Askaryan radiation

Last updated

The Askaryan radiation [1] [2] also known as Askaryan effect is the phenomenon whereby a particle traveling faster than the phase velocity of light in a dense dielectric (such as salt, ice or the lunar regolith) produces a shower of secondary charged particles which contain a charge anisotropy and thus emits a cone of coherent radiation in the radio or microwave part of the electromagnetic spectrum. It is similar to the Cherenkov radiation. It is named after Gurgen Askaryan, a Soviet-Armenian physicist who postulated it in 1962.

Velocity rate of change of the position of an object as a function of time, and the direction of that change

The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

Light electromagnetic radiation in or near visible spectrum

Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum. The word usually refers to visible light, which is the visible spectrum that is visible to the human eye and is responsible for the sense of sight. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), or 4.00 × 10−7 to 7.00 × 10−7 m, between the infrared and the ultraviolet. This wavelength means a frequency range of roughly 430–750 terahertz (THz).

Dielectric electrically poorly conducting or non-conducting, non-metallic substance of which charge carriers are generally not free to move

A dielectric is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field.


The radiation was first observed experimentally in 2000, 38 years after its theoretical prediction. So far the effect has been observed in silica sand, [3] rock salt, [4] ice, [5] and Earth's atmosphere. [6]

Silicon dioxide chemical compound

Silicon dioxide, also known as silica, silicic acid or silicic acid anydride is an oxide of silicon with the chemical formula SiO2, most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and most abundant families of materials, existing as a compound of several minerals and as synthetic product. Notable examples include fused quartz, fumed silica, silica gel, and aerogels. It is used in structural materials, microelectronics (as an electrical insulator), and as components in the food and pharmaceutical industries.

Sand A granular material composed of finely divided rock and mineral particles, from 0.063 to 2 mm diameter

Sand is a granular material composed of finely divided rock and mineral particles. It is defined by size, being finer than gravel and coarser than silt. Sand can also refer to a textural class of soil or soil type; i.e., a soil containing more than 85 percent sand-sized particles by mass.

The effect is of primary interest in using bulk matter to detect ultra-high energy neutrinos. The Antarctic Impulse Transient Antenna (ANITA) experiment uses antennas attached to a balloon flying over Antarctica to detect the Askaryan radiation produced as cosmic neutrinos travel through the ice. [7] [8] Several experiments have also used the Moon as a neutrino detector based on detection of the Askaryan radiation. [9] [10] [11] [12]

Neutrino Elementary particle with very low mass that interacts only via the weak force and gravity

A neutrino is a fermion that interacts only via the weak subatomic force and gravity. The mass of the neutrino is much smaller than that of the other known elementary particles. Although only differences of squares of the three mass values are known as of 2016, cosmological observations imply that the sum of the three masses must be less than one millionth that of the electron. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The weak force has a very short range, the gravitational interaction is extremely weak, and neutrinos, as leptons, do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

Antarctic Impulse Transient Antenna experiment designed to study ultra-high-energy (UHE) cosmic neutrinos by detecting the radio pulses emitted by their interactions with the Antarctic ice sheet

The Antarctic Impulsive Transient Antenna (ANITA) experiment has been designed to study ultra-high-energy (UHE) cosmic neutrinos by detecting the radio pulses emitted by their interactions with the Antarctic ice sheet. This is to be accomplished using an array of radio antennas suspended from a helium balloon flying at a height of about 37,000 meters.

Antarctica Polar continent in the Earths southern hemisphere

Antarctica is Earth's southernmost continent. It contains the geographic South Pole and is situated in the Antarctic region of the Southern Hemisphere, almost entirely south of the Antarctic Circle, and is surrounded by the Southern Ocean. At 14,000,000 square kilometres, it is the fifth-largest continent. For comparison, Antarctica is nearly twice the size of Australia. About 98% of Antarctica is covered by ice that averages 1.9 km in thickness, which extends to all but the northernmost reaches of the Antarctic Peninsula.

See also

Related Research Articles

A tachyon or tachyonic particle is a hypothetical particle that always travels faster than light. Most physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such particles did exist, they could be used to build a tachyonic antitelephone and send signals faster than light, which would lead to violations of causality. No experimental evidence for the existence of such particles has been found.

