Asbestosis

Last updated
Asbestosis
Asbestosis - Fibrous pleural plaque (7468458430).jpg
A plaque caused by asbestos exposure on the diaphragmatic pleura
Specialty Pulmonology
Symptoms Shortness of breath, cough, wheezing, chest pain [1]
Complications Lung cancer, mesothelioma, pleural fibrosis, pulmonary heart disease [1] [2]
Usual onset~10-40 years after long-term exposure [3]
Causes Asbestos [4]
Diagnostic method History of exposure, medical imaging [4]
PreventionEliminating exposure [4]
Treatment Supportive care, stopping smoking, oxygen therapy, [5] [4] lung replacement
Prognosis Up to 40% continue to worsen [6]
Frequency157,000 (2015) [7]
Deaths3,600 (2015) [8]

Asbestosis is long-term inflammation and scarring of the lungs due to asbestos fibers. [4] Symptoms may include shortness of breath, cough, wheezing, and chest tightness. [1] Complications may include lung cancer, mesothelioma, and pulmonary heart disease. [1] [9]

Contents

Asbestosis is caused by breathing in asbestos fibers. It requires a relatively large exposure over a long period of time, which typically only occur in those who directly work with asbestos. [1] [9] All types of asbestos fibers are associated with an increased risk. [1] It is generally recommended that currently existing and undamaged asbestos be left undisturbed. [1] Diagnosis is based upon a history of exposure together with medical imaging. [4] Asbestosis is a type of interstitial pulmonary fibrosis. [4]

There is no specific treatment. [1] Recommendations may include influenza vaccination, pneumococcal vaccination, oxygen therapy, and stopping smoking. [1] Asbestosis affected about 157,000 people and resulted in 3,600 deaths in 2015. [8] [7] Asbestos use has been banned in a number of countries in an effort to prevent disease. [1]

Statistics from the UK's Health and Safety Executive showed that in 2019, there were 490 asbestosis deaths. [10]

Signs and symptoms

The signs and symptoms of asbestosis typically manifest after a significant amount of time has passed following asbestos exposure, often several decades under current conditions in the US. [11] The primary symptom of asbestosis is generally the slow onset of shortness of breath, especially with physical activity. [12] Clinically advanced cases of asbestosis may lead to respiratory failure. When a stethoscope is used to listen to the lungs of a person with asbestosis, they may hear inspiratory "crackles".

The characteristic pulmonary function finding in asbestosis is a restrictive ventilatory defect. [13] This manifests as a reduction in lung volumes, particularly the vital capacity (VC) and total lung capacity (TLC). The TLC may be reduced through alveolar wall thickening; however, this is not always the case. [14] Large airway function, as reflected by FEV1/FVC, is generally well preserved. [11] In severe cases, the drastic reduction in lung function due to the stiffening of the lungs and reduced TLC may induce right-sided heart failure (cor pulmonale). [15] [16] In addition to a restrictive defect, asbestosis may produce reduction in diffusion capacity and a low amount of oxygen in the blood of the arteries.

Cause

White asbestos fibers identified in room air analysis, magnified 5000 times using a scanning electron microscope Weissasbestfaser 5000fach Rasterelektronenmikroskop.jpg
White asbestos fibers identified in room air analysis, magnified 5000 times using a scanning electron microscope

The cause of asbestosis is the inhalation of microscopic asbestos mineral fibers suspended in the air. [17] In the 1930s, E. R. A. Merewether found that greater exposure resulted in greater risk. [18]

Risk factors

Those who worked in the production, milling, manufacturing, installation, or removal of asbestos products before the late 1970s are at an increased risk of exposure to asbestos. This includes people who worked in these jobs in the United States and Canada. For example:

Construction workers who inhale asbestos from contaminated building materials such as paint, spackling, roof shingles, masonry compounds, and drywall may get asbestosis. The amount and length of an individual's exposure to asbestos are the primary factors that determine the level of risk. The longer one is exposed to the substance, the higher their risk of developing lung damage.

