Health physics

Last updated
1947 Oak Ridge National Laboratory poster. Hppost3.jpg
1947 Oak Ridge National Laboratory poster.

Health physics is the applied physics of radiation protection for health and health care purposes. It is the science concerned with the recognition, evaluation, and control of health hazards to permit the safe use and application of ionizing radiation. Health physics professionals promote excellence in the science and practice of radiation protection and safety. Health physicists principally work at facilities where radionuclides or other sources of ionizing radiation (such as X-ray generators) are used or produced; these include hospitals, government laboratories, academic and research institutions, nuclear power plants, regulatory agencies, and manufacturing plants.

Applied physics connection between physics and engineering

Applied physics is intended for a particular technological or practical use. It is usually considered as a bridge or connection between physics and engineering.

Radiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency (IAEA) as "The protection of people from harmful effects of exposure to ionizing radiation, and the means for achieving this". Exposure can be from a source of radiation external to the human body or due to internal irradiation caused by the ingestion of radioactive contamination.

Health, as defined by the World Health Organization (WHO), is "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity." This definition has been subject to controversy, as it may have limited value for implementation. Health may be defined as the ability to adapt and manage physical, mental and social challenges throughout life.

Contents

Scope

There are many sub-specialties in the field of health physics, [1] including

Internal dosimetry is the science and art of internal ionising radiation dose assessment due to radionuclides incorporated inside the human body.

Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.

Radioactive waste wastes that contain nuclear material

Radioactive waste is waste that contains radioactive material. Radioactive waste is usually a by-product of nuclear power generation and other applications of nuclear fission or nuclear technology, such as research and medicine. Radioactive waste is hazardous to most forms of life and the environment, and is regulated by government agencies in order to protect human health and the environment.

Operational health physics

The subfield of operational health physics, also called applied health physics in older sources, focuses on field work and the practical application of health physics knowledge to real-world situations, rather than basic research. [2]

Medical physics

The field of Health Physics is related to the field of medical physics [3] and they are similar to each other in that practitioners rely on much of the same fundamental science (i.e., radiation physics, biology, etc.) in both fields. Health physicists, however, focus on the evaluation and protection of human health from radiation, whereas medical health physicists and medical physicists support the use of radiation and other physics-based technologies by medical practitioners for the diagnosis and treatment of disease. [4]

Medical physics application of physics concepts, theories and methods to medicine or healthcare

Medical physics is, in general, the application of physics concepts, theories, and methods to medicine or healthcare. Medical physics departments may be found in hospitals or universities.

Radiation protection instruments

Practical ionising radiation measurement is essential for health physics. It enables the evaluation of protection measures, and the assessment of the radiation dose likely, or actually received by individuals. The provision of such instruments is normally controlled by law. In the UK it is the Ionising Radiation Regulations 1999.

The measuring instruments for radiation protection are both "installed" (in a fixed position) and portable (hand-held or transportable).

Installed instruments

Installed instruments are fixed in positions which are known to be important in assessing the general radiation hazard in an area. Examples are installed "area" radiation monitors, Gamma interlock monitors, personnel exit monitors, and airborne contamination monitors.

The area monitor will measure the ambient radiation, usually X-Ray, Gamma or neutrons; these are radiations which can have significant radiation levels over a range in excess of tens of metres from their source, and thereby cover a wide area.

Interlock monitors are used in applications to prevent inadvertent exposure of workers to an excess dose by preventing personnel access to an area when a high radiation level is present.

Airborne contamination monitors measure the concentration of radioactive particles in the atmosphere to guard against radioactive particles being deposited in the lungs of personnel.

Personnel exit monitors are used to monitor workers who are exiting a "contamination controlled" or potentially contaminated area. These can be in the form of hand monitors, clothing frisk probes, or whole body monitors. These monitor the surface of the workers body and clothing to check if any radioactive contamination has been deposited. These generally measure alpha or beta or gamma, or combinations of these.

Radioactive contamination Presence of radioactive substances where they are undesirable

Radioactive contamination, also called radiological contamination, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids or gases, where their presence is unintended or undesirable.

The UK National Physical Laboratory has published a good practice guide through its Ionising Radiation Metrology Forum concerning the provision of such equipment and the methodology of calculating the alarm levels to be used. [5]

Portable instruments

Portable instruments are hand-held or transportable. The hand-held instrument is generally used as a survey meter to check an object or person in detail, or assess an area where no installed instrumentation exists. They can also be used for personnel exit monitoring or personnel contamination checks in the field. These generally measure alpha, beta or gamma, or combinations of these.

Transportable instruments are generally instruments that would have been permanently installed, but are temporarily placed in an area to provide continuous monitoring where it is likely there will be a hazard. Such instruments are often installed on trolleys to allow easy deployment, and are associated with temporary operational situations.

Instrument types

A number of commonly used detection instruments are listed below.

The links should be followed for a fuller description of each.

Guidance on use

In the United Kingdom the HSE has issued a user guidance note on selecting the correct radiation measurement instrument for the application concerned . This covers all ionising radiation instrument technologies, and is a useful comparative guide.