Wormhole hypothetical topological feature of spacetime

A wormhole is a speculative structure linking disparate points in spacetime, and is based on a special solution of the Einstein field equations solved using a Jacobian matrix and determinant. A wormhole can be visualized as a tunnel with two ends, each at separate points in spacetime. More precisely it is a transcendental bijection of the spacetime continuum, an asymptotic projection of the Calabi–Yau manifold manifesting itself in Anti-de Sitter space.

In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field, postulated as an explanation of the observation of an accelerating rate of expansion of the universe. The first example of this scenario was proposed by Ratra and Peebles (1988). The concept was expanded to more general types of time-varying dark energy and the term "quintessence" was first introduced in a paper by Robert R. Caldwell, Rahul Dave and Paul Steinhardt. It has been proposed by some physicists to be a fifth fundamental force. Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic; that is, it changes over time, unlike the cosmological constant which, by definition, does not change. Quintessence can be either attractive or repulsive depending on the ratio of its kinetic and potential energy. Those working with this postulate believe that quintessence became repulsive about ten billion years ago, about 3.5 billion years after the Big Bang.

In particle physics, majorons are a hypothetical type of Goldstone boson that are theorized to mediate the neutrino mass violation of lepton number or BL in certain high energy collisions such as


A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was first proposed by Lev Landau in 1933 to describe an electron moving in a dielectric crystal where the atoms move from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic solar-system tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by spacetime dilation, which increases the path length. In an article entitled Fourth Test of General Relativity, astrophysicist Irwin Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves. Other branches are also active.

Solar neutrino neutrinos produced in the core of the sun through various nuclear fusion reactions

Electron neutrinos are produced in the Sun as a product of nuclear fusion. Solar neutrinos constitute by far the largest flux of neutrinos from natural sources observed on Earth, as compared with e.g. atmospheric neutrinos or the diffuse supernova neutrino background.

The tau neutrino or tauon neutrino is a subatomic elementary particle which has the symbol
and no net electric charge. Together with the tau, it forms the third generation of leptons, hence the name tau neutrino. Its existence was immediately implied after the tau particle was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLAC–LBL group. The discovery of the tau neutrino was announced in July 2000 by the DONUT collaboration.

Kamioka Liquid Scintillator Antineutrino Detector

The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) is an electron antineutrino detector at the Kamioka Observatory, an underground neutrino detection facility near Toyama, Japan. The device is situated in a drift mine shaft in the old KamiokaNDE cavity in the Japanese Alps. The site is surrounded by 53 Japanese commercial nuclear reactors. Nuclear reactors produce electron antineutrinos ( ) during the decay of radioactive fission products in the nuclear fuel. Like the intensity of light from a light bulb or a distant star, the isotropically-emitted flux decreases at 1/R2 per increasing distance R from the reactor. The device is sensitive up to an estimated 25% of antineutrinos from nuclear reactors that exceed the threshold energy of 1.8 megaelectronvolts (MeV) and thus produces a signal in the detector.

This is a timeline of subatomic particle discoveries, including all particles thus far discovered which appear to be elementary given the best available evidence. It also includes the discovery of composite particles and antiparticles that were of particular historical importance.


Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI beamline at Fermilab near Chicago are observed at two detectors, one very close to where the beam is produced, and another much larger detector 735 km away in northern Minnesota.

Majorana fermion fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesized by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

In particle physics, W′ and Z′ bosons refer to hypothetical gauge bosons that arise from extensions of the electroweak symmetry of the Standard Model. They are named in analogy with the Standard Model W and Z bosons.

David Saltzberg is a professor of physics and astronomy at the University of California, Los Angeles. Saltzberg received a Sloan Fellowship, NSF Career Award, and Department of Energy Outstanding Junior Investigator Award while an assistant professor. Saltzberg earned a bachelor's degree in physics in 1989 from Princeton University and a Ph.D. in physics from the University of Chicago in 1994. From 1995-97 he worked at CERN in Switzerland. His research interests include high-energy collider physics and the radio detection of cosmic neutrinos.