Families of exposed workers can be affected because asbestos fibers from clothing and hair can end up in the home. People who live near mines can also be exposed to airborne asbestos fibers. [19]

Pathogenesis

Asbestosis is the scarring of lung tissue (beginning around terminal bronchioles and alveolar ducts and extending into the alveolar walls) resulting from the inhalation of asbestos fibers. There are two types of fibers: amphibole (thin and straight) and serpentine (curly). All forms of asbestos fibers are responsible for human disease as they are able to penetrate deeply into the lungs. When such fibers reach the alveoli (air sacs) in the lung, where oxygen is transferred into the blood, the foreign bodies (asbestos fibers) cause the activation of the lungs' local immune system and provoke an inflammatory reaction dominated by lung macrophages that respond to chemotactic factors activated by the fibers. [20] This inflammatory reaction can be described as chronic rather than acute, with a slow ongoing progression of the immune system attempting to eliminate the foreign fibers. Macrophages phagocytose (ingest) the fibers and stimulate fibroblasts to deposit connective tissue.

Due to the asbestos fibers' natural resistance to digestion, some macrophages are killed and others release inflammatory chemical signals, attracting further lung macrophages and fibrolastic cells that synthesize fibrous scar tissue, which eventually becomes diffuse and can progress in heavily exposed individuals. This tissue can be seen microscopically soon after exposure in animal models. Some asbestos fibers become layered by an iron-containing proteinaceous material (ferruginous body) in cases of heavy exposure where about 10% of the fibers become coated. Most inhaled asbestos fibers remain uncoated. About 20% of the inhaled fibers are transported by cytoskeletal components of the alveolar epithelium to the interstitial compartment of the lung where they interact with macrophages and mesenchymal cells. The cytokines, transforming growth factor beta and tumor necrosis factor alpha, appear to play major roles in the development of scarring inasmuch as the process can be blocked in animal models by preventing the expression of the growth factors. [21] [22] The result is fibrosis in the interstitial space, thus asbestosis.

This fibrotic scarring causes alveolar walls to thicken, which reduces elasticity and gas diffusion, reducing oxygen transfer to the blood as well as the removal of carbon dioxide. This can result in shortness of breath, a common symptom exhibited by individuals with asbestosis. [23] Those with asbestosis may be more vulnerable to tumor growth (mesothelioma), because asbestos decreases the cytotoxicity of natural killer cells and impairs the functioning of T helper cells, which detect abnormal cell growth. [24]

Diagnosis

Micrograph of asbestosis showing the characteristic ferruginous bodies and marked interstitial fibrosis (or scarring). H&E stain. Asbestosis high mag.jpg
Micrograph of asbestosis showing the characteristic ferruginous bodies and marked interstitial fibrosis (or scarring). H&E stain.
Close-up asbestosis right lower zone ILO 2/2 S/S Asbestosis.ILO 2-2 S-S.jpg
Close-up asbestosis right lower zone ILO 2/2 S/S
Lateral chest X-ray in asbestosis shows plaquing of the diaphragm Early Asbestosis in a Retired Pipe Fitter.jpg
Lateral chest X-ray in asbestosis shows plaquing of the diaphragm

According to the American Thoracic Society (ATS), the general diagnostic criteria for asbestosis are: [11]

The abnormal chest x-ray and its interpretation remain the most important factors in establishing the presence of pulmonary fibrosis. [11] The findings usually appear as small, irregular parenchymal opacities, primarily in the lung bases. Using the ILO Classification system, "s", "t", and/or "u" opacities predominate. CT or high-resolution CT (HRCT) are more sensitive than plain radiography at detecting pulmonary fibrosis (as well as any underlying pleural changes). More than 50% of people affected with asbestosis develop plaques in the parietal pleura, the space between the chest wall and lungs. Once apparent, the radiographic findings in asbestosis may slowly progress or remain static, even in the absence of further asbestos exposure. [25] Rapid progression suggests an alternative diagnosis.