Radiation dosimeters

Dosimeters are devices worn by the user which measure the radiation dose that the user is receiving. Common types of wearable dosimeters for ionizing radiation include:

Units of measure

External dose quantities used in radiation protection and dosimetry Dose quantities and units.png
External dose quantities used in radiation protection and dosimetry
Graphic showing relationship of SI radiation dose units SI Radiation dose units.png
Graphic showing relationship of SI radiation dose units

Absorbed dose

The fundamental units do not take into account the amount of damage done to matter (especially living tissue) by ionizing radiation. This is more closely related to the amount of energy deposited rather than the charge. This is called the absorbed dose.

Equivalent dose

Equal doses of different types or energies of radiation cause different amounts of damage to living tissue. For example, 1 Gy of alpha radiation causes about 20 times as much damage as 1 Gy of X-rays. Therefore, the equivalent dose was defined to give an approximate measure of the biological effect of radiation. It is calculated by multiplying the absorbed dose by a weighting factor WR, which is different for each type of radiation (see table at Relative biological effectiveness#Standardization). This weighting factor is also called the Q (quality factor), or RBE (relative biological effectiveness of the radiation).

For comparison, the average 'background' dose of natural radiation received by a person per day, based on 2000 UNSCEAR estimate, makes BRET 6.6 μSv (660 μrem). However local exposures vary, with the yearly average in the US being around 3.6 mSv (360 mrem), [6] and in a small area in India as high as 30 mSv (3 rem). [7] [8] The lethal full-body dose of radiation for a human is around 4–5 Sv (400–500 rem). [9]

History

In 1898, The Röntgen Society (Currently the British Institute of Radiology) established a committee on X-ray injuries, thus initiating the discipline of radiation protection. [10]

The term "health physics"

According to Paul Frame: [11]

"The term Health Physics is believed to have originated in the Metallurgical Laboratory at the University of Chicago in 1942, but the exact origin is unknown. The term was possibly coined by Robert Stone or Arthur Compton, since Stone was the head of the Health Division and Arthur Compton was the head of the Metallurgical Laboratory. The first task of the Health Physics Section was to design shielding for reactor CP-1 that Enrico Fermi was constructing, so the original HPs were mostly physicists trying to solve health-related problems. The explanation given by Robert Stone was that '...the term Health Physics has been used on the Plutonium Project to define that field in which physical methods are used to determine the existence of hazards to the health of personnel.'

A variation was given by Raymond Finkle, a Health Division employee during this time frame. 'The coinage at first merely denoted the physics section of the Health Division... the name also served security: 'radiation protection' might arouse unwelcome interest; 'health physics' conveyed nothing.'"

The following table shows radiation quantities in SI and non-SI units.

Ionising radiation related quantities view    talk    edit
QuantityUnitSymbolDerivationYear SI equivalence
Activity (A) becquerel Bqs−11974SI unit
curie Ci3.7 × 1010 s−119533.7×1010 Bq
rutherford Rd106 s−119461,000,000 Bq
Exposure (X) coulomb per kilogram C/kgC⋅kg−1 of air1974SI unit
röntgen R esu / 0.001293 g of air19282.58 × 10−4 C/kg
Absorbed dose (D) gray Gy J⋅kg−11974SI unit
erg per gramerg/gerg⋅g−119501.0 × 10−4 Gy
rad rad100 erg⋅g−119530.010 Gy
Dose equivalent (H) sievert SvJ⋅kg−1 × WR 1977SI unit
röntgen equivalent man rem100 erg⋅g−119710.010 Sv

Although the United States Nuclear Regulatory Commission permits the use of the units curie, rad, and rem alongside SI units, [12] the European Union European units of measurement directives required that their use for "public health ... purposes" be phased out by 31 December 1985. [13]

See also

Related Research Articles

Background radiation is a measure of the level of ionizing radiation present in the environment at a particular location which is not due to deliberate introduction of radiation sources.

Geiger counter Instrument used for measuring ionizing radiation

A Geiger counter is an instrument used for detecting and measuring ionizing radiation. Also known as a Geiger–Mueller counter, it is widely used in applications such as radiation dosimetry, radiological protection, experimental physics, and the nuclear industry.

A radiation dosimeter is a device that measures dose uptake of external ionizing radiation. It is worn by the person being monitored when used as a personal dosimeter, and is a record of the radiation dose received. Modern electronic personal dosimeters can give a continuous readout of cumulative dose and current dose rate, and can warn the wearer with an audible alarm when a specified dose rate or a cumulative dose is exceeded. Other dosimeters, such as thermoluminescent or film types, require processing after use to reveal the cumulative dose received, and cannot give a current indication of dose when being worn.

Sievert SI derived unit of equivalent dose of ionizing radiation

The sievert is a derived unit of ionizing radiation dose in the International System of Units (SI) and is a measure of the health effect of low levels of ionizing radiation on the human body. The sievert is of importance in dosimetry and radiation protection, and is named after Rolf Maximilian Sievert, a Swedish medical physicist renowned for work on radiation dose measurement and research into the biological effects of radiation.