A trion is a localized excitation which consists of three charged quasiparticles. A negative trion consists of two electrons and one hole and a positive trion consists of two holes and one electron. The trion itself is a quasiparticle and is somewhat similar to an exciton, which is a complex of one electron and one hole. The trion has a ground singlet state and an excited triplet state. Here singlet and triplet degeneracies originate not from the whole system but from the two identical particles in it. The half-integer spin value distinguishes trions from excitons in many phenomena; for example, energy states of trions, but not excitons, are split in an applied magnetic field. Trion states were predicted theoretically and then observed experimentally in various optically excited semiconductors, especially in quantum dots and quantum well structures. There are experimental proofs of their existence in nanotubes supported by theoretical studies. Despite numerous reports of experimental trion observations in different semiconductor heterostructures, there are serious concerns on the exact physical nature of the detected complexes. The originally foreseen 'true' trion particle has a delocalized wavefunction while recent studies reveal significant binding from charged impurities in real semiconductor quantum wells.

Modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

The "Axis of Evil" is a name given to an anomaly in astronomical observations of the Cosmic Microwave Background (CMB). The anomaly appears to give the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which appears to run counter to expectations from the Copernican Principle.

Spin squeezing is a quantum process that decreases the variance of one of the angular momentum components in an ensemble of particles with a spin. The quantum states obtained are called spin squeezed states. Such states can be used for quantum metrology, as they can provide a better precision for estimating a rotation angle than classical interferometers.


  1. Hanson, Jordan C; Connolly, Amy L (2016). "Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor". Astroparticle Physics. 91: 75–89. arXiv: 1605.04975 . Bibcode:2017APh....91...75H. doi:10.1016/j.astropartphys.2017.03.008.
  2. Hanson, Jordan C; Connolly, Amy L; Zas, Enrique (2011). "Practical and accurate calculations of Askaryan radiation". Physical Review D. 84 (10). arXiv: 1106.6283 . Bibcode:2011PhRvD..84j3003A. doi:10.1103/PhysRevD.84.103003.
  3. Hanson, Jordan C; Connolly, Amy L; Walz, D; Field, C; Iverson, R; Odian, A; Resch, G; Schoessow, P; Williams, D (2000). "Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades". Physical Review Letters. 86 (13): 2802–5. arXiv: hep-ex/0011001 . Bibcode:2001PhRvL..86.2802S. doi:10.1103/PhysRevLett.86.2802. PMID   11290043.
  4. Hanson, Jordan C; Connolly, Amy L; Field, R. C; Guillian, E; Milinčić, R; Miočinović, P; Walz, D; Williams, D (2004). "Accelerator Measurements of the Askaryan effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors" (Submitted manuscript). Physical Review D. 72 (2). arXiv: astro-ph/0412128 . Bibcode:2005PhRvD..72b3002G. doi:10.1103/PhysRevD.72.023002.
  5. Hanson, Jordan C; Connolly, Amy L; Beatty, J. J; Besson, D. Z; Binns, W. R; Chen, C; Chen, P; Clem, J. M; Connolly, A; Dowkontt, P. F; Duvernois, M. A; Field, R. C; Goldstein, D; Goodhue, A; Hast, C; Hebert, C. L; Hoover, S; Israel, M. H; Kowalski, J; Learned, J. G; Liewer, K. M; Link, J. T; Lusczek, E; Matsuno, S; Mercurio, B; Miki, C; Miočinović, P; Nam, J; Naudet, C. J; et al. (2007). "Observations of the Askaryan Effect in Ice". Physical Review Letters. 99 (17): 171101. arXiv: hep-ex/0611008 . Bibcode:2007PhRvL..99q1101G. doi:10.1103/PhysRevLett.99.171101. PMID   17995315.
  6. Buitink, Stijn; Corstanje, A.; Falcke, H; Hörandel, J. R; Huege, T; Nelles, A; Rachen, J. P; Rossetto, L; Schellart, P; Scholten, O; Ter Veen, S; Thoudam, S; Trinh, T. N. G; Anderson, J; Asgekar, A; Avruch, I. M; Bell, M. E; Bentum, M. J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J. W; Brouw, W. N; Brüggen, M; Butcher, H. R; Carbone, D; Ciardi, B; Conway, J. E; et al. (2016). "A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations". Nature. 531 (7592): 70–3. arXiv: 1603.01594 . Bibcode:2016Natur.531...70B. doi:10.1038/nature16976. PMID   26935696.
  7. ANITA Project Overview
  8. ARIANNA collaboration
  9. GLUE project
  10. NuMoon project
  11. LUNASKA project
  12. RESUN project