Asbestosis resembles many other diffuse interstitial lung diseases, including other pneumoconiosis. The differential diagnosis includes idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis, sarcoidosis, and others. The presence of pleural plaques may provide supportive evidence of causation by asbestos. Although lung biopsy is usually not necessary, the presence of asbestos bodies in association with pulmonary fibrosis establishes the diagnosis. [26] Conversely, interstitial pulmonary fibrosis in the absence of asbestos bodies is most likely not asbestosis. [11] Asbestos bodies in the absence of fibrosis indicate exposure, not disease.

Treatment

There is no cure available for asbestosis. [27] Oxygen therapy at home is often necessary to relieve the shortness of breath and correct underlying low blood oxygen levels. Supportive treatment of symptoms includes respiratory physiotherapy to remove secretions from the lungs by postural drainage, chest percussion, and vibration. Nebulized medications may be prescribed in order to loosen secretions or treat underlying chronic obstructive pulmonary disease. Immunization against pneumococcal pneumonia and annual influenza vaccination is administered due to increased sensitivity to the diseases. Those with asbestosis are at increased risk for certain cancers. If the person smokes, quitting the habit reduces further damage. Periodic pulmonary function tests, chest x-rays, and clinical evaluations, including cancer screening/evaluations, are given to detect additional hazards.

Society and culture

On 21 December 1906 H. Montague Murray, M.D., F.R.C.P., [28] testified before a British committee concerning a patient who died in April 1900. Murray indicated that fibrosis of the lungs caused by asbestos dust was a plausible cause of the patient's death. [29] [30]

The death of English textile worker Nellie Kershaw in 1924 from pulmonary asbestosis was the first case to be described in medical literature, and the first published account of disease definitely attributed to occupational asbestos exposure. However, her former employers (Turner Brothers Asbestos) denied that asbestosis even existed because the medical condition was not officially recognised at the time. As a result, they accepted no liability for her injuries and paid no compensation, either to Kershaw during her final illness or to her family after her death. Even so, the findings of the inquest into her death were highly influential insofar as they led to a parliamentary enquiry by the British Parliament. The enquiry formally acknowledged the existence of asbestosis, recognised that it was hazardous to health and concluded that it was irrefutably linked to the prolonged inhalation of asbestos dust. Having established the existence of asbestosis on a medical and judicial basis, the report resulted in the first Asbestos Industry Regulations being published in 1931, which came into effect on 1 March 1932. [31] [32]

The first lawsuits against asbestos manufacturers occurred in 1929. Since then, many lawsuits have been filed against asbestos manufacturers and employers, for neglecting to implement safety measures after the link between asbestos, asbestosis and mesothelioma became known (some reports seem to place this as early as 1898 in modern times). The liability resulting from the sheer number of lawsuits and people affected has reached billions of U.S. dollars. The amounts and method of allocating compensation have been the source of many court cases, and government attempts at resolution of existing and future cases.

To date, about 100 companies have declared bankruptcy at least partially due to asbestos-related liability. In accordance with Chapter 11 and § 524(g) of the U.S. federal bankruptcy code, a company may transfer its liabilities and certain assets to an asbestos personal injury trust, which is then responsible for compensating present and future claimants. Since 1988, 60 trusts have been established to pay claims with about $37 billion in total assets. From 1988 through 2010, analysis from the United States Government Accountability Office indicates that trusts have paid about 3.3 million claims valued at about $17.5 billion. [33]

Notable people

This is a partial list of notable people who have died from lung fibrosis associated with asbestos:

Related Research Articles

<span class="mw-page-title-main">Berylliosis</span> Medical condition

Berylliosis, or chronic beryllium disease, is a chronic allergic-type lung response and chronic lung disease caused by exposure to beryllium and its compounds, a form of beryllium poisoning. It is distinct from acute beryllium poisoning, which became rare following occupational exposure limits established around 1950. Berylliosis is an occupational lung disease.

<span class="mw-page-title-main">Mesothelioma</span> Cancer associated with asbestos

Mesothelioma is a type of cancer that develops from the thin layer of tissue that covers many of the internal organs. The area most commonly affected is the lining of the lungs and chest wall. Less commonly the lining of the abdomen and rarely the sac surrounding the heart, or the sac surrounding the testis may be affected. Signs and symptoms of mesothelioma may include shortness of breath due to fluid around the lung, a swollen abdomen, chest wall pain, cough, feeling tired, and weight loss. These symptoms typically come on slowly.