Ionizing radiation Radiation that carries enough light energy to liberate electrons from atoms or molecules

Ionizing radiation is radiation that carries sufficient energy to detach electrons from atoms or molecules, thereby ionizing them. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds, and electromagnetic waves on the high-energy end of the electromagnetic spectrum.

The gray is a derived unit of ionizing radiation dose in the International System of Units (SI). It is defined as the absorption of one joule of radiation energy per kilogram of matter.

Equivalent dose is a dose quantity H representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the physical quantity absorbed dose, but also takes into account the biological effectiveness of the radiation, which is dependent on the radiation type and energy. In the SI system of units, the unit of measure is the sievert (Sv).

The roentgen equivalent man is an older, CGS unit of equivalent dose, effective dose, and committed dose which are measures of the health effect of low levels of ionizing radiation on the human body.

Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection, and radiology. It is also used to directly compare the effect of radiation on inanimate matter such as in radiation hardening.

Kerma is an acronym for "kinetic energy released per unit mass", defined as the sum of the initial kinetic energies of all the charged particles liberated by uncharged ionizing radiation in a sample of matter, divided by the mass of the sample. It is defined by the quotient .

The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter. The material absorbing the radiation can be human tissue or silicon microchips or any other medium.

The ionization chamber is the simplest of all gas-filled radiation detectors, and is widely used for the detection and measurement of certain types of ionizing radiation; X-rays, gamma rays, and beta particles. Conventionally, the term "ionization chamber" is used exclusively to describe those detectors which collect all the charges created by direct ionization within the gas through the application of an electric field. It only uses the discrete charges created by each interaction between the incident radiation and the gas, and does not involve the gas multiplication mechanisms used by other radiation instruments, such as the Geiger counter or the proportional counter.

Radiobiology is a field of clinical and basic medical sciences that involves the study of the action of ionizing radiation on living things, especially health effects of radiation. Ionizing radiation is generally harmful and potentially lethal to living things but can have health benefits in radiation therapy for the treatment of cancer and thyrotoxicosis. Its most common impact is the induction of cancer with a latent period of years or decades after exposure. High doses can cause visually dramatic radiation burns, and/or rapid fatality through acute radiation syndrome. Controlled doses are used for medical imaging and radiotherapy.

Radiation monitoring measurement of radiation dose or radionuclide contamination for reasons related to the assessment or control of exposure to radiation or radioactive substances, and the interpretation of the results

Radiation monitoring involves the measurement of radiation dose or radionuclide contamination for reasons related to the assessment or control of exposure to radiation or radioactive substances, and the interpretation of the results.

Quartz fiber dosimeter

A quartz fiber dosimeter, sometimes called a self indicating pocket dosimeter (SIPD) or self reading pocket dosimeter (SRPD), is a type of radiation dosimeter, a pen-like device that measures the cumulative dose of ionizing radiation received by the device, usually over one work period. It is usually clipped to a person's clothing and worn to measure one's actual exposure to radiation. It is now being superseded by more modern dosimeter types such as the Electronic Personal Dosimeter (EPD).

Roentgen (unit) legacy unit of measurement for the kerma of X-rays and gamma rays up to 3 MeV; equals 0.258 mC/kg

The roentgen or röntgen is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air. In 1928, it was adopted as the first international measurement quantity for ionising radiation to be defined for radiation protection, as it was then the most easily replicated method of measuring air ionization by using ion chambers. It is named after the German physicist Wilhelm Röntgen, who discovered X-rays.

References

  1. Careers in Health Physics
  2. Miller, Kenneth L. (July 2005). "Operational Health Physics". Health Physics. 88 (6): 638–652. doi:10.1097/01.hp.0000138021.37701.30 via ResearchGate.
  3. http://www.aapm.org/medical_physicist/fields.asp
  4. AAPM - The Medical Physicist
  5. Operational Monitoring Good Practice Guide "The Selection of Alarm Levels for Personnel Exit Monitors" Dec 2009 - National Physical Laboratory, Teddington UK
  6. Radioactivity in Nature <http://www.physics.isu.edu/radinf/natural.htm>
  7. "Background Radiation: Natural versus Man-Made" Washington Stet Department of Health
  8. "Monazite sand does not cause excess cancer incidence ", The Hindu
  9. "Lethal dose", NRC Glossary (August 2, 2010)
  10. Mould R. A Century of X-rays and Radioactivity in Medicine. Bristol: IOP Publishing, 1993
  11. Origin of "health physics" Archived 2007-09-27 at the Wayback Machine
  12. 10 CFR 20.1004. US Nuclear Regulatory Commission. 2009.
  13. The Council of the European Communities (1979-12-21). "Council Directive 80/181/EEC of 20 December 1979 on the approximation of the laws of the Member States relating to Unit of measurement and on the repeal of Directive 71/354/EEC" . Retrieved 19 May 2012.