Dielectric

Last updated
A polarized dielectric material Capacitor schematic with dielectric.svg
A polarized dielectric material

A dielectric (or dielectric material) is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. This creates an internal electric field that reduces the overall field within the dielectric itself. [1] If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field. [1]

Insulator (electricity) material whose internal electric charges do not flow freely, and which therefore does not conduct an electric current

An electrical insulator is a material whose internal electric charges do not flow freely; very little electric current will flow through it under the influence of an electric field. This contrasts with other materials, semiconductors and conductors, which conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors.

Electric field spatial distribution of vectors representing the force applied to a charged test particle

An electric field surrounds an electric charge, and exerts force on other charges in the field, attracting or repelling them. Electric field is sometimes abbreviated as E-field. Mathematically the electric field is a vector field that associates to each point in space the force per unit of charge exerted on an infinitesimal positive test charge at rest at that point. The SI unit for electric field strength is volt per meter (V/m). Newtons per coulomb (N/C) is also used as a unit of electric field strengh. Electric fields are created by electric charges, or by time-varying magnetic fields. Electric fields are important in many areas of physics, and are exploited practically in electrical technology. On an atomic scale, the electric field is responsible for the attractive force between the atomic nucleus and electrons that holds atoms together, and the forces between atoms that cause chemical bonding. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces of nature.

Electrical conductor object or material which permits the flow of electricity

In physics and electrical engineering, a conductor is an object or type of material that allows the flow of an electrical current in one or more directions. Materials made of metal are common electrical conductors. Electrical current is generated by the flow of negatively charged electrons, positively charged holes, and positive or negative ions in some cases.

Contents

The study of dielectric properties concerns storage and dissipation of electric and magnetic energy in materials. [2] [3] [4] Dielectrics are important for explaining various phenomena in electronics, optics, solid-state physics, and cell biophysics.

Electronics physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter. The identification of the electron in 1897, along with the invention of the vacuum tube, which could amplify and rectify small electrical signals, inaugurated the field of electronics and the electron age.

Optics The branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors.

Terminology

Although the term insulator implies low electrical conduction, dielectric typically means materials with a high polarizability. The latter is expressed by a number called the relative permittivity. The term insulator is generally used to indicate electrical obstruction while the term dielectric is used to indicate the energy storing capacity of the material (by means of polarization). A common example of a dielectric is the electrically insulating material between the metallic plates of a capacitor. The polarization of the dielectric by the applied electric field increases the capacitor's surface charge for the given electric field strength. [1]

Electrical resistivity is a fundamental property of a material that quantifies how strongly that material opposes the flow of electric current. A low resistivity indicates a material that readily allows the flow of electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). As an example, if a 1 m × 1 m × 1 m solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

Polarizability is the ability to form instantaneous dipoles. It is a property of matter. Polarizabilities determine the dynamical response of a bound system to external fields, and provide insight into a molecule's internal structure. In a solid, polarizability is defined as dipole moment per unit volume of the crystal cell.

Relative permittivity

The relative permittivity of a material is its (absolute) permittivity expressed as a ratio relative to the vacuum permittivity.

The term dielectric was coined by William Whewell (from dia- + electric) in response to a request from Michael Faraday. [5] [6] A perfect dielectric is a material with zero electrical conductivity (cf. perfect conductor infinite eletrical conductivity), [7] thus exhibiting only a displacement current; therefore it stores and returns electrical energy as if it were an ideal capacitor.

William Whewell English philosopher & historian of science

William Whewell was an English polymath, scientist, Anglican priest, philosopher, theologian, and historian of science. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved distinction in both poetry and mathematics.

Michael Faraday English scientist

Michael Faraday FRS was a British scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic induction, diamagnetism and electrolysis.

The abbreviation cf. is used in writing to refer the reader to other material to make a comparison with the topic being discussed. It is used to form a contrast, for example: "Abbott (2010) found supportive results in her memory experiment, unlike those of previous work ." It is recommended that "cf." be used only to suggest a comparison, and the word "see" be used to point to a source of information.

Electric susceptibility

The electric susceptibility χe of a dielectric material is a measure of how easily it polarizes in response to an electric field. This, in turn, determines the electric permittivity of the material and thus influences many other phenomena in that medium, from the capacitance of capacitors to the speed of light.