<span class="mw-page-title-main">Pneumoconiosis</span> Class of interstitial lung diseases

Pneumoconiosis is the general term for a class of interstitial lung disease where inhalation of dust has caused interstitial fibrosis. The three most common types are asbestosis, silicosis, and coal miner's lung. Pneumoconiosis often causes restrictive impairment, although diagnosable pneumoconiosis can occur without measurable impairment of lung function. Depending on extent and severity, it may cause death within months or years, or it may never produce symptoms. It is usually an occupational lung disease, typically from years of dust exposure during work in mining; textile milling; shipbuilding, ship repairing, and/or shipbreaking; sandblasting; industrial tasks; rock drilling ; or agriculture. It is one of the most common occupational diseases in the world.

<span class="mw-page-title-main">Silicosis</span> Pneumoconiosis caused by inhalation of silica, quartz or slate particles

Silicosis is a form of occupational lung disease caused by inhalation of crystalline silica dust. It is marked by inflammation and scarring in the form of nodular lesions in the upper lobes of the lungs. It is a type of pneumoconiosis. Silicosis, particularly the acute form, is characterized by shortness of breath, cough, fever, and cyanosis. It may often be misdiagnosed as pulmonary edema, pneumonia, or tuberculosis. Using workplace controls, silicosis is almost always a preventable disease.

<span class="mw-page-title-main">Pulmonary alveolar proteinosis</span> Medical condition

Pulmonary alveolar proteinosis (PAP) is a rare lung disorder characterized by an abnormal accumulation of surfactant-derived lipoprotein compounds within the alveoli of the lung. The accumulated substances interfere with the normal gas exchange and expansion of the lungs, ultimately leading to difficulty breathing and a predisposition to developing lung infections. The causes of PAP may be grouped into primary, secondary, and congenital causes, although the most common cause is a primary autoimmune condition in an individual.

<span class="mw-page-title-main">Interstitial lung disease</span> Group of diseases

Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of respiratory diseases affecting the interstitium and space around the alveoli of the lungs. It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, and perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage, but in interstitial lung disease, the repair process is disrupted, and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The disease presents itself with the following symptoms: shortness of breath, nonproductive coughing, fatigue, and weight loss, which tend to develop slowly, over several months. The average rate of survival for someone with this disease is between three and five years. The term ILD is used to distinguish these diseases from obstructive airways diseases.

<span class="mw-page-title-main">Pulmonary fibrosis</span> Disease that causes scarring of the lungs

Pulmonary fibrosis is a condition in which the lungs become scarred over time. Symptoms include shortness of breath, a dry cough, feeling tired, weight loss, and nail clubbing. Complications may include pulmonary hypertension, respiratory failure, pneumothorax, and lung cancer.

<span class="mw-page-title-main">Pneumonitis</span> General inflammation of lung tissue

Pneumonitis describes general inflammation of lung tissue. Possible causative agents include radiation therapy of the chest, exposure to medications used during chemo-therapy, the inhalation of debris, aspiration, herbicides or fluorocarbons and some systemic diseases. If unresolved, continued inflammation can result in irreparable damage such as pulmonary fibrosis.

<span class="mw-page-title-main">Black lung disease</span> Human disease caused by long-term exposure to coal dust

Black lung disease (BLD), also known as coal-mine dust lung disease, or simply black lung, is an occupational type of pneumoconiosis caused by long-term inhalation and deposition of coal dust in the lungs and the consequent lung tissue's reaction to its presence. It is common in coal miners and others who work with coal. It is similar to both silicosis from inhaling silica dust and asbestosis from inhaling asbestos dust. Inhaled coal dust progressively builds up in the lungs and leads to inflammation, fibrosis, and in worse cases, necrosis.

<span class="mw-page-title-main">Respiratory disease</span> Disease of the respiratory system

Respiratory diseases, or lung diseases, are pathological conditions affecting the organs and tissues that make gas exchange difficult in air-breathing animals. They include conditions of the respiratory tract including the trachea, bronchi, bronchioles, alveoli, pleurae, pleural cavity, the nerves and muscles of respiration. Respiratory diseases range from mild and self-limiting, such as the common cold, influenza, and pharyngitis to life-threatening diseases such as bacterial pneumonia, pulmonary embolism, tuberculosis, acute asthma, lung cancer, and severe acute respiratory syndromes, such as COVID-19. Respiratory diseases can be classified in many different ways, including by the organ or tissue involved, by the type and pattern of associated signs and symptoms, or by the cause of the disease.

Occupational lung diseases comprise a broad group of diseases, including occupational asthma, industrial bronchitis, chronic obstructive pulmonary disease (COPD), bronchiolitis obliterans, inhalation injury, interstitial lung diseases, infections, lung cancer and mesothelioma. These can be caused directly or due to immunological response to an exposure to a variety of dusts, chemicals, proteins or organisms. Occupational cases of interstitial lung disease may be misdiagnosed as COPD, idiopathic pulmonary fibrosis, or a myriad of other diseases; leading to a delay in identification of the causative agent.

<span class="mw-page-title-main">Idiopathic pulmonary fibrosis</span> Medical condition

Idiopathic pulmonary fibrosis (IPF), or (formerly) fibrosing alveolitis, is a rare, progressive illness of the respiratory system, characterized by the thickening and stiffening of lung tissue, associated with the formation of scar tissue. It is a type of chronic scarring lung disease characterized by a progressive and irreversible decline in lung function. The tissue in the lungs becomes thick and stiff, which affects the tissue that surrounds the air sacs in the lungs. Symptoms typically include gradual onset of shortness of breath and a dry cough. Other changes may include feeling tired, and abnormally large and dome shaped finger and toenails. Complications may include pulmonary hypertension, heart failure, pneumonia or pulmonary embolism.

<span class="mw-page-title-main">Usual interstitial pneumonia</span> Medical condition

Usual interstitial pneumonia (UIP) is a form of lung disease characterized by progressive scarring of both lungs. The scarring (fibrosis) involves the pulmonary interstitium. UIP is thus classified as a form of interstitial lung disease.

Restrictive lung diseases are a category of extrapulmonary, pleural, or parenchymal respiratory diseases that restrict lung expansion, resulting in a decreased lung volume, an increased work of breathing, and inadequate ventilation and/or oxygenation. Pulmonary function test demonstrates a decrease in the forced vital capacity.

<span class="mw-page-title-main">Fibrothorax</span> Medical condition involving fibrosis of the pleural space

Fibrothorax is a medical condition characterised by severe scarring (fibrosis) and fusion of the layers of the pleural space surrounding the lungs resulting in decreased movement of the lung and ribcage. The main symptom of fibrothorax is shortness of breath. There also may be recurrent fluid collections surrounding the lungs. Fibrothorax may occur as a complication of many diseases, including infection of the pleural space known as an empyema or bleeding into the pleural space known as a haemothorax.

<span class="mw-page-title-main">Asbestos-related diseases</span> Medical condition

Asbestos-related diseases are disorders of the lung and pleura caused by the inhalation of asbestos fibres. Asbestos-related diseases include non-malignant disorders such as asbestosis, diffuse pleural thickening, pleural plaques, pleural effusion, rounded atelectasis and malignancies such as lung cancer and malignant mesothelioma.

<span class="mw-page-title-main">Flock worker's lung</span> Occupational disease

Flock worker's lung is an occupational lung disease caused by exposure to flock, small fibers that are glued to a backing in order to create a specific texture. People who work in flocking are at risk of inhaling small pieces of the flock fibers, which causes interstitial lung disease. The disease was initially described in 1998, when a group of workers at a flocking plant developed interstitial lung disease of unknown cause.

Indium lung is a rare occupational lung disease caused by exposure to respirable indium in the form of indium tin oxide. It is classified as an interstitial lung disease.

<span class="mw-page-title-main">Emphysema</span> Medical condition

Emphysema is any air-filled enlargement in the body's tissues. Most commonly emphysema refers to the enlargement of air spaces (alveoli) in the lungs, and is also known as pulmonary emphysema.

<span class="mw-page-title-main">Health impact of asbestos</span>

All types of asbestos fibers are known to cause serious health hazards in humans. The most common diseases associated with chronic exposure to asbestos are asbestosis and mesothelioma.

References

  1. 1 2 3 4 5 6 7 8 9 10 "Asbestosis symptoms and treatments". NHS Inform. NHS. 6 April 2017. Archived from the original on 2 November 2023. Retrieved 19 December 2017.
  2. "World Health Organization. Air Quality Guidelines, 2nd Edition—Asbestos" (PDF). Archived from the original (PDF) on May 24, 2011. Retrieved 2009-12-20.
  3. Thillai M, Moller DR, Meyer KC (2017). Clinical Handbook of Interstitial Lung Disease. CRC Press. p. PT635. ISBN   9781351650083.
  4. 1 2 3 4 5 6 7 Lara AR (May 2014). "Asbestosis - Pulmonary Disorders". Merck Manuals Professional Edition. Merck. Archived from the original on 29 March 2023. Retrieved 19 December 2017.
  5. "Asbestosis symptoms and treatments". NHS Inform. 6 April 2017. Retrieved 19 December 2017.
  6. Smedley J, Dick F, Sadhra S (2013). Oxford Handbook of Occupational Health. OUP Oxford. p. PT165. ISBN   9780191653308.
  7. 1 2 GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (8 October 2016). "Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1545–1602. doi:10.1016/S0140-6736(16)31678-6. PMC   5055577 . PMID   27733282.
  8. 1 2 GBD 2015 Mortality and Causes of Death Collaborators (8 October 2016). "Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1459–1544. doi:10.1016/s0140-6736(16)31012-1. PMC   5388903 . PMID   27733281.
  9. 1 2 World Health Organization. Regional Office for Europe., ed. (2000). "6.2 – Asbestos". Air Quality Guidelines (PDF) (2nd ed.). Copenhagen, Denmark: WHO. pp. 1–14. ISBN   9789289013581. Archived from the original (PDF) on 24 May 2011. Retrieved 20 December 2009.
  10. "Asbestos-related disease statistics, Great Britain 2021" (PDF). Health & Safety Executive. December 2021. Archived from the original (PDF) on 2022-03-05.
  11. 1 2 3 4 5 American Thoracic Society (September 2004). "Diagnosis and initial management of nonmalignant diseases related to asbestos". Am. J. Respir. Crit. Care Med. 170 (6): 691–715. doi:10.1164/rccm.200310-1436ST. PMID   15355871. S2CID   16084774.
  12. Sporn, Thomas A, Roggli, Victor L, Oury, Tim D (2004). Pathology of asbestos-associated diseases. Berlin: Springer. ISBN   978-0-387-20090-3.
  13. Miller A, Lilis R, Godbold J, Chan E, Selikoff IJ (February 1992). "Relationship of pulmonary function to radiographic interstitial fibrosis in 2,611 long-term asbestos insulators. An assessment of the International Labour Office profusion score". Am. Rev. Respir. Dis. 145 (2 Pt 1): 263–70. doi:10.1164/ajrccm/145.2_pt_1.263. PMID   1736729.
  14. Kilburn KH, Warshaw RH (October 1994). "Airways obstruction from asbestos exposure. Effects of asbestosis and smoking". Chest. 106 (4): 1061–70. doi: 10.1378/chest.106.4.1061 . PMID   7924474.
  15. Roggli VL, Sanders LL (2000). "Asbestos content of lung tissue and carcinoma of the lung: a clinicopathologic correlation and mineral fiber analysis of 234 cases". Ann Occup Hyg. 44 (2): 109–17. doi:10.1016/s0003-4878(99)00067-8. PMID   10717262.
  16. Burdorf A, Swuste P (1999). "An expert system for the evaluation of historical asbestos exposure as diagnostic criterion in asbestos-related diseases". Ann Occup Hyg. 43 (1): 57–66. doi: 10.1093/annhyg/43.1.57 . PMID   10028894.
  17. "Asbestos". CDC. October 9, 2013. Retrieved 13 November 2015.
  18. Smith DD (2015). The Health Effects of Asbestos: An Evidence-based Approach. CRC Press. ISBN   9781498728409.
  19. "A chronic lung disease caused by inhaling asbestos fibers-Asbestosis - Symptoms & causes". Mayo Clinic .
  20. Warheit D. B., Hill L. H., George G., Brody A. R. (1986). "Time Course of chemotactic factor generation and the macrophage response to asbestos inhalation". Am. Rev. Respir. Dis. 134: 128–133.
  21. Liu J.-Y., Brass D. M., Hoyle G. W., Brody A. R. (1998). "TNF-α receptor knockout mice are protected from the fibroproliferative effects of inhaled asbestos fibers". Am. J. Pathol. 153 (6): 1839–1847. doi:10.1016/s0002-9440(10)65698-2. PMC   1866331 . PMID   9846974.
  22. Liu J.-Y., Sime P. J., Wu T., Warshamana G. S., Pociask D., Tsai S.-Y., Brody A. R. (2001). "Transforming Growth Factor-β1 overexpression in Tumor Necrosis Factor-α receptor knockout mice induces fibroproliferative lung disease". Am. J. Respir. Cell Mol. Biol. 25 (1): 3–7. doi:10.1165/ajrcmb.25.1.4481. PMID   11472967.
  23. Brody, A. R. Asbestosis. In: Comprehensive Toxicology. (Roth, R. A., Ed.), Elsevier Science, New York, Vol. 8(25), pp. 393–413, 1997.
  24. Nishimura Y, Maeda M, Kumagai-Takei N, Lee S, Matsuzaki H, Wada Y, Nishiike-Wada T, Iguchi H, Otsuki T (May 2013). "Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases". Environmental Health and Preventive Medicine. 18 (3): 198–204. Bibcode:2013EHPM...18..198N. doi:10.1007/s12199-013-0333-y. ISSN   1342-078X. PMC   3650181 . PMID   23463177.
  25. Becklake MR, Case BW (December 1994). "Fiber burden and asbestos-related lung disease: determinants of dose-response relationships". Am. J. Respir. Crit. Care Med. 150 (6 Pt 1): 1488–92. doi:10.1164/ajrccm.150.6.7952604. PMID   7952604.
  26. Craighead JE, Abraham JL, Churg A, et al. (October 1982). "The pathology of asbestos-associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema. Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health". Arch. Pathol. Lab. Med. 106 (11): 544–96. PMID   6897166.
  27. Berger, Stephen A., Castleman, Barry I. (2005). Asbestos: medical and legal aspects. Gaithersburg MD: Aspen. ISBN   978-0-7355-5260-9.
  28. "Hubert Montague Murray". Royal College of Physicians of London.
  29. Murray, H. M. (1907). Statement Before the Committee in the Minutes of Evidence, Report of the Departmental Committee on Compensation for Industrial Disease (PDF). pp. 127–128.
  30. Greenberg M (1982). "Classical syndromes in occupational medicine: The Montague Murray case". American Journal of Industrial Medicine. 3 (3). Wiley: 351–356. doi:10.1002/ajim.4700030311. ISSN   0271-3586. PMID   6763474.
  31. Cooke WE (1924-07-26). "Fibrosis of the Lungs due to the Inhalation of Asbestos Dust". Br Med J . 2 (3317): 140–2, 147. doi:10.1136/bmj.2.3317.147. PMC   2304688 . PMID   20771679.
  32. Selikoff IJ, Greenberg M (1991-02-20). "A Landmark Case in Asbestosis" (PDF). JAMA . 265 (7): 898–901. doi:10.1001/jama.265.7.898. PMID   1825122.
  33. Report to the Chairman, Committee on the Judiciary, House of Representatives Retrieved April 30, 2016.