere. Particulate pollution can be derived from either natural sources or anthropogenic processes.

<span class="mw-page-title-main">Brain health and pollution</span> Effects of pollution on the brain

Research indicates that living in areas of high pollution has serious long term health effects. Living in these areas during childhood and adolescence can lead to diminished mental capacity and an increased risk of brain damage. People of all ages who live in high pollution areas for extended periods place themselves at increased risk of various neurological disorders. Both air pollution and heavy metal pollution have been implicated as having negative effects on central nervous system (CNS) functionality. The ability of pollutants to affect the neurophysiology of individuals after the structure of the CNS has become mostly stabilized is an example of negative neuroplasticity.

References

  1. 1 2 3 "Air pollution". www.who.int. Retrieved 14 January 2023.
  2. 1 2 Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020). "Environmental and Health Impacts of Air Pollution: A Review". Frontiers in Public Health . 8: 14. doi: 10.3389/fpubh.2020.00014 . ISSN   2296-2565. PMC   7044178 . PMID   32154200.
  3. Howell R, Pickerill J (2016). "The Environment and Environmentalism". In Daniels P, Bradshaw M, Shaw D, Sidaway J, Hall T (eds.). An Introduction To Human Geography (5th ed.). Pearson. p. 134. ISBN   978-1-292-12939-6.
  4. Dimitriou A, Christidou V (26 September 2011), Khallaf M (ed.), "Causes and Consequences of Air Pollution and Environmental Injustice as Critical Issues for Science and Environmental Education", The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources, InTech, doi:10.5772/17654, ISBN   978-953-307-528-0 , retrieved 31 May 2022
  5. 1 2 3 4 5 6 "7 million premature deaths annually linked to air pollution". WHO. 25 March 2014. Retrieved 25 March 2014.
  6. Allen JL, Klocke C, Morris-Schaffer K, Conrad K, Sobolewski M, Cory-Slechta DA (June 2017). "Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings". Current Environmental Health Reports . 4 (2): 180–191. Bibcode:2017CEHR....4..180A. doi:10.1007/s40572-017-0134-3. ISSN   2196-5412. PMC   5499513 . PMID   28435996.
  7. Newbury JB, Stewart R, Fisher HL, Beevers S, Dajnak D, Broadbent M, et al. (2021). "Association between air pollution exposure and mental health service use among individuals with first presentations of psychotic and mood disorders: retrospective cohort study". The British Journal of Psychiatry. 219 (6) (published 19 August 2021): 678–685. doi: 10.1192/bjp.2021.119 . ISSN   0007-1250. PMC   8636613 . PMID   35048872.
  8. 1 2 Ghosh R, Causey K, Burkart K, Wozniak S, Cohen A, Brauer M (28 September 2021). "Ambient and household PM2.5 pollution and adverse perinatal outcomes: A meta-regression and analysis of attributable global burden for 204 countries and territories". PLOS Medicine . 18 (9): e1003718. doi: 10.1371/journal.pmed.1003718 . ISSN   1549-1676. PMC   8478226 . PMID   34582444.
  9. Dominski FH, Lorenzetti Branco JH, Buonanno G, Stabile L, Gameiro da Silva M, Andrade A (October 2021). "Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses". Environmental Research. 201: 111487. Bibcode:2021ER....20111487D. doi:10.1016/j.envres.2021.111487. ISSN   0013-9351. PMID   34116013.
  10. Lee KK, Bing R, Kiang J, Bashir S, Spath N, Stelzle D, et al. (November 2020). "Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study". The Lancet Global Health. 8 (11): e1427–e1434. doi:10.1016/S2214-109X(20)30343-0. ISSN   2214-109X. PMC   7564377 . PMID   33069303.
  11. Stanek LW, Brown JS, Stanek J, Gift J, Costa DL (2011). "Air Pollution Toxicology—A Brief Review of the Role of the Science in Shaping the Current Understanding of Air Pollution Health Risks". Toxicological Sciences. 120: S8–S27. doi:10.1093/toxsci/kfq367. PMID   21147959 . Retrieved 7 November 2022.
  12. Majumder N, Kodali V, Velayutham M, Goldsmith T, Amedro J, Khramtsov VV, et al. (2022). "Aerosol physicochemical determinants of carbon black and ozone inhalation co-exposure induced pulmonary toxicity". Toxicological Sciences. 191 (1): 61–78. doi:10.1093/toxsci/kfac113. PMC   9887725 . PMID   36303316.
  13. Daniel A. Vallero (2014). Fundamentals of Air Pollution. Academic Press. pp. 43, 122, 215. ISBN   978-0-12-404602-3.
  14. 1 2 3 4 Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, et al. (June 2022). "Pollution and health: a progress update". The Lancet Planetary Health . 6 (6): e535–e547. doi:10.1016/S2542-5196(22)00090-0. PMID   35594895. S2CID   248905224.
  15. Juginović A, Vuković M, Aranza I, Biloš V (18 November 2021). "Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries". Scientific Reports. 11 (1): 22516. Bibcode:2021NatSR..1122516J. doi:10.1038/s41598-021-01802-5. eISSN   2045-2322. PMC   8602675 . PMID   34795349.
  16. 1 2 Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T (1 September 2020). "Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective". Cardiovascular Research. 116 (11): 1910–1917. doi:10.1093/cvr/cvaa025. ISSN   0008-6363. PMC   7449554 . PMID   32123898.
  17. "Energy and Air Pollution" (PDF). Iea.org. Archived from the original (PDF) on 11 October 2019. Retrieved 12 March 2019.
  18. "Study Links 6.5 Million Deaths Each Year to Air Pollution". The New York Times . 26 June 2016. Retrieved 27 June 2016.
  19. Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V (25 March 2019). "Effects of fossil fuel and total anthropogenic emission removal on public health and climate". Proceedings of the National Academy of Sciences of the United States of America . 116 (15): 7192–7197. Bibcode:2019PNAS..116.7192L. doi: 10.1073/pnas.1819989116 . PMC   6462052 . PMID   30910976. S2CID   85515425.
  20. Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque JF, Shindell DT, et al. (2013). "Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change". Environmental Research Letters . 8 (3): 034005. Bibcode:2013ERL.....8c4005S. doi: 10.1088/1748-9326/8/3/034005 .
  21. 1 2 "9 out of 10 people worldwide breathe polluted air, but more countries are taking action". World Health Organization. 2 May 2018. Retrieved 18 May 2021.
  22. "Cheap air pollution monitors help plot your walk". European Investment Bank . Retrieved 18 May 2021.
  23. "Assessing the risks to health from air pollution". www.eea.europa.eu. European Environment Agency . Retrieved 18 May 2021.
  24. 1 2 3 World Bank, Institute for Health Metrics and Evaluation at University of Washington – Seattle (2016). The Cost of Air Pollution: Strengthening the Economic Case for Action (PDF). Washington, D.C.: The World Bank. xii.
  25. 1 2 3 McCauley L (8 September 2016). "Making Case for Clean Air, World Bank Says Pollution Cost Global Economy $5 Trillion". Common Dreams . Retrieved 3 February 2018.
  26. 1 2 "The Rising Cost of Smog". Fortune : 15. 1 February 2018. ISSN   0015-8259.
  27. Batool R, Zaman K, Khurshid MA, Sheikh SM, Aamir A, Shoukry AM, et al. (October 2019). "Economics of death and dying: a critical evaluation of environmental damages and healthcare reforms across the globe". Environmental Science and Pollution Research International . 26 (29): 29799–29809. Bibcode:2019ESPR...2629799B. doi:10.1007/s11356-019-06159-x. ISSN   1614-7499. PMID   31407261. S2CID   199528114.
  28. Bherwani H, Nair M, Musugu K, Gautam S, Gupta A, Kapley A, et al. (10 June 2020). "Valuation of air pollution externalities: comparative assessment of economic damage and emission reduction under COVID-19 lockdown". Air Quality, Atmosphere & Health . 13 (6): 683–694. Bibcode:2020AQAH...13..683B. doi:10.1007/s11869-020-00845-3. ISSN   1873-9318. PMC   7286556 . PMID   32837611.
  29. Boubel R, Vallero D, Fox D, Turner B, Stern A (2013). Fundamentals of Air Pollution (Third ed.). Elsevier. pp. 447–522. ISBN   9780080507071 . Retrieved 10 April 2024.
  30. Regulating Air Quality: The First Global Assessment of Air Pollution Legislation. Nairobi, Kenya: United Nations Environment Programme. 2021. ISBN   978-92-807-3872-8 . Retrieved 10 April 2024.
  31. Brimblecombe P (2006). "The clean air act after 50 years". Weather. 61 (11): 311–314. Bibcode:2006Wthr...61..311B. doi:10.1256/wea.127.06 . Retrieved 11 April 2024.
  32. "Progress Cleaning the Air and Improving People's Health". US Environmental Protection Agency. 8 June 2015. Retrieved 11 April 2024.
  33. Environment UN (29 October 2018). "About Montreal Protocol". Ozonaction. Retrieved 7 June 2022.
  34. "The Montreal Protocol on Substances That Deplete the Ozone Layer". United States Department of State. Retrieved 7 June 2022.
  35. "Protocol On Further Reduction Of Sulphur Emissions To The Convention On Long-Range Transboundary Air Pollution | International Environmental Agreements (IEA) Database Project". iea.uoregon.edu. Retrieved 7 June 2022.
  36. Nations U. "ClimateChange". United Nations. Retrieved 7 June 2022.
  37. "Climate change". www.who.int. World Health Organization . Retrieved 7 June 2022.
  38. "Global Climate Agreements: Successes and Failures". Council on Foreign Relations . Retrieved 7 June 2022.
  39. "Basic Information about NO2". US Environmental Protection Agency. 6 July 2016. Retrieved 12 April 2024.
  40. "Radon". World Health Organization. Retrieved 12 April 2024.
  41. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020). "Environmental and Health Impacts of Air Pollution: A Review". Front Public Health. 8: 14. doi: 10.3389/fpubh.2020.00014 . PMC   7044178 . PMID   32154200.
  42. Perera F (23 December 2017). "Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist". International Journal of Environmental Research and Public Health . 15 (1): 16. doi: 10.3390/ijerph15010016 . ISSN   1660-4601. PMC   5800116 . PMID   29295510.
  43. "Mapping methane emissions on a global scale". ESA. Archived from the original on 3 February 2022.
  44. "Climate change: Satellites map huge methane plumes from oil and gas". BBC News . 4 February 2022. Retrieved 16 March 2022.
  45. "Cracking down on methane 'ultra emitters' is a quick way to combat climate change, researchers find". The Washington Post . Retrieved 16 March 2022.
  46. Lauvaux T, Giron C, Mazzolini M, d'Aspremont A, Duren R, Cusworth D, et al. (4 February 2022). "Global assessment of oil and gas methane ultra-emitters" . Science . 375 (6580): 557–561. arXiv: 2105.06387 . Bibcode:2022Sci...375..557L. doi:10.1126/science.abj4351. ISSN   0036-8075. PMID   35113691. S2CID   246530897.
  47. Rentschler J, Leonova N (2023). "Global air pollution exposure and poverty". Nature Communications . 14 (1): 4432. Bibcode:2023NatCo..14.4432R. doi: 10.1038/s41467-023-39797-4 . PMC   10363163 . PMID   37481598.
  48. Pennise D, Smith K. "Biomass Pollution Basics" (PDF). World Health Organization. Archived from the original (PDF) on 9 July 2012.
  49. "Indoor air pollution and household energy". WHO and UNEP. 2011.
  50. Hawkes N (22 May 2015). "Air pollution in UK: the public health problem that won't go away". BMJ . 350 (may22 1): h2757. doi:10.1136/bmj.h2757. PMID   26001592. S2CID   40717317.
  51. "Wood burning heaters and your health - Fact sheets". www.health.nsw.gov.au.
  52. Tsiodra I, Grivas G, Tavernaraki K, Bougiatioti A, Apostolaki M, Paraskevopoulou D, et al. (7 December 2021). "Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes". Atmospheric Chemistry and Physics . 21 (23): 17865–17883. Bibcode:2021ACP....2117865T. doi: 10.5194/acp-21-17865-2021 . ISSN   1680-7316. S2CID   245103794.
  53. Nace T. "China Shuts Down Tens Of Thousands Of Factories In Widespread Pollution Crackdown". Forbes. Retrieved 16 June 2022. ... it is estimated that 40 percent of all China's factories have been shut down at some point in order to be inspected... [and] over 80,000 factories have been hit with fines and criminal offenses as a result of their emissions.
  54. Huo H, Zhang Q, Guan D, Su X, Zhao H, He K (16 December 2014). "Examining Air Pollution in China Using Production- And Consumption-Based Emissions Accounting Approaches". Environmental Science & Technology . 48 (24): 14139–14147. Bibcode:2014EnST...4814139H. doi:10.1021/es503959t. ISSN   0013-936X. PMID   25401750.
  55. Huo H, Zhang Q, Guan D, Su X, Zhao H, He K (16 December 2014). "Examining Air Pollution in China Using Production- And Consumption-Based Emissions Accounting Approaches". Environmental Science & Technology . 48 (24): 14139–14147. Bibcode:2014EnST...4814139H. doi:10.1021/es503959t. ISSN   0013-936X. PMID   25401750.
  56. "EMEP/EEA air pollutant emission inventory guidebook 2019".
  57. "Particulate Matter (PM), US EPA". 19 April 2016.
  58. "GovHK: Green Tips for Home Renovation". GovHK. 16 September 2024. Retrieved 22 September 2024.
  59. "Health crisis: Up to a billion tons of waste potentially burned in the open every year". phys.org. Retrieved 13 February 2021.
  60. Cook E, Velis CA (6 January 2021). "Global Review on Safer End of Engineered Life". Global Review on Safer End of Engineered Life . Retrieved 13 February 2021.
  61. "Combustion Pollutants in Your Home - Guidelines". California Air Resources Board . Retrieved 16 June 2022. "... most furnaces, wood stoves, fireplaces, gas water heaters, and gas clothes dryers, usually vent (exhaust) the combustion pollutants directly to the outdoors. However, if the vent system is not properly designed, installed, and maintained, indoor pollutants can build up quickly inside the home.
  62. "Overview of Air Pollution from Transportation". US Environmental Protection Agency. 15 December 2021. Retrieved 16 June 2022.
  63. Ryan RG, Marais EA, Balhatchet CJ, Eastham SD (June 2022). "Impact of Rocket Launch and Space Debris Air Pollutant Emissions on Stratospheric Ozone and Global Climate". Earth's Future . 10 (6): e2021EF002612. Bibcode:2022EaFut..1002612R. doi:10.1029/2021EF002612. ISSN   2328-4277. PMC   9287058 . PMID   35865359.
  64. Yeung J. "Microplastics in our air 'spiral the globe' in a cycle of pollution, study finds". CNN. Retrieved 4 August 2022.
  65. Wang J, Wu Q, Liu J, Yang H, Yin M, Chen S, et al. (2019). "Vehicle emission and atmospheric pollution in China: problems, progress, and prospects". PeerJ. 7: e6932. doi: 10.7717/peerj.6932 . PMC   6526014 . PMID   31143547.
  66. Air Quality Expert Group (2004). Nitrogen Dioxide in the United Kingdom (PDF). Department for Environment, Food and Rural Affairs. Retrieved 12 April 2024.
  67. Aggarwal P, Jain S (2015). "Impact of air pollutants from surface transport sources on human health: A modeling and epidemiological approach". Environ Int. 83: 146–57. Bibcode:2015EnInt..83..146A. doi:10.1016/j.envint.2015.06.010. PMID   26142107.
  68. "NASA GISS: NASA News & Feature Releases:Road Transportation Emerges as Key Driver of Warming". www.giss.nasa.gov. Retrieved 4 August 2022.
  69. "Car Emissions & Global Warming | Union of Concerned Scientists". www.ucsusa.org. Retrieved 4 August 2022.
  70. "NASA's AIRS Maps Carbon Monoxide from Brazil Fires". NASA Jet Propulsion Laboratory (JPL). Retrieved 4 August 2022.
  71. Harper AR, Doerr SH, Santin C, Froyd CA, Sinnadurai P (15 May 2018). "Prescribed fire and its impacts on ecosystem services in the UK". Science of the Total Environment . 624: 691–703. Bibcode:2018ScTEn.624..691H. doi:10.1016/j.scitotenv.2017.12.161. ISSN   0048-9697. PMID   29272838.
  72. George Neary D, McMichael Leonard J (8 April 2020), Missiakô Kindomihou V (ed.), "Effects of Fire on Grassland Soils and Water: A Review", Grasses and Grassland Aspects, IntechOpen, doi:10.5772/intechopen.90747, ISBN   978-1-78984-949-3, S2CID   213578405 , retrieved 7 June 2022
  73. Husseini R, Aboah DT, Issifu H (1 March 2020). "Fire control systems in forest reserves: An assessment of three forest districts in the Northern region, Ghana". Scientific African. 7: e00245. Bibcode:2020SciAf...700245H. doi:10.1016/j.sciaf.2019.e00245. ISSN   2468-2276. S2CID   213400214.
  74. Reyes O, Casal M (November 2004). "Effects of forest fire ash on germination and early growth of four pinus species". Plant Ecology . 175 (1): 81–89. Bibcode:2004PlEco.175...81R. doi:10.1023/B:VEGE.0000048089.25497.0c. ISSN   1385-0237. S2CID   20388177.
  75. Chatterjee R (15 February 2018). "Wall Paint, Perfumes and Cleaning Agents Are Polluting Our Air". NPR . Retrieved 12 March 2019.
  76. "Basic Information about Landfill Gas". US Environmental Protection Agency . 15 April 2016. Retrieved 9 August 2022. Landfill gas (LFG) is a natural byproduct of the decomposition of organic material in landfills. LFG is composed of roughly 50 percent methane...
  77. "Open waste burning prevention | Climate & Clean Air Coalition". www.ccacoalition.org. 7 September 2023. Retrieved 22 December 2023.
  78. Hafemeister D (2016), "Biological and Chemical Weapons", Nuclear Proliferation and Terrorism in the Post-9/11 World, Cham: Springer International Publishing, pp. 337–351, doi:10.1007/978-3-319-25367-1_15, ISBN   978-3-319-25365-7, PMC   7123302
  79. Sun F, Dai Y, Yu X (December 2017). "Air pollution, food production and food security: A review from the perspective of food system". Journal of Integrative Agriculture. 16 (12): 2945–2962. Bibcode:2017JIAgr..16.2945S. doi:10.1016/S2095-3119(17)61814-8.
  80. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (September 2015). "The contribution of outdoor air pollution sources to premature mortality on a global scale". Nature . 525 (7569): 367–371. Bibcode:2015Natur.525..367L. doi:10.1038/nature15371. ISSN   1476-4687. PMID   26381985. S2CID   4460927. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity.
  81. Diep F (31 January 2018). "California's Farms Are an Even Larger Source of Air Pollution Than We Thought". Pacific Standard . Retrieved 2 February 2018.
  82. Nemecek T, Poore J (1 June 2018). "Reducing food's environmental impacts through producers and consumers". Science . 360 (6392): 987–992. Bibcode:2018Sci...360..987P. doi: 10.1126/science.aaq0216 . ISSN   0036-8075. PMID   29853680. S2CID   206664954.
  83. "Education Data, Visualizations & Graphics on particulate pollution". www.cleanairresources.com. Archived from the original on 20 March 2019. Retrieved 20 March 2019.
  84. Goldstein AH, Koven CD, Heald CL, Fung IY (5 May 2009). "Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States". Proceedings of the National Academy of Sciences . 106 (22): 8835–40. Bibcode:2009PNAS..106.8835G. doi: 10.1073/pnas.0904128106 . PMC   2690056 . PMID   19451635.
  85. Fischetti M (2014). "Trees That Pollute". Scientific American . 310 (6): 14. Bibcode:2014SciAm.310f..14F. doi:10.1038/scientificamerican0614-14. PMID   25004561.
  86. "Volcanic Pollution |" . Retrieved 27 February 2022.
  87. "Air Pollution Emissions". US EPA. 2016. Retrieved 7 June 2022.
  88. Environment and Climate Change Canada (14 June 2010). "Air pollutant emissions". Canada.ca. Retrieved 7 June 2022.
  89. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (20 February 2020). "Environmental and Health Impacts of Air Pollution: A Review". Frontiers in Public Health . 8: 14. doi: 10.3389/fpubh.2020.00014 . ISSN   2296-2565. PMC   7044178 . PMID   32154200.
  90. "AP 42, Volume I". US Environmental Protection Agency . Archived from the original on 24 September 2010. Retrieved 29 August 2010.
  91. "United Kingdom's emission factor database". Naei.org.uk. Archived from the original on 7 July 2010. Retrieved 29 August 2010.
  92. "EMEP/EEA air pollutant emission inventory guidebook—2009". Eea.europa.eu. European Environmental Agency. 19 June 2009. Retrieved 11 December 2012.
  93. "Environmental Pollution". Theenvironmentalblog.org. 16 December 2011. Retrieved 11 December 2012.
  94. "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (reference manual)". Ipcc-nggip.iges.or.jp. Archived from the original on 21 March 2008. Retrieved 29 August 2010.
  95. US EPA O (10 December 2015). "Managing Air Quality - Air Pollutant Types". www.epa.gov. US Environmental Protection Agency . Retrieved 27 February 2022.
  96. Hidy G (2012). Aerosols: An Industrial and Environmental Science. Elsevier. p. 1. ISBN   978-0-323-14251-9.
  97. Carrington D (4 November 2021). "Ammonia from farms behind 60% of UK particulate air pollution – study". The Guardian . Retrieved 7 November 2021.
  98. "The Effect of Changing Background Emissions on External Cost Estimates for Secondary Particulates". Open environmental sciences. 2008.
  99. Johnson K (18 April 2009). "How Carbon Dioxide Became a 'Pollutant'". Wall Street Journal.
  100. "Carbon dioxide". The National Institute for Occupational Safety and Health (NIOSH). U.S. Department of Health & Human Services. 30 October 2019. Retrieved 19 April 2023.
  101. 1 2 "General hazards of Carbon Dioxide". Health and Safety Executive. UK Government. Retrieved 19 April 2023. For over a century CO2 has been recognised as a workplace hazard at high concentrations. CO2 is naturally present in the air we breathe at a concentration of about 0.037% and is not harmful to health at low concentrations.
  102. Air Quality Guidelines Global Update 2005: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Copenhagen, Denmark: World Health Organization. 2006. p. 12. ISBN   92-890-2192-6. Some pollutants, and especially those associated with greenhouse warming effects (carbon dioxide, nitrous oxide and methane)...
  103. Vaidyanathan G. "The Worst Climate Pollution Is Carbon Dioxide". Scientific American.
  104. Barbalace RC (7 November 2006). "CO2 Pollution and Global Warming: When does carbon dioxide become a pollutant?". Environmentalchemistry.com.
  105. Friedman L (22 August 2022). "Democrats Designed the Climate Law to Be a Game Changer. Here's How". The New York Times. Retrieved 19 April 2023.
  106. "Graphic: The relentless rise of carbon dioxide". Climate Change: Vital Signs of the Planet. NASA.
  107. "How much of U.S. carbon dioxide emissions are associated with electricity generation?" . Retrieved 16 December 2016.
  108. "Full Mauna Loa CO2 record". Earth System Research Laboratory. Retrieved 10 January 2017.
  109. "OECD Test Guidelines for Chemicals".
  110. "The Strange Lake Nyos CO2 Gas Disaster: Impacts and The Displacement and Return of Affected Communities".
  111. "Carbon Monoxide Poisoning – NHS". 17 October 2017.
  112. US EPA O (5 June 2017). "Basic Ozone Layer Science". www.epa.gov. US Environmental Protection Agency . Retrieved 7 June 2022.
  113. "Chlorofluorocarbons (CFCs) are heavier than air, so how do scientists suppose that these chemicals reach the altitude of the ozone layer to adversely affect it?". Scientific American. Retrieved 7 June 2022.
  114. "What is Particulate Matter? | Urban Environmental Program in New England". US EPA. 29 March 2022. Archived from the original on 7 June 2022. Retrieved 7 June 2022.
  115. Munsif R, Zubair M, Aziz A, Nadeem Zafar M (7 January 2021), Viskup R (ed.), "Industrial Air Emission Pollution: Potential Sources and Sustainable Mitigation", Environmental Emissions, IntechOpen, doi:10.5772/intechopen.93104, ISBN   978-1-83968-510-1, S2CID   234150821 , retrieved 7 June 2022
  116. "Evidence growing of air pollution's link to heart disease, death". Archived from the original on 3 June 2010. Retrieved 18 May 2010. // American Heart Association. 10 May 2010
  117. Balmes J, Fine J, Sheppard D (1987). "Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide". American Review of Respiratory Disease . 136 (5): 1117–21. doi:10.1164/ajrccm/136.5.1117. PMID   3674573.
  118. Singh R, Kumar S, Karmakar S, Siddiqui AJ, Mathur A, Adnan M, et al. (2021). "2: Causes, Consequences, and Control of Persistent Organic Pollutants". In Kumar N, Shukla V (eds.). Persistent Organic Pollutants in the Environment: Origin and Role. CRC Press. pp. 31–54. ISBN   978-1-003-05317-0 . Retrieved 11 June 2022.
  119. "Newly detected air pollutant mimics damaging effects of cigarette smoke" (PDF). Physorg.com. Retrieved 29 August 2010.
  120. "Infant Inhalation Of Ultra-fine Air Pollution Linked To Adult Lung Disease". Sciencedaily.com. 23 July 2009. Retrieved 29 August 2010.
  121. Kim KH, Jahan SA, Kabir E, Brown RJ (1 October 2013). "A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects". Environment International . 60: 71–80. Bibcode:2013EnInt..60...71K. doi:10.1016/j.envint.2013.07.019. ISSN   0160-4120. PMID   24013021.
  122. "Technical Overview of Volatile Organic Compounds". US Environmental Protection Agency. 14 March 2023. Retrieved 20 April 2023.
  123. Read "Rethinking the Ozone Problem in Urban and Regional Air Pollution" at NAP.edu. 1991. doi:10.17226/1889. ISBN   978-0-309-04631-2.
  124. "ESS Topic 6.3: Photochemical Smog". Amazing World of Science With Mr. Green. Retrieved 7 June 2022.
  125. Arkansas Energy Department of Energy and Environment. "Cars and Air Pollution". www.adeq.state.ar.us. Retrieved 24 August 2024.
  126. Acharya B (1 January 2018), Basu P (ed.), "Chapter 10 - Cleaning of Product Gas of Gasification", Biomass Gasification, Pyrolysis and Torrefaction (Third Edition), Academic Press, pp. 373–391, ISBN   978-0-12-812992-0 , retrieved 7 June 2022
  127. "smog | National Geographic Society". education.nationalgeographic.org. National Geographic . Retrieved 7 June 2022.
  128. "Hazardous Air Pollutants". US Environmental Protection Agency. 9 February 2023. Retrieved 29 April 2023.
  129. "Air quality standards". European Environment Agency. Retrieved 29 April 2023.
  130. 1 2 3 4 5 Vallero DA (1 October 2007). Fundamentals of Air Pollution (4th ed.). Academic Press. ISBN   9780124054813.
  131. Dons E (2011). "Impact of time-activity patterns on personal exposure to black carbon". Atmospheric Environment . 45 (21): 3594–3602. Bibcode:2011AtmEn..45.3594D. doi:10.1016/j.atmosenv.2011.03.064.
  132. Dons E (2019). "Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring". Atmospheric Environment . 213: 424–432. Bibcode:2019AtmEn.213..424D. doi:10.1016/j.atmosenv.2019.06.035. hdl: 10044/1/80194 . S2CID   197131423.
  133. Carrington D (22 September 2021). "WHO slashes guideline limits on air pollution from fossil fuels". The Guardian . Retrieved 22 September 2021.
  134. "Most of the World Breathes Unsafe Air, Taking More Than 2 Years Off Global Life Expectancy". AQLI. 14 June 2022. Retrieved 12 July 2022.
  135. 1 2 "Taking an Exposure History: What Are Possible Sources of Indoor Air Pollution | Environmental Medicine | ATSDR". www.atsdr.cdc.gov. 9 February 2021. Retrieved 8 July 2024.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  136. 1 2 Duflo E, Greenstone M, Hanna R (26 November 2008). "Indoor air pollution, health and economic well-being". S.A.P.I.EN.S. 1 (1). Retrieved 29 August 2010.
  137. 1 2 "Improved Clean Cookstoves". Project Drawdown. 7 February 2020. Retrieved 5 December 2020.
  138. Twilley N (1 April 2019). "The Hidden Air Pollution in Our Homes". The New Yorker via www.newyorker.com.
  139. "Bucknell tent death: Hannah Thomas-Jones died from carbon monoxide poisoning". BBC News . 17 January 2013. Retrieved 22 September 2015.
  140. "Chapter 6.2. Asbestos. Air quality guidelines, Second edition" (PDF). World Health Organization Europe. Archived from the original (PDF) on 24 May 2011.
  141. 1 2 Carrington D (18 May 2021). "Air pollution linked to 'huge' rise in child asthma GP visits". The Guardian . Retrieved 22 May 2021.
  142. Kampa M, Castanas E (1 January 2008). "Human health effects of air pollution". Environmental Pollution. Proceedings of the 4th International Workshop on Biomonitoring of Atmospheric Pollution (With Emphasis on Trace Elements). 151 (2): 362–367. Bibcode:2008EPoll.151..362K. doi:10.1016/j.envpol.2007.06.012. ISSN   0269-7491. PMID   17646040. S2CID   38513536.
  143. Dovjak M, Kukec A (2019). "Health Outcomes Related to Built Environments". Creating Healthy and Sustainable Buildings. Switzerland: Springer International Publishing. pp. 43–82. doi:10.1007/978-3-030-19412-3_2. ISBN   978-3-030-19411-6. OCLC   1285508857. S2CID   190160283.
  144. "Long-Term Exposure to Low Levels of Air Pollution Increases Risk of Heart and Lung Disease". Science Daily . 22 February 2021.
  145. Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ (1 April 2021). "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem". Environmental Research. 195: 110754. Bibcode:2021ER....19510754V. doi:10.1016/j.envres.2021.110754. ISSN   0013-9351. PMID   33577774.
  146. "Air quality and health". Who.int. World Health Organization . Retrieved 26 November 2011.
  147. US EPA O (22 February 2013). "Regulatory and Guidance Information by Topic: Air". www.epa.gov. Retrieved 10 November 2022.
  148. Majumder N, Kodali V, Velayutham M, Goldsmith T, Amedro J, Khramtsov VV, et al. (2022). "Aerosol physicochemical determinants of carbon black and ozone inhalation co-exposure induced pulmonary toxicity". Toxicological Sciences. 191 (1): 61–78. doi:10.1093/toxsci/kfac113. PMC   9887725 . PMID   36303316.
  149. Ritchie H, Roser M (2021). "What are the safest and cleanest sources of energy?". Our World in Data. Archived from the original on 15 January 2024. Data sources: Markandya & Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021).
  150. Roser M (18 March 2024). "Data review: how many people die from air pollution?". Our World in Data.
  151. Whitacre P (9 February 2021). "Air Pollution Accounts for 1 in 8 Deaths Worldwide, According to New WHO Estimates". National Institute of Environmental Health Sciences . Archived from the original on 4 November 2022. Retrieved 18 February 2022.
  152. Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V (9 April 2019). "Effects of fossil fuel and total anthropogenic emission removal on public health and climate". Proceedings of the National Academy of Sciences. 116 (15): 7192–7197. Bibcode:2019PNAS..116.7192L. doi: 10.1073/pnas.1819989116 . ISSN   0027-8424. PMC   6462052 . PMID   30910976.
  153. 1 2 Carrington D (12 March 2019). "Air pollution deaths are double previous estimates, finds research". The Guardian . Retrieved 12 March 2019.
  154. Dickie G (18 May 2022). "Pollution killing 9 million people a year, Africa hardest hit - study". Reuters . Retrieved 23 June 2022.
  155. World Health Organisation (29 October 2018). "More than 90% of the world's children breathe toxic air every day". www.who.int. Retrieved 13 August 2024.
  156. 1 2 "Ambient (outdoor) air pollution". www.who.int. World Health Organization . Retrieved 20 December 2021.
  157. Baccarelli AA, Hales N, Burnett RT, Jerrett M, Mix C, Dockery DW, et al. (1 November 2016). "Particulate Air Pollution, Exceptional Aging, and Rates of Centenarians: A Nationwide Analysis of the United States, 1980–2010". Environmental Health Perspectives . 124 (11): 1744–1750. doi:10.1289/EHP197. PMC   5089884 . PMID   27138440.
  158. Pope CA (15 December 2003). "Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease". Circulation . 109 (1): 71–77. doi: 10.1161/01.CIR.0000108927.80044.7F . PMID   14676145.
  159. Harris G (25 January 2014). "Beijing's Bad Air Would Be Step Up for Smoggy Delhi". The New York Times. ISSN   0362-4331 . Retrieved 28 April 2023.
  160. Owusu PA, Sarkodie SA (10 November 2020). "Global estimation of mortality, disability-adjusted life years and welfare cost from exposure to ambient air pollution". Science of the Total Environment . 742: 140636. Bibcode:2020ScTEn.74240636O. doi:10.1016/j.scitotenv.2020.140636. ISSN   0048-9697. PMID   32721745. S2CID   220848545.
  161. "Lancet study: Pollution killed 2.3 million Indians in 2019". BBC News. 18 May 2022. Retrieved 28 April 2023.
  162. Mr Chen's claim was made in The Lancet (December 2013 issue) and reported in The Daily Telegraph 8 January 2014 p. 15 'Air pollution killing up to 500,000 Chinese each year, admits former health minister.
  163. Feng T, Chen H, Liu J (15 December 2022). "Air pollution-induced health impacts and health economic losses in China driven by US demand exports". Journal of Environmental Management. 324: 116355. Bibcode:2022JEnvM.32416355F. doi:10.1016/j.jenvman.2022.116355. ISSN   0301-4797. PMID   36179470.
  164. 1 2 "Car emissions: taking tests out of the lab and onto the road – News". European Parliament. 25 February 2016. Retrieved 11 January 2018.
  165. "Air pollution causes early deaths". BBC. 21 February 2005. Retrieved 14 August 2012.
  166. "Complete Guide To The 'Toxin Tax' For Diesel Cars". Motorway. Retrieved 25 May 2017.
  167. "Study links traffic pollution to thousands of deaths". The Guardian . London, UK. 15 April 2008. Archived from the original on 20 April 2008. Retrieved 15 April 2008.
  168. Mailloux NA, Abel DW, Holloway T, Patz JA (16 May 2022). "Nationwide and Regional PM2.5-Related Air Quality Health Benefits From the Removal of Energy-Related Emissions in the United States". GeoHealth . 6 (5): e2022GH000603. Bibcode:2022GHeal...6..603M. doi:10.1029/2022GH000603. PMC   9109601 . PMID   35599962.
  169. 1 2 Henneman L, Choirat C, Dedoussi I, Dominici F, Roberts J, Zigler C (24 November 2023). "Mortality risk from United States coal electricity generation". Science . 382 (6673): 941–946. Bibcode:2023Sci...382..941H. doi:10.1126/science.adf4915. PMC   10870829 . PMID   37995235.
  170. 1 2 Nansai K, Tohno S, Chatani S, Kanemoto K, Kagawa S, Kondo Y, et al. (2 November 2021). "Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually". Nature Communications . 12 (1): 6286. Bibcode:2021NatCo..12.6286N. doi:10.1038/s41467-021-26348-y. ISSN   2041-1723. PMC   8563796 . PMID   34728619.
  171. Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ (1 April 2021). "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem". Environmental Research . 195: 110754. Bibcode:2021ER....19510754V. doi:10.1016/j.envres.2021.110754. ISSN   0013-9351. PMID   33577774. S2CID   231909881 . Retrieved 5 March 2021.
  172. Mackenzie J, Turrentine J (22 June 2021). "Air Pollution: Everything You Need to Know". NRDC. Retrieved 18 June 2022.
  173. Farrow A, Miller KA, Myllyvirta L (February 2020). Toxic air: The price of fossil fuels (PDF). Seoul: Greenpeace Southeast Asia.
  174. Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, et al. (2008). "Diesel exhaust inhalation increases thrombus formation in man". European Heart Journal . 29 (24): 3043–51. doi: 10.1093/eurheartj/ehn464 . PMID   18952612.
  175. Törnqvist HK, Mills NL, Gonzalez M, Miller MR, Robinson SD, Megson IL, et al. (2007). "Persistent Endothelial Dysfunction in Humans after Diesel Exhaust Inhalation". American Journal of Respiratory and Critical Care Medicine . 176 (4): 395–400. doi:10.1164/rccm.200606-872OC. PMID   17446340.
  176. "Air pollution from G20 consumers caused two million deaths in 2010". New Scientist . Retrieved 11 December 2021.
  177. Tankersley J (8 January 2010). "EPA proposes nation's strictest smog limits ever". Los Angeles Times . Retrieved 14 August 2012.
  178. "EPA slideshow" (PDF). Retrieved 11 December 2012.
  179. "EPA Strengthens Ozone Standards to Protect Public Health/Science-based standards to reduce sick days, asthma attacks, emergency room visits, greatly outweigh costs (10/1/2015)". Yosemite.epa.gov. Retrieved 11 January 2018.
  180. Grossni M (13 November 2008). "Human cost of valley's dirty air: $6.3 billion". Sacramento Bee. Archived from the original on 16 December 2008. Retrieved 14 August 2012.
  181. Sahagun L (13 November 2008). "Pollution saps state's economy, study says". Los Angeles Times . Retrieved 14 August 2012.
  182. Kay J (13 November 2008). "Bad air costing state's economy billions". San Francisco Chronicle . Retrieved 14 August 2012.
  183. "Human health may be at risk from long-term exposure to air pollution below current air quality standards and guidelines". British Medical Journal. Retrieved 18 October 2021.
  184. Strak M, Weinmayr G, Rodopoulou S, Chen J, Hoogh Kd, Andersen ZJ, et al. (2 September 2021). "Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis". BMJ . 374: n1904. doi:10.1136/bmj.n1904. ISSN   1756-1833. PMC   8409282 . PMID   34470785.
  185. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. (May 2017). "Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015". The Lancet. 389 (10082): 1907–1918. Bibcode:2017Lanc..389.1907C. doi:10.1016/S0140-6736(17)30505-6. ISSN   0140-6736. PMC   5439030 . PMID   28408086.
  186. 1 2 de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P (8 March 2022). "Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses". Journal of Internal Medicine. 291 (6): 779–800. doi:10.1111/joim.13467. eISSN   1365-2796. ISSN   0954-6820. PMC   9310863 . PMID   35138681.
  187. 1 2 Mayor S (12 June 2016). "Air pollution is a leading risk factor for stroke, global study shows". BMJ. 353: i3272. doi:10.1136/bmj.i3272. eISSN   1756-1833. PMID   27298274.
  188. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. (August 2016). "Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". The Lancet Neurology. 15 (9): 913–924. doi:10.1016/S1474-4422(16)30073-4. hdl:10292/14061. ISSN   1474-4422. PMID   27291521.
  189. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. (2007). "Long-term exposure to air pollution and incidence of cardiovascular events in women". The New England Journal of Medicine . 356 (5): 447–58. doi:10.1056/NEJMoa054409. PMID   17267905.
  190. Andersen ZJ, Kristiansen LC, Andersen KK, Olsen TS, Hvidberg M, Jensen SS, et al. (2011). "Stroke and Long-Term Exposure to Outdoor Air Pollution From Nitrogen Dioxide: A Cohort Study". Stroke. 43 (2): 320–25. doi: 10.1161/STROKEAHA.111.629246 . PMID   22052517.
  191. Provost E, Madhloum N, Int Panis L, De Boever P, Nawrot T (May 2015). "Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence". PLOS ONE . 10 (5): e0127014. Bibcode:2015PLoSO..1027014P. doi: 10.1371/journal.pone.0127014 . PMC   4430520 . PMID   25970426. S2CID   11741224.
  192. Brook R, Rajagopalan S, Pope CI, Brook J, Bhatnagar A (2010). "Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association". Circulation . 121 (21): 2331–78. doi: 10.1161/cir.0b013e3181dbece1 . hdl:2027.42/78373. PMID   20458016.
  193. Louwies T, Int Panis L, Kicinski M, De Boever P, Nawrot TS (2013). "Retinal Microvascular Responses to Short-Term Changes in Particulate Air Pollution in Healthy Adults". Environmental Health Perspectives . 121 (9): 1011–16. doi:10.1289/ehp.1205721. PMC   3764070 . PMID   23777785. S2CID   6748539.
  194. Gehring U, Wijga AH, Brauer M, Fischer P, de Jongste JC, Kerkhof M, et al. (2010). "Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life". American Journal of Respiratory and Critical Care Medicine . 181 (6): 596–603. doi:10.1164/rccm.200906-0858OC. PMID   19965811.
  195. Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, et al. (2011). "Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. [Research Support, Non-U.S. Gov't]". American Journal of Respiratory and Critical Care Medicine . 183 (4): 455–461. doi:10.1164/rccm.201006-0937OC. PMID   20870755. S2CID   3945468.
  196. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society (1996). "Health effects of outdoor air pollution". American Journal of Respiratory and Critical Care Medicine . 153 (1): 3–50. doi:10.1164/ajrccm.153.1.8542133. PMID   8542133.
  197. Andersen ZJ, Bonnelykke K, Hvidberg M, Jensen SS, Ketzel M, Loft S, et al. (2011). "Long-term exposure to air pollution and asthma hospitalisations in older adults: a cohort study". Thorax. 67 (1): 6–11. doi: 10.1136/thoraxjnl-2011-200711 . PMID   21890573.
  198. Zoidis JD (1999). "The Impact of Air Pollution on COPD". RT: For Decision Makers in Respiratory Care.
  199. World Health Organisation. "Ambient air pollution". www.who.int. Retrieved 10 November 2023.
  200. "Understanding Air Pollution". Respiratory Health Association. Retrieved 15 August 2022.
  201. Holland WW, Reid DD. "The urban factor in chronic bronchitis" Lancet 1965;I:445–448.
  202. Gauderman W (2007). "Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study". The Lancet . 369 (9561): 571–77. CiteSeerX   10.1.1.541.1258 . doi:10.1016/S0140-6736(07)60037-3. PMID   17307103. S2CID   852646.
  203. Int Panis L (2017). "Short-term air pollution exposure decreases lung function: a repeated measures study in healthy adults". Environmental Health . 16 (1): 60. Bibcode:2017EnvHe..16...60I. doi: 10.1186/s12940-017-0271-z . PMC   5471732 . PMID   28615020. S2CID   20491472.
  204. Sunyer J (2001). "Urban air pollution and Chronic Obstructive Pulmonary disease: a review". European Respiratory Journal . 17 (5): 1024–33. doi: 10.1183/09031936.01.17510240 . PMID   11488305.
  205. 1 2 "Cancer breakthrough is a 'wake-up' call on danger of air pollution". The Guardian . 10 September 2022. Retrieved 11 September 2022.
  206. Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, et al. (5 April 2023). "Lung adenocarcinoma promotion by air pollutants". Nature. 616 (7955): 159–167. Bibcode:2023Natur.616..159H. doi:10.1038/s41586-023-05874-3. ISSN   1476-4687. PMC   7614604 . PMID   37020004.
  207. "Education Data, Visualizations & Graphics on Air Quality and PM2.5". www.cleanairresources.com. Retrieved 19 September 2019.
  208. Gallagher J (17 December 2015). "Cancer is not just 'bad luck' but down to environment, study suggests". BBC . Retrieved 17 December 2015.
  209. 1 2 Chen H, Goldberg M, Villeneuve P (October–December 2008). "A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases". Reviews on Environmental Health . 23 (4): 243–97. doi:10.1515/reveh.2008.23.4.243. PMID   19235364. S2CID   24481623.
  210. Saber E, Heydari G (May 2012). "Flow patterns and deposition fraction of particles in the range of 0.1–10 μm at trachea and the first third generations under different breathing conditions". Computers in Biology and Medicine . 42 (5): 631–38. doi:10.1016/j.compbiomed.2012.03.002. PMID   22445097.
  211. Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sorensen M, et al. (2011). "Lung cancer incidence and long-term exposure to air pollution from traffic. [Research Support, Non-U.S. Gov't]". Environmental Health Perspectives . 119 (6): 860–65. doi:10.1289/ehp.1002353. PMC   3114823 . PMID   21227886. S2CID   1323189.
  212. Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sorensen M, et al. (2011). "Air pollution from traffic and cancer incidence: a Danish cohort study". Environmental Health . 10 (1): 67. Bibcode:2011EnvHe..10...67R. doi: 10.1186/1476-069X-10-67 . PMC   3157417 . PMID   21771295. S2CID   376897.
  213. Yacong Bo (2021). "Reduced Ambient PM2.5 Was Associated with a Decreased Risk of Chronic Kidney Disease: A Longitudinal Cohort Study". Environmental Science & Technology . 55 (10): 6876–6883. Bibcode:2021EnST...55.6876B. doi:10.1021/acs.est.1c00552. PMID   33904723. S2CID   233408693.
  214. Blum MF, Surapaneni A, Stewart JD, Liao D, Yanosky JD, Whitsel EA, et al. (6 March 2020). "Particulate Matter and Albuminuria, Glomerular Filtration Rate, and Incident CKD". Clinical Journal of the American Society of Nephrology. 15 (3): 311–319. doi:10.2215/CJN.08350719. ISSN   1555-9041. PMC   7057299 . PMID   32108020.
  215. 1 2 3 4 5 6 Conforti A, Mascia M, Cioffi G, De Angelis C, Coppola G, De Rosa P, et al. (30 December 2018). "Air pollution and female fertility: a systematic review of literature". Reproductive Biology and Endocrinology. 16 (1): 117. doi: 10.1186/s12958-018-0433-z . ISSN   1477-7827. PMC   6311303 . PMID   30594197.
  216. Canipari R, De Santis L, Cecconi S (January 2020). "Female Fertility and Environmental Pollution". International Journal of Environmental Research and Public Health. 17 (23): 8802. doi: 10.3390/ijerph17238802 . ISSN   1660-4601. PMC   7730072 . PMID   33256215.
  217. da Silva Junior FC, Felipe MB, Castro DE, Araújo SC, Sisenando HC, Batistuzzo de Medeiros SR (1 June 2021). "A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs". Environmental Pollution. 278: 116838. Bibcode:2021EPoll.27816838D. doi:10.1016/j.envpol.2021.116838. ISSN   0269-7491. PMID   33714059. S2CID   232222865.
  218. Plunk EC, Richards SM (January 2020). "Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis". International Journal of Molecular Sciences. 21 (23): 9191. doi: 10.3390/ijms21239191 . ISSN   1422-0067. PMC   7731392 . PMID   33276521.
  219. Perono GA, Petrik JJ, Thomas PJ, Holloway AC (1 January 2022). "The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function". Current Research in Toxicology. 3: 100070. Bibcode:2022CRTox...300070P. doi:10.1016/j.crtox.2022.100070. ISSN   2666-027X. PMC   9043394 . PMID   35492299.
  220. 1 2 Jurewicz J, Dziewirska E, Radwan M, Hanke W (23 December 2018). "Air pollution from natural and anthropic sources and male fertility". Reproductive Biology and Endocrinology. 16 (1): 109. doi: 10.1186/s12958-018-0430-2 . ISSN   1477-7827. PMC   6304234 . PMID   30579357.
  221. Frutos V, González-Comadrán M, Solà I, Jacquemin B, Carreras R, Checa Vizcaíno MA (2 January 2015). "Impact of air pollution on fertility: a systematic review". Gynecological Endocrinology. 31 (1): 7–13. doi:10.3109/09513590.2014.958992. ISSN   0951-3590. PMID   25212280. S2CID   41594539.
  222. Checa Vizcaíno MA, González-Comadran M, Jacquemin B (September 2016). "Outdoor air pollution and human infertility: a systematic review". Fertility and Sterility. 106 (4): 897–904.e1. doi:10.1016/j.fertnstert.2016.07.1110. ISSN   0015-0282. PMID   27513553.
  223. 1 2 3 Carré J, Gatimel N, Moreau J, Parinaud J, Léandri R (28 July 2017). "Does air pollution play a role in infertility?: a systematic review". Environmental Health. 16 (1): 82. Bibcode:2017EnvHe..16...82C. doi: 10.1186/s12940-017-0291-8 . ISSN   1476-069X. PMC   5534122 . PMID   28754128.
  224. Jurewicz J, Dziewirska E, Radwan M, Hanke W (2018). "Air pollution from natural and anthropic sources and male fertility". Reproductive Biology and Endocrinology. 16 (1): 109. doi: 10.1186/s12958-018-0430-2 . PMC   6304234 . PMID   30579357. S2CID   57376088 . Retrieved 5 October 2022.
  225. 1 2 Air pollution and child health: prescribing clean air. Summary. Geneva: World Health Organisation. 2018. pp. 2–6.
  226. 1 2 Gordon B, Mackay R, Rehfuess E (2004). "Polluted Cities: The Air Children Breathe". Inheriting the World: The Atlas of Children's Health and the Environment. World Health Organisation.
  227. Pieters N, Koppen G, Van Poppel M, De Prins S, Cox B, Dons E, et al. (March 2015). "Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children". Environmental Health Perspectives . 123 (7): 737–42. doi:10.1289/ehp.1408121. PMC   4492263 . PMID   25756964.
  228. Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, et al. (1 June 2012). "Prenatal Polycyclic Aromatic Hydrocarbon (PAH) Exposure and Child Behavior at Age 6–7 Years". Environmental Health Perspectives . 120 (6): 921–926. doi:10.1289/ehp.1104315. PMC   3385432 . PMID   22440811.
  229. Perera FP, Chang Hw, Tang D, Roen EL, Herbstman J, Margolis A, et al. (5 November 2014). "Early-Life Exposure to Polycyclic Aromatic Hydrocarbons and ADHD Behavior Problems". PLOS ONE . 9 (11): e111670. Bibcode:2014PLoSO...9k1670P. doi: 10.1371/journal.pone.0111670 . ISSN   1932-6203. PMC   4221082 . PMID   25372862.
  230. Becerra TA, Wilhelm M, Olsen J, Cockburn M, Ritz B (1 March 2013). "Ambient Air Pollution and Autism in Los Angeles County, California". Environmental Health Perspectives . 121 (3): 380–386. doi:10.1289/ehp.1205827. PMC   3621187 . PMID   23249813.
  231. Carter SA, Rahman MM, Lin JC, Shu YH, Chow T, Yu X, et al. (1 January 2022). "In utero exposure to near-roadway air pollution and autism spectrum disorder in children". Environment International. 158: 106898. Bibcode:2022EnInt.15806898C. doi:10.1016/j.envint.2021.106898. ISSN   0160-4120. PMC   8688235 . PMID   34627014.
  232. Flanagan E, Malmqvist E, Rittner R, Gustafsson P, Källén K, Oudin A (8 March 2023). "Exposure to local, source-specific ambient air pollution during pregnancy and autism in children: a cohort study from southern Sweden". Scientific Reports. 13 (1): 3848. Bibcode:2023NatSR..13.3848F. doi:10.1038/s41598-023-30877-5. ISSN   2045-2322. PMC   9995328 . PMID   36890287.
  233. Ritz B, Liew Z, Yan Q, Cuia X, Virk J, Ketzel M, et al. (December 2018). "Air pollution and autism in Denmark". Environmental Epidemiology. 2 (4): e028. doi:10.1097/EE9.0000000000000028. PMC   6474375 . PMID   31008439.
  234. Perera F, Herbstman J (1 April 2011). "Prenatal environmental exposures, epigenetics, and disease". Reproductive Toxicology . Prenatal Programming and Toxicity II (PPTOX II): Role of Environmental Stressors in the Developmental Origins of Disease. 31 (3): 363–373. Bibcode:2011RepTx..31..363P. doi:10.1016/j.reprotox.2010.12.055. ISSN   0890-6238. PMC   3171169 . PMID   21256208.
  235. Papamitsou T, Sirak S, Kavvadas D (January–March 2020). "Air pollution and preterm birth: a recommendation for further study in Greece". Hippokratia . 24 (1): 44. PMC   7733367 . PMID   33364740.
  236. Fleischer NL, Merialdi M, van Donkelaar A, Vadillo-Ortega F, Martin RV, Betran AP, et al. (1 April 2014). "Outdoor air pollution, preterm birth, and low birth weight: analysis of the World Health Organization global survey on maternal and perinatal health". Environmental Health Perspectives . 122 (4): 425–30. doi:10.1289/ehp.1306837. ISSN   1552-9924. PMC   3984219 . PMID   24508912. S2CID   3947454.
  237. 1 2 3 Malley CS, Kuylenstierna JC, Vallack HW, Henze DK, Blencowe H, Ashmore MR (1 April 2017). "Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment" (PDF). Environment International . 101: 173–82. Bibcode:2017EnInt.101..173M. doi: 10.1016/j.envint.2017.01.023 . ISSN   1873-6750. PMID   28196630.
  238. Bank EI (19 October 2022). Finance in Africa - Navigating the financial landscape in turbulent times. European Investment Bank. ISBN   978-92-861-5382-2.
  239. "Silent Suffocation in Africa - Air Pollution is a Growing Menace, Affecting the Poorest Children the Most" (PDF). UNICEF.
  240. "The cost of air pollution in Africa". Africa Renewal. Retrieved 31 October 2022.
  241. Wang X, Ding H, Ryan L, Xu X (1 May 1997). "Association between air pollution and low birth weight: a community-based study". Environmental Health Perspectives. 105 (5): 514–20. doi:10.1289/ehp.97105514. ISSN   0091-6765. PMC   1469882 . PMID   9222137. S2CID   2707126.
  242. Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C (1 May 2008). "A Cohort Study of Traffic-Related Air Pollution Impacts on Birth Outcomes". Environmental Health Perspectives . 116 (5): 680–6. doi:10.1289/ehp.10952. PMC   2367679 . PMID   18470315. S2CID   7721551.
  243. Bos I, De Boever P, Int Panis L, Meeusen R (2014). "Physical Activity, Air Pollution and the Brain". Sports Medicine . 44 (11): 1505–18. doi:10.1007/s40279-014-0222-6. PMID   25119155. S2CID   207493297.
  244. Air pollution linked to much greater risk of dementia The Guardian
  245. Julvez J, López-Vicente M, Warembourg C, Maitre L, Philippat C, Gützkow KB, et al. (1 September 2021). "Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries". Environmental Pollution . 284: 117404. Bibcode:2021EPoll.28417404J. doi:10.1016/j.envpol.2021.117404. ISSN   0269-7491. PMC   8287594 . PMID   34077897.
  246. 1 2 Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM (June 2020). "Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders". Pharmacology & Therapeutics . 210: 107523. doi:10.1016/j.pharmthera.2020.107523. ISSN   1879-016X. PMC   7245732 . PMID   32165138.
  247. Volk HE, Perera F, Braun JM, Kingsley SL, Gray K, Buckley J, et al. (1 May 2021). "Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO". Environmental Research . 196: 110320. Bibcode:2021ER....19610320V. doi:10.1016/j.envres.2020.110320. ISSN   0013-9351. PMC   8060371 . PMID   33098817.
  248. Shang L, Yang L, Yang W, Huang L, Qi C, Yang Z, et al. (1 July 2020). "Effects of prenatal exposure to NO2 on children's neurodevelopment: a systematic review and meta-analysis". Environmental Science and Pollution Research . 27 (20): 24786–24798. Bibcode:2020ESPR...2724786S. doi:10.1007/s11356-020-08832-y. ISSN   1614-7499. PMC   7329770 . PMID   32356052. S2CID   216650267.
  249. Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdörster G, et al. (5 June 2014). "Early Postnatal Exposure to Ultrafine Particulate Matter Air Pollution: Persistent Ventriculomegaly, Neurochemical Disruption, and Glial Activation Preferentially in Male Mice". Environmental Health Perspectives. 122 (9): 939–945. doi:10.1289/ehp.1307984. ISSN   0091-6765. PMC   4154219 . PMID   24901756.
  250. McEnaney M (7 June 2014). "Air pollution link discovered to autism, schizophrenia risks". Tech Times. Retrieved 8 June 2014.
  251. "New evidence links air pollution to autism, schizophrenia". ScienceDaily. 5 June 2014. Retrieved 28 August 2024.
  252. Persico C, Marcotte DE (November 2022). Air Quality and Suicide. Working Paper Series. National Bureau of Economic Research. doi:10.3386/w30626.{{cite book}}: CS1 maint: date and year (link)
  253. Symons A (15 December 2022). "Suicide rates rise as air quality worsens, study finds". euronews. Retrieved 19 December 2022.
  254. "New Study Demonstrates Indoor Building Environment Has Significant, Positive Impact on Cognitive Function". The New York Times . 26 October 2015. Archived from the original on 9 November 2020. Retrieved 10 November 2015.
  255. Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (2015). "Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments". Environmental Health Perspectives . 124 (6): 805–12. doi:10.1289/ehp.1510037. PMC   4892924 . PMID   26502459. S2CID   12756582.
  256. Cedeño Laurent JG, MacNaughton P, Jones E, Young AS, Bliss M, Flanigan S, et al. (1 September 2021). "Associations between acute exposures to PM2.5 and carbon dioxide indoors and cognitive function in office workers: a multicountry longitudinal prospective observational study". Environmental Research Letters . 16 (9): 094047. Bibcode:2021ERL....16i4047C. doi:10.1088/1748-9326/ac1bd8. ISSN   1748-9326. PMC   8942432 . PMID   35330988. S2CID   237462480.
  257. Qian D (29 June 2017). "Air Pollution and Mortality in the Medicare Population". New England Journal of Medicine . 376 (26): 2513–2522. doi:10.1056/NEJMoa1702747. PMC   5766848 . PMID   28657878. S2CID   12038778.
  258. Pathak M, Kuttippurath J (2022). "Air quality trends in rural India: analysis of NO2 pollution using satellite measurements". Environmental Science: Processes & Impacts. 24 (12): 2437–2449. doi:10.1039/D2EM00293K. ISSN   2050-7887. PMID   36413251. S2CID   253261324.
  259. Woodyatt A (3 June 2020). "Scientists say they have found the cleanest air on Earth". CNN. Retrieved 3 June 2020.
  260. Hong C, Mueller ND, Burney JA, Zhang Y, AghaKouchak A, Moore FC, et al. (2020). "Impacts of ozone and climate change on yields of perennial crops in California". Nature Food. 1 (3): 166–172. doi:10.1038/s43016-020-0043-8. S2CID   216425480.
  261. Li H, Tang M, Cao A, Guo L (2022). "Assessing the relationship between air pollution, agricultural insurance, and agricultural green total factor productivity: evidence from China". Environmental Science and Pollution Research. 29 (52): 78381–78395. Bibcode:2022ESPR...2978381L. doi:10.1007/s11356-022-21287-7. ISSN   0944-1344. PMID   35689771. S2CID   249551277.
  262. Kashyap R, Kuttippurath J, Patel VK (2023). "Improved air quality leads to enhanced vegetation growth during the COVID–19 lockdown in India". Applied Geography. 151: 102869. Bibcode:2023AppGe.15102869K. doi:10.1016/j.apgeog.2022.102869. ISSN   0143-6228. PMC   9805897 . PMID   36619606. S2CID   255439854.
  263. Kuttippurath J, Singh A, Dash SP, Mallic N, Clerbaux C, Van Damme M, et al. (2020). "Record high levels of atmospheric ammonia over India: Spatial and temporal analyses". Science of the Total Environment. 740: 139986. Bibcode:2020ScTEn.74039986K. doi:10.1016/j.scitotenv.2020.139986. ISSN   0048-9697. PMID   32927535. S2CID   221722300.
  264. RWDI Consulting (2005). "Health and air quality 2005 – Phase 2: Valuation of health impacts from air quality in the lower Fraser Valley airshed" (PDF). Archived from the original (PDF) on 15 May 2011. Retrieved 29 August 2010.
  265. UN Environment (11 October 2018). "Air pollution linked to "huge" reduction in intelligence". UN Environment. Retrieved 1 July 2019.
  266. Lavy V, Rachkovski G, Yoresh O (2022). Heads Up: Does Air Pollution Cause Workplace Accidents? (Report). Cambridge, MA: National Bureau of Economic Research. doi:10.3386/w30715.
  267. Smith A (12 February 2021). "Pollution on other planets could help us find aliens, Nasa says" . The Independent . Archived from the original on 12 February 2021. Retrieved 6 March 2021.
  268. "Can Alien Smog Lead Us to Extraterrestrial Civilizations?". Wired . Retrieved 6 March 2021.
  269. Kopparapu R, Arney G, Haqq-Misra J, Lustig-Yaeger J, Villanueva G (22 February 2021). "Nitrogen Dioxide Pollution as a Signature of Extraterrestrial Technology". The Astrophysical Journal . 908 (2): 164. arXiv: 2102.05027 . Bibcode:2021ApJ...908..164K. doi: 10.3847/1538-4357/abd7f7 . ISSN   1538-4357. S2CID   231855390.
  270. Chakrabarti S. "20th anniversary of world's worst industrial disaster". Australian Broadcasting Corporation.
  271. Bell ML, Davis DL, Fletcher T (January 2004). "A Retrospective Assessment of Mortality from the London Smog Episode of 1952: The Role of Influenza and Pollution". Environ Health Perspect . 112 (1): 6–8. doi:10.1289/ehp.6539. PMC   1241789 . PMID   14698923. S2CID   13045119.
  272. Meselson M, Guillemin J, Hugh-Jones M (November 1994). "The Sverdlovsk anthrax outbreak of 1979" (PDF). Science. 266 (5188): 1202–08. Bibcode:1994Sci...266.1202M. doi:10.1126/science.7973702. PMID   7973702. Archived from the original (PDF) on 21 September 2006.
  273. Davis D (2002). When Smoke Ran Like Water: Tales of Environmental Deception and the Battle Against Pollution . Basic Books. ISBN   978-0-465-01521-4.
  274. Landrigan P (25 November 2016). "Air pollution and health". Lancet . 2 (1): E4–E5. doi:10.1016/S2468-2667(16)30023-8. PMID   29249479.
  275. Camahan JV, Thurston DL (1998). "Trade-off Modeling for Product and Manufacturing Process Design for the Environment". Journal of Industrial Ecology . 2 (1): 79–92. Bibcode:1998JInEc...2...79C. doi:10.1162/jiec.1998.2.1.79. ISSN   1530-9290. S2CID   154730593.
  276. Jacobson MZ, von Krauland AK, Coughlin SJ, Palmer FC, Smith MM (1 January 2022). "Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage" . Renewable Energy . 184: 430–442. Bibcode:2022REne..184..430J. doi:10.1016/j.renene.2021.11.067. ISSN   0960-1481. S2CID   244820608.
  277. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (1 April 2019). "The role of renewable energy in the global energy transformation". Energy Strategy Reviews . 24: 38–50. Bibcode:2019EneSR..24...38G. doi:10.1016/j.esr.2019.01.006. ISSN   2211-467X. S2CID   135283552.
  278. Burns J, Boogaard H, Polus S, Pfadenhauer LM, Rohwer AC, van-Erp AM, et al. (20 May 2019). "Interventions to Reduce Ambient Particulate Matter Air Pollution and Their Effect on Health". Cochrane Database of Systematic Reviews . 2019 (5): CD010919. doi:10.1002/14651858.CD010919.pub2. PMC   6526394 . PMID   31106396.
  279. Connolly K (30 August 2022). "Germany's €9 train tickets scheme 'saved 1.8m tons of CO2 emissions'". The Guardian. Retrieved 6 December 2022.
  280. Fensterstock JC, Kurtzweg JA, Ozolins G (1971). "Reduction of Air Pollution Potential through Environmental Planning". Journal of the Air Pollution Control Association . 21 (7): 395–399. doi:10.1080/00022470.1971.10469547. PMID   5148260.
  281. Fensterstock, Ketcham and Walsh, The Relationship of Land Use and Transportation Planning to Air Quality Management, Ed. George Hagevik, May 1972.
  282. "The Importance of Development Plans/Land Use Policy for Development Control". www.oas.org. Retrieved 17 June 2022.
  283. Kuttippurath J, Patel VK, Pathak M, Singh A (2022). "Improvements in SO2 pollution in India: role of technology and environmental regulations". Environmental Science and Pollution Research. 29 (52): 78637–78649. Bibcode:2022ESPR...2978637K. doi:10.1007/s11356-022-21319-2. ISSN   1614-7499. PMC   9189448 . PMID   35696063. S2CID   249613744.
  284. Palmer J (12 November 2011). "'Smog-Eating' Material Breaking into the Big Time". BBC News .
  285. "Nanotechnology to gobble up pollution". BBC News . 15 May 2014. Retrieved 29 October 2014.
  286. 1 2 Jacobson MZ (2015). "100% clean and renewable wind, water, and sunlight (WWS) all-sector energy road maps for the 50 United States". Energy and Environmental Science . 8 (7): 2093–2117. doi:10.1039/C5EE01283J.
  287. Krelling C, Badami MG (1 January 2022). "Cost-effectiveness analysis of compressed natural gas implementation in the public bus transit fleet in Delhi, India". Transport Policy. 115: 49–61. doi:10.1016/j.tranpol.2021.10.019. ISSN   0967-070X.
  288. Landrigan PJ (1 January 2017). "Air pollution and health". The Lancet Public Health . 2 (1): e4–e5. doi:10.1016/S2468-2667(16)30023-8. ISSN   2468-2667. PMID   29249479.
  289. Lyons TJ, Kenworthy JR, Newman PW (1 January 1990). "Urban structure and air pollution". Atmospheric Environment. Part B. Urban Atmosphere. 24 (1): 43–48. Bibcode:1990AtmEB..24...43L. doi:10.1016/0957-1272(90)90008-I. ISSN   0957-1272.
  290. McVeigh K (28 September 2021). "'False choice': is deep-sea mining required for an electric vehicle revolution?". The Guardian . Retrieved 24 October 2021.
  291. Opray M (24 August 2017). "Nickel mining: the hidden environmental cost of electric cars". The Guardian . Retrieved 24 October 2021.
  292. "Los Angeles Airport Pollutes City Air For Miles Downwind". Chemical and Engineering news. 30 May 2014. Retrieved 13 December 2019.
  293. "NASA Confirms Biofuels Reduce Jet Emissions". Flyingmag.com. 23 March 2017. Retrieved 11 January 2018.
  294. "Interseasonal Heat Transfer – Seasonal Heat Storage – GSHC – Renewable Heat & Renewable Cooling from ThermalBanks – Efficient Renewable Energy – Hybrid Renewable Energy Systems". Icax.co.uk. Retrieved 11 January 2018.
  295. Ahuja D, Tatsutani M (7 April 2009). "Sustainable energy for developing countries". S.A.P.I.EN.S (in French). 2 (1). ISSN   1993-3800.
  296. Oyedepo SO (23 July 2012). "Energy and sustainable development in Nigeria: the way forward". Energy, Sustainability and Society . 2 (1): 15. Bibcode:2012ESusS...2...15O. doi: 10.1186/2192-0567-2-15 . ISSN   2192-0567. S2CID   40436190.
  297. "Road Rubber". Sciencenetlinks.com Science Updates – Science NetLinks. Retrieved 11 January 2018.
  298. Simeonova E (March 2018). "Congestion Pricing, Air Pollution and Children's Health". National Bureau of Environmental Research . Working Paper Series. doi:10.3386/w24410.
  299. Academy S (16 April 2022). "Impact Of Air Pollution On The Environment". Samphina. Retrieved 18 June 2022.
  300. "Subway air pollution damages passenger health". Chemistryworld.com. Retrieved 11 January 2018.
  301. Singla S, Bansal D, Misra A, Raheja G (31 August 2018). "Towards an integrated framework for air quality monitoring and exposure estimation-a review". Environmental Monitoring and Assessment. 190 (9): 562. Bibcode:2018EMnAs.190..562S. doi:10.1007/s10661-018-6940-8. ISSN   1573-2959. PMID   30167891. S2CID   52135179.
  302. Zarrar H, Dyo V (1 October 2023). "Drive-by Air Pollution Sensing Systems: Challenges and Future Directions". IEEE Sensors Journal . 23 (19): 23692–23703. Bibcode:2023ISenJ..2323692Z. doi:10.1109/JSEN.2023.3305779. hdl:10547/625961. S2CID   261152934.
  303. Kaivonen S, Ngai EC (1 February 2020). "Real-time air pollution monitoring with sensors on city bus". Digital Communications and Networks. 6 (1): 23–30. doi:10.1016/j.dcan.2019.03.003. ISSN   2352-8648. S2CID   88485659.
  304. Zhang R, Zhang Y, Lin H, Feng X, Fu TM, Wang Y (April 2020). "NOx Emission Reduction and Recovery during COVID-19 in East China". Atmosphere . 11 (4): 433. Bibcode:2020Atmos..11..433Z. doi: 10.3390/atmos11040433 . S2CID   219002558.
  305. "Airborne Nitrogen Dioxide Plummets Over China". earthobservatory.nasa.gov. 28 February 2020. Archived from the original on 2 April 2020. Retrieved 6 April 2020.
  306. "Analysis: Coronavirus temporarily reduced China's CO2 emissions by a quarter". Carbon Brief. 19 February 2020. Archived from the original on 4 March 2020. Retrieved 6 April 2020.
  307. "New monitoring technologies can help cities combat air pollution". World Economic Forum. 15 April 2021. Retrieved 24 October 2021.
  308. Yu T, Wang W, Ciren P, Sun R (18 October 2018). "An assessment of air-quality monitoring station locations based on satellite observations". International Journal of Remote Sensing . 39 (20): 6463–6478. Bibcode:2018IJRS...39.6463Y. doi:10.1080/01431161.2018.1460505. ISSN   0143-1161. S2CID   135457028.
  309. "Pollution is Personal". The Atlantic. Retrieved 20 December 2021.
  310. "World Air Map: Live air quality everywhere in the world". Plume Labs Air Report. Retrieved 20 December 2021.
  311. "Live Animated Air Quality Map (AQI, PM2.5...) | AirVisual". IQAir . Retrieved 27 January 2022.
  312. European Commission (11 May 2011). "European Commission - Environment - Air - Air quality". Archived from the original on 11 May 2011.
  313. Canada Ea (10 September 2007). "About the Air Quality Health Index". Canada.ca. Retrieved 27 February 2022.
  314. "Environment Canada – Air Quality". Ec.gc.ca. 10 September 2007. Retrieved 11 November 2011.
  315. "Environment Canada – AQHI categories and explanations". Ec.gc.ca. 16 April 2008. Retrieved 11 November 2011.
  316. "German TA-Luft is guaranteed by us". centrotherm clean solutions. Archived from the original on 29 June 2022. Retrieved 27 February 2022.
  317. 1 2 Europa (1996). "Summaries of EU legislation – Management and quality of ambient air" . Retrieved 24 January 2015.
  318. "PRESS RELEASE No 58/08 Judgment of the Court of Justice in Case C-237/07" (PDF). European Court of Justice . 2008. Retrieved 24 January 2015.
  319. Overview of relevant case law and critical state of air pollution protection in the EU: Winfried Huck, Jennifer Maaß, Saparya Sood, Tahar Benmaghnia, Alexander Schulte, Sarah Heß and Marc-Anthony Walter, The Right to Breathe Clean Air and Access to Justice - Legal State of Play in International, European and National Law (2021) in 8(22) International Institutions: Transnational Networks eJournal, available at: http://dx.doi.org/10.2139/ssrn.3808572
  320. European Commission. "Air quality: Commission sends final warning to UK over levels of fine particle pollution". Archived from the original on 11 May 2011. Retrieved 7 April 2011.
  321. House of Commons Environmental Audit Committee (2010). "Environmental Audit Committee – Fifth Report Air Quality" . Retrieved 24 January 2015.
  322. 1 2 Mulholland H (11 March 2011). "Britain fends off threat of £300m fine over London air pollution". The Guardian . Retrieved 24 January 2015.
  323. "Every Breath You Take" (PDF). London Assembly Environment Committee. May 2009. Archived from the original (PDF) on 22 February 2015. Retrieved 22 February 2015.
  324. BBC (6 December 2010). "Threat to sue over London congestion charge scrapping". BBC News . Retrieved 24 January 2015.
  325. Risse-Kappen T (1995). Bringing transnational relations back in: non-state actors, domestic structures, and international institutions. Cambridge: Cambridge University Press. pp. 3–34.
  326. 1 2 Pattberg P, Stripple J (2008). "Beyond the public and private divide: remapping transnational climate governance in the 21st century". International Environmental Agreements: Politics, Law and Economics . 8 (4): 367–388. Bibcode:2008IEAPL...8..367P. doi: 10.1007/s10784-008-9085-3 . S2CID   62890754.
  327. Roman M (2010). "Governing from the middle: the C40 Cities Leadership Group". Corporate Governance. 10 (1): 73–84. doi:10.1108/14720701011021120.
  328. "Tribes do their part to keep air clean. Now, they want to make sure pollution from afar doesn't put that at risk". USA TODAY. Retrieved 16 April 2024.
  329. "Air pollution hot spot" . Retrieved 24 April 2014.
  330. Pettit D (14 December 2014). "Global Toll of Air Pollution: Over 3 Million Deaths Each Year". Switchboard NRDC. Archived from the original on 8 May 2014.
  331. "Watch air pollution flow across the planet in real time". Science Magazine News. 28 November 2016.
  332. 1 2 Drury R, Belliveau M, Kuhn JS, Shipra B (Spring 1999). "Pollution Trading and Environmental Justice: Los Angeles' Failed Experiment in Air Pollution Policy". Duke Environmental Law & Policy Forum . 9 (231).
  333. 1 2 Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD (2011). "Understanding the Cumulative Impacts of Inequalities in Environmental Health: Implications for Policy". Health Affairs . 30 (5): 879–87. doi: 10.1377/hlthaff.2011.0153 . PMID   21555471.
  334. Mohai P, Lantz P, Morenoff J, House J, Mero R (2009). "Racial and Socioeocnomic Disparities in Residential Proximity". American Journal of Public Health . 99 (3): S649–56. doi:10.2105/ajph.2007.131383. PMC   2774179 . PMID   19890171.
  335. Lerner S (2010). "Sacrifice Zones: The Front Lines of Toxic Chemical Exposure in the United States". Port Arthur, Texas: Public Housing Residents Breathe Contaminated Air from Nearby Refineries and Chemical Plants. MIT Press.
  336. Vohra K, Marais EA, Bloss WJ, Schwartz J, Mickley LJ, Van Damme M, et al. (8 April 2022). "Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018". Science Advances . 8 (14): eabm4435. Bibcode:2022SciA....8M4435V. doi:10.1126/sciadv.abm4435. ISSN   2375-2548. PMC   8993110 . PMID   35394832.
  337. Michelozzi P, Forastiere F, Fusco D, Perucci CA, Ostro B, Ancona C, et al. (1998). "Air Pollution and Daily Mortality in Rome, Italy". Occupational and Environmental Medicine . 55 (9): 605–10. doi:10.1136/oem.55.9.605. JSTOR   27730990. PMC   1757645 . PMID   9861182.
  338. The Daily Telegraph 8 January 2014 'Air pollution killing up to 500,000 Chinese each year, admits former health minister'.
  339. "World's Most Polluted Cities in 2020 - PM2.5 Ranking | AirVisual". www.iqair.com. Retrieved 1 February 2022.
  340. "World Air Quality Index (AQI) Ranking | IQAir". www.iqair.com. Retrieved 24 May 2022.
  341. Darame M (29 November 2019). "En Afrique de l'Ouest, une pollution mortelle mais d'ampleur inconnue" [In West Africa, deadly pollution but of unknown magnitude]. Le Monde (in French).
  342. Organisation for Economic Co-operation and Development (1 March 2012). "Environmental Outlook to 2050 - OECD" (PDF). OECD .

Further reading