In electricity (electromagnetism), the electric susceptibility is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in response to the field, and thereby reduce the total electric field inside the material. It is in this way that the electric susceptibility influences the electric permittivity of the material and thus influences many other phenomena in that medium, from the capacitance of capacitors to the speed of light.

Polarization density physical quantity

In classical electromagnetism, polarization density is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. The electric dipole moment induced per unit volume of the dielectric material is called the electric polarization of the dielectric.

Permittivity physical quantity, measure of the resistance to the electric field

In electromagnetism, absolute permittivity, often simply called permittivity, usually denoted by the Greek letter ε (epsilon), is the measure of capacitance that is encountered when forming an electric field in a particular medium. More specifically, permittivity describes the amount of charge needed to generate one unit of electric flux in a particular medium. Accordingly, a charge will yield more electric flux in a medium with low permittivity than in a medium with high permittivity. Permittivity is the measure of a material's ability to store an electric field in the polarization of the medium.

It is defined as the constant of proportionality (which may be a tensor) relating an electric field E to the induced dielectric polarization density P such that

Tensor geometric object

In mathematics, a tensor is a geometric object that maps in a multi-linear manner geometric vectors, scalars, and other tensors to a resulting tensor. Vectors and scalars which are often used in elementary physics and engineering applications, are considered as the simplest tensors. Vectors from the dual space of the vector space, which supplies the geometric vectors, are also included as tensors. Geometric in this context is chiefly meant to emphasize independence of any selection of a coordinate system.

where ε0 is the electric permittivity of free space.

The susceptibility of a medium is related to its relative permittivity εr by

So in the case of a vacuum,

The electric displacement D is related to the polarization density P by

Dispersion and causality

In general, a material cannot polarize instantaneously in response to an applied field. The more general formulation as a function of time is

That is, the polarization is a convolution of the electric field at previous times with time-dependent susceptibility given by χet). The upper limit of this integral can be extended to infinity as well if one defines χet) = 0 for Δt < 0. An instantaneous response corresponds to Dirac delta function susceptibility χet) = χeδt).

It is more convenient in a linear system to take the Fourier transform and write this relationship as a function of frequency. Due to the convolution theorem, the integral becomes a simple product,

Note the simple frequency dependence of the susceptibility, or equivalently the permittivity. The shape of the susceptibility with respect to frequency characterizes the dispersion properties of the material.

Moreover, the fact that the polarization can only depend on the electric field at previous times (i.e., χet) = 0 for Δt < 0), a consequence of causality, imposes Kramers–Kronig constraints on the real and imaginary parts of the susceptibility χe(ω).

Dielectric polarization

Basic atomic model

Electric field interaction with an atom under the classical dielectric model. Dielectric model.svg
Electric field interaction with an atom under the classical dielectric model.

In the classical approach to the dielectric model, a material is made up of atoms. Each atom consists of a cloud of negative charge (electrons) bound to and surrounding a positive point charge at its centre. In the presence of an electric field the charge cloud is distorted, as shown in the top right of the figure.

This can be reduced to a simple dipole using the superposition principle. A dipole is characterized by its dipole moment, a vector quantity shown in the figure as the blue arrow labeled M. It is the relationship between the electric field and the dipole moment that gives rise to the behavior of the dielectric. (Note that the dipole moment points in the same direction as the electric field in the figure. This isn't always the case, and is a major simplification, but is true for many materials.)

When the electric field is removed the atom returns to its original state. The time required to do so is the so-called relaxation time; an exponential decay.

This is the essence of the model in physics. The behavior of the dielectric now depends on the situation. The more complicated the situation, the richer the model must be to accurately describe the behavior. Important questions are:

The relationship between the electric field E and the dipole moment M gives rise to the behavior of the dielectric, which, for a given material, can be characterized by the function F defined by the equation:

.

When both the type of electric field and the type of material have been defined, one then chooses the simplest function F that correctly predicts the phenomena of interest. Examples of phenomena that can be so modeled include:

Dipolar polarization

Dipolar polarization is a polarization that is either inherent to polar molecules (orientation polarization), or can be induced in any molecule in which the asymmetric distortion of the nuclei is possible (distortion polarization). Orientation polarization results from a permanent dipole, e.g., that arising from the 104.45° angle between the asymmetric bonds between oxygen and hydrogen atoms in the water molecule, which retains polarization in the absence of an external electric field. The assembly of these dipoles forms a macroscopic polarization.

When an external electric field is applied, the distance between charges within each permanent dipole, which is related to chemical bonding, remains constant in orientation polarization; however, the direction of polarization itself rotates. This rotation occurs on a timescale that depends on the torque and surrounding local viscosity of the molecules. Because the rotation is not instantaneous, dipolar polarizations lose the response to electric fields at the highest frequencies. A molecule rotates about 1 radian per picosecond in a fluid, thus this loss occurs at about 1011 Hz (in the microwave region). The delay of the response to the change of the electric field causes friction and heat.

When an external electric field is applied at infrared frequencies or less, the molecules are bent and stretched by the field and the molecular dipole moment changes. The molecular vibration frequency is roughly the inverse of the time it takes for the molecules to bend, and this distortion polarization disappears above the infrared.

Ionic polarization

Ionic polarization is polarization caused by relative displacements between positive and negative ions in ionic crystals (for example, NaCl).

If a crystal or molecule consists of atoms of more than one kind, the distribution of charges around an atom in the crystal or molecule leans to positive or negative. As a result, when lattice vibrations or molecular vibrations induce relative displacements of the atoms, the centers of positive and negative charges are also displaced. The locations of these centers are affected by the symmetry of the displacements. When the centers don't correspond, polarization arises in molecules or crystals. This polarization is called ionic polarization.

Ionic polarization causes the ferroelectric effect as well as dipolar polarization. The ferroelectric transition, which is caused by the lining up of the orientations of permanent dipoles along a particular direction, is called an order-disorder phase transition. The transition caused by ionic polarizations in crystals is called a displacive phase transition.

In cells

Ionic polarization enables the production of energy-rich compounds in cells (the proton pump in mitochondria) and, at the plasma membrane, the establishment of the resting potential, energetically unfavourable transport of ions, and cell-to-cell communication (the Na+/K+-ATPase).

All cells in animal body tissues are electrically polarized – in other words, they maintain a voltage difference across the cell's plasma membrane, known as the membrane potential. This electrical polarization results from a complex interplay between ion transporters and ion channels.

In neurons, the types of ion channels in the membrane usually vary across different parts of the cell, giving the dendrites, axon, and cell body different electrical properties. As a result, some parts of the membrane of a neuron may be excitable (capable of generating action potentials), whereas others are not.

Dielectric dispersion

In physics, dielectric dispersion is the dependence of the permittivity of a dielectric material on the frequency of an applied electric field. Because there is a lag between changes in polarization and changes in the electric field, the permittivity of the dielectric is a complicated function of frequency of the electric field. Dielectric dispersion is very important for the applications of dielectric materials and for the analysis of polarization systems.

This is one instance of a general phenomenon known as material dispersion: a frequency-dependent response of a medium for wave propagation.

When the frequency becomes higher:

  1. dipolar polarization can no longer follow the oscillations of the electric field in the microwave region around 1010  Hz;
  2. ionic polarization and molecular distortion polarization can no longer track the electric field past the infrared or far-infrared region around 1013 Hz, ;
  3. electronic polarization loses its response in the ultraviolet region around 1015 Hz.

In the frequency region above ultraviolet, permittivity approaches the constant ε0 in every substance, where ε0 is the permittivity of the free space. Because permittivity indicates the strength of the relation between an electric field and polarization, if a polarization process loses its response, permittivity decreases.

Dielectric relaxation

Dielectric relaxation is the momentary delay (or lag) in the dielectric constant of a material. This is usually caused by the delay in molecular polarization with respect to a changing electric field in a dielectric medium (e.g., inside capacitors or between two large conducting surfaces). Dielectric relaxation in changing electric fields could be considered analogous to hysteresis in changing magnetic fields (e.g., in inductor or transformer cores). Relaxation in general is a delay or lag in the response of a linear system, and therefore dielectric relaxation is measured relative to the expected linear steady state (equilibrium) dielectric values. The time lag between electrical field and polarization implies an irreversible degradation of Gibbs free energy.

In physics, dielectric relaxation refers to the relaxation response of a dielectric medium to an external, oscillating electric field. This relaxation is often described in terms of permittivity as a function of frequency, which can, for ideal systems, be described by the Debye equation. On the other hand, the distortion related to ionic and electronic polarization shows behavior of the resonance or oscillator type. The character of the distortion process depends on the structure, composition, and surroundings of the sample.

Debye relaxation

Debye relaxation is the dielectric relaxation response of an ideal, noninteracting population of dipoles to an alternating external electric field. It is usually expressed in the complex permittivity ε of a medium as a function of the field's frequency ω:

where ε is the permittivity at the high frequency limit, Δε = εsε where εs is the static, low frequency permittivity, and τ is the characteristic relaxation time of the medium. Separating the real and imaginary parts of the complex dielectric permittivity yields: [8]

The dielectric loss is also represented by:

This relaxation model was introduced by and named after the physicist Peter Debye (1913). [9] It is characteristic for dynamic polarization with only one relaxation time.

Variants of the Debye equation

Cole–Cole equation
This equation is used when the dielectric loss peak shows symmetric broadening.
Cole–Davidson equation
This equation is used when the dielectric loss peak shows asymmetric broadening.
Havriliak–Negami relaxation
This equation considers both symmetric and asymmetric broadening.
Kohlrausch–Williams–Watts function
Fourier transform of stretched exponential function.
Curie–von Schweidler law
This shows the response of dielectrics to an applied DC field to behave according to a power law, which can be expressed as an integral over weighted exponential functions..

Paraelectricity

Paraelectricity is the ability of many materials (specifically ceramics) to become polarized under an applied electric field. Unlike ferroelectricity, this can happen even if there is no permanent electric dipole that exists in the material, and removal of the fields results in the polarization in the material returning to zero. [10] The mechanisms that cause paraelectric behaviour are the distortion of individual ions (displacement of the electron cloud from the nucleus) and polarization of molecules or combinations of ions or defects.

Paraelectricity can occur in crystal phases where electric dipoles are unaligned and thus have the potential to align in an external electric field and weaken it.

An example of a paraelectric material of high dielectric constant is strontium titanate.

The LiNbO3 crystal is ferroelectric below 1430 K, and above this temperature it transforms into a disordered paraelectric phase. Similarly, other perovskites also exhibit paraelectricity at high temperatures.

Paraelectricity has been explored as a possible refrigeration mechanism; polarizing a paraelectric by applying an electric field under adiabatic process conditions raises the temperature, while removing the field lowers the temperature. [11] A heat pump that operates by polarizing the paraelectric, allowing it to return to ambient temperature (by dissipating the extra heat), bringing it into contact with the object to be cooled, and finally depolarizing it, would result in refrigeration.

Tunability

Tunable dielectrics are insulators whose ability to store electrical charge changes when a voltage is applied. [12] [13]

Generally, strontium titanate (SrTiO
3
) is used for devices operating at low temperatures, while barium strontium titanate (Ba
1−x
Sr
x
TiO
3
) substitutes for room temperature devices. Other potential materials include microwave dielectrics and carbon nanotube (CNT) composites. [12] [14] [15]

In 2013 multi-sheet layers of strontium titanate interleaved with single layers of strontium oxide produced a dielectric capable of operating at up to 125 GHz. The material was created via molecular beam epitaxy. The two have mismatched crystal spacing that produces strain within the strontium titanate layer that makes it less stable and tunable. [12]

Systems such as Ba
1−x
Sr
x
TiO
3
have a paraelectric–ferroelectric transition just below ambient temperature, providing high tunability. Such films suffer significant losses arising from defects.

Applications

Capacitors

Charge separation in a parallel-plate capacitor causes an internal electric field. A dielectric (orange) reduces the field and increases the capacitance. Capacitor schematic with dielectric.svg
Charge separation in a parallel-plate capacitor causes an internal electric field. A dielectric (orange) reduces the field and increases the capacitance.

Commercially manufactured capacitors typically use a solid dielectric material with high permittivity as the intervening medium between the stored positive and negative charges. This material is often referred to in technical contexts as the capacitor dielectric. [16]

The most obvious advantage to using such a dielectric material is that it prevents the conducting plates, on which the charges are stored, from coming into direct electrical contact. More significantly, however, a high permittivity allows a greater stored charge at a given voltage. This can be seen by treating the case of a linear dielectric with permittivity ε and thickness d between two conducting plates with uniform charge density σε. In this case the charge density is given by

and the capacitance per unit area by

From this, it can easily be seen that a larger ε leads to greater charge stored and thus greater capacitance.

Dielectric materials used for capacitors are also chosen such that they are resistant to ionization. This allows the capacitor to operate at higher voltages before the insulating dielectric ionizes and begins to allow undesirable current.

Dielectric resonator

A dielectric resonator oscillator (DRO) is an electronic component that exhibits resonance of the polarization response for a narrow range of frequencies, generally in the microwave band. It consists of a "puck" of ceramic that has a large dielectric constant and a low dissipation factor. Such resonators are often used to provide a frequency reference in an oscillator circuit. An unshielded dielectric resonator can be used as a dielectric resonator antenna (DRA).

BST thin films

From 2002 to 2004, the Army Research Laboratory (ARL) conducted research on thin film technology. Barium strontium titanate (BST), a ferroelectric thin film, was studied for the fabrication of radio frequency and microwave components, such as voltage-controlled oscillators, tunable filters, and phase shifters. [17]

The research was part of an effort to provide the Army with highly-tunable, microwave-compatible materials for broadband electric-field tunable devices, which operate consistently in extreme temperatures. [18] This work improved tunability of bulk barium strontium titanate, which is a thin film enabler for electronics components. [19]

In a 2004 research paper, ARL researchers explored how small concentrations of acceptor dopants can dramatically modify the properties of ferroelectric materials such as BST. [20]

Researchers "doped" BST thin films with magnesium, analyzing the "structure, microstructure, surface morphology and film/substrate compositional quality" of the result. The Mg doped BST films showed "improved dielectric properties, low leakage current, and good tunability", meriting potential for use in microwave tunable devices. [17]

Some practical dielectrics

Dielectric materials can be solids, liquids, or gases. In addition, a high vacuum can also be a useful, [21] nearly lossless dielectric even though its relative dielectric constant is only unity.

Solid dielectrics are perhaps the most commonly used dielectrics in electrical engineering, and many solids are very good insulators. Some examples include porcelain, glass, and most plastics. Air, nitrogen and sulfur hexafluoride are the three most commonly used gaseous dielectrics.

See also

Related Research Articles

The wave impedance of an electromagnetic wave is the ratio of the transverse components of the electric and magnetic fields. For a transverse-electric-magnetic (TEM) plane wave traveling through a homogeneous medium, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the impedance of free space. The symbol Z is used to represent it and it is expressed in units of ohms. The symbol η (eta) may be used instead of Z for wave impedance to avoid confusion with electrical impedance.

Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by Valasek. Thus, the prefix ferro, meaning iron, was used to describe the property despite the fact that most ferroelectric materials do not contain iron. Materials that are both ferroelectric and ferromagnetic are known as multiferroics.

Crystal optics is the branch of optics that describes the behaviour of light in anisotropic media, that is, media in which light behaves differently depending on which direction the light is propagating. The index of refraction depends on both composition and crystal structure and can be calculated using the Gladstone–Dale relation. Crystals are often naturally anisotropic, and in some media it is possible to induce anisotropy by applying an external electric field.

Drude model to explain the transport properties of electrons in materials (especially metals)

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. The model, which is an application of kinetic theory, assumes that the microscopic behavior of electrons in a solid may be treated classically and looks much like a pinball machine, with a sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions.

Displacement current Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

In physics, the dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation in a dissipative system. It is the reciprocal of quality factor, which represents the "quality" or durability of oscillation.

In physics, the electric displacement field, denoted by D, is a vector field that appears in Maxwell's equations. It accounts for the effects of free and bound charge within materials. "D" stands for "displacement", as in the related concept of displacement current in dielectrics. In free space, the electric displacement field is equivalent to flux density, a concept that lends understanding to Gauss's law. In the International System of Units (SI), it is expressed in units of coulomb per meter squared (C⋅m−2).

Dielectric heating

Dielectric heating, also known as electronic heating, radio frequency heating, and high-frequency heating, is the process in which a radio frequency (RF) alternating electric field, or radio wave or microwave electromagnetic radiation heats a dielectric material. At higher frequencies, this heating is caused by molecular dipole rotation within the dielectric.

Capacitor electrical component used to store energy for a short period of time

A capacitor is a passive two-terminal electronic component that stores electrical energy in an electric field. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit. The capacitor was originally known as a condenser or condensator. The original name is still widely used in many languages, but not commonly in English.

Dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangent tan δ. Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

Rotational Brownian motion is the random change in the orientation of a polar molecule due to collisions with other molecules. It is an important element of theories of dielectric materials.

In dielectric spectroscopy, large frequency dependent contributions to the dielectric response, especially at low frequencies, may come from build-ups of charge. This Maxwell–Wagner–Sillars polarization, occurs either at inner dielectric boundary layers on a mesoscopic scale, or at the external electrode-sample interface on a macroscopic scale. In both cases this leads to a separation of charges. The charges are often separated over a considerable distance, and the contribution to dielectric loss can therefore be orders of magnitude larger than the dielectric response due to molecular fluctuations.

The optical conductivity is a material property, which links the current density to the electric field for general frequencies. In this sense, this linear response function is a generalization of the electrical conductivity, which is usually considered in the static limit, i.e., for a time-independent electric field. While the static electrical conductivity is vanishingly small in insulators, the optical conductivity always remains finite in some frequency intervals ; the total optical weight can be inferred from sum rules. The optical conductivity is closely related to the dielectric function, the generalization of the dielectric constant to arbitrary frequencies.

Electric dipole moment vector physical quantity

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI units for electric dipole moment are coulomb-meter (C⋅m); however, the most commonly used unit in atomic physics and chemistry is the debye (D).

Plasmonic nanoparticles are particles whose electron density can couple with electromagnetic radiation of wavelengths that are far larger than the particle due to the nature of the dielectric-metal interface between the medium and the particles: unlike in a pure metal where there is a maximum limit on what size wavelength can be effectively coupled based on the material size.

Dielectric absorption is the name given to the effect by which a capacitor, that has been charged for a long time, discharges only incompletely when briefly discharged. Although an ideal capacitor would remain at zero volts after being discharged, real capacitors will develop a small voltage from time-delayed dipole discharging, a phenomenon that is also called dielectric relaxation, "soakage", or "battery action". For some dielectrics, such as many polymer films, the resulting voltage may be less than 1–2% of the original voltage, but it can be as much as 15% for electrolytic capacitors. The voltage at the terminals generated by the dielectric absorption may possibly cause problems in the function of an electronic circuit or can be a safety risk to personnel. In order to prevent shocks, most very large capacitors are shipped with shorting wires that need to be removed before they are used and/or permanently connected bleeder resistors. When disconnected at one or both ends, DC high-voltage cables can also "recharge themselves" to dangerous voltages.

References

  1. 1 2 3 Dielectric. Encyclopædia Britannica : "Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material."
  2. Arthur R. von Hippel, in his seminal work, Dielectric Materials and Applications, stated: "Dielectrics... are not a narrow class of so-called insulators, but the broad expanse of nonmetals considered from the standpoint of their interaction with electric, magnetic, or electromagnetic fields. Thus we are concerned with gases as well as with liquids and solids, and with the storage of electric and magnetic energy as well as its dissipation." (Technology Press of MIT and John Wiley, NY, 1954).
  3. Thoms, E.; Sippel, P.; et., al. (2017). "Dielectric study on mixtures of ionic liquids". Sci. Rep. 7 (1): 7463. arXiv: 1703.05625 . Bibcode:2017NatSR...7.7463T. doi:10.1038/s41598-017-07982-3. PMC   5547043 . PMID   28785071.
  4. Belkin, A.; Bezryadin, A.; Hendren, L.; Hubler, A. (2017). "Recovery of Alumina Nanocapacitors after High Voltage Breakdown". Sci. Rep. 7: 932. Bibcode:2017NatSR...7..932B. doi:10.1038/s41598-017-01007-9. PMID   28428625.
  5. Daintith, J. (1994). Biographical Encyclopedia of Scientists. CRC Press. p. 943. ISBN   978-0-7503-0287-6.
  6. James, Frank A.J.L., editor. The Correspondence of Michael Faraday, Volume 3, 1841–1848, "Letter 1798, William Whewell to Faraday, p. 442". The Institution of Electrical Engineers, London, United Kingdom, 1996. ISBN   0-86341-250-5
  7. Microwave Engineering – R. S. Rao (Prof.) . Retrieved 2013-11-08.
  8. Kao, Kwan Chi (2004). Dielectric Phenomena in Solids. London: Elsevier Academic Press. pp. 92–93. ISBN   978-0-12-396561-5.
  9. Debye, P. (1913), Ver. Deut. Phys. Gesell. 15, 777; reprinted 1954 in collected papers of Peter J.W. Debye. Interscience, New York
  10. Chiang, Y. et al. (1997) Physical Ceramics, John Wiley & Sons, New York
  11. Kuhn, U.; Lüty, F. (1965). "Paraelectric heating and cooling with OH—dipoles in alkali halides". Solid State Communications. 3 (2): 31. Bibcode:1965SSCom...3...31K. doi:10.1016/0038-1098(65)90060-8.
  12. 1 2 3 Lee, Che-Hui; Orloff, Nathan D.; Birol, Turan; Zhu, Ye; Goian, Veronica; Rocas, Eduard; Haislmaier, Ryan; Vlahos, Eftihia; Mundy, Julia A.; Kourkoutis, Lena F.; Nie, Yuefeng; Biegalski, Michael D.; Zhang, Jingshu; Bernhagen, Margitta; Benedek, Nicole A.; Kim, Yongsam; Brock, Joel D.; Uecker, Reinhard; Xi, X. X.; Gopalan, Venkatraman; Nuzhnyy, Dmitry; Kamba, Stanislav; Muller, David A.; Takeuchi, Ichiro; Booth, James C.; Fennie, Craig J.; Schlom, Darrell G. (2013). "Self-correcting crystal may lead to the next generation of advanced communications". Nature. 502 (7472): 532–6. Bibcode:2013Natur.502..532L. doi:10.1038/nature12582. PMID   24132232.
  13. Lee, C. H.; Orloff, N. D.; Birol, T.; Zhu, Y.; Goian, V.; Rocas, E.; Haislmaier, R.; Vlahos, E.; Mundy, J. A.; Kourkoutis, L. F.; Nie, Y.; Biegalski, M. D.; Zhang, J.; Bernhagen, M.; Benedek, N. A.; Kim, Y.; Brock, J. D.; Uecker, R.; Xi, X. X.; Gopalan, V.; Nuzhnyy, D.; Kamba, S.; Muller, D. A.; Takeuchi, I.; Booth, J. C.; Fennie, C. J.; Schlom, D. G. (2013). "Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics". Nature. 502 (7472): 532–536. Bibcode:2013Natur.502..532L. doi:10.1038/nature12582. hdl:2117/21213. PMID   24132232.
  14. Kong, L.B.; Li, S.; Zhang, T.S.; Zhai, J.W.; Boey, F.Y.C.; Ma, J. (2010-11-30). "Electrically tunable dielectric materials and strategies to improve their performances". Progress in Materials Science. 55 (8): 840–893. doi:10.1016/j.pmatsci.2010.04.004.
  15. Giere, A.; Zheng, Y.; Maune, H.; Sazegar, M.; Paul, F.; Zhou, X.; Binder, J. R.; Muller, S.; Jakoby, R. (2008). "Tunable dielectrics for microwave applications". 2008 17th IEEE International Symposium on the Applications of Ferroelectrics. p. 1. doi:10.1109/ISAF.2008.4693753. ISBN   978-1-4244-2744-4.
  16. Müssig, Hans-Joachim. Semiconductor capacitor with praseodymium oxide as dielectric, U.S. Patent 7,113,388 published 2003-11-06, issued 2004-10-18, assigned to IHP GmbH- Innovations for High Performance Microelectronics/Institute Fur Innovative Mikroelektronik
  17. 1 2 "Novel tunable acceptor doped BST thin films for high quality tunable microwave devices". Revista Mexicana de Fi´sica.
  18. Nair, K. M.; Guo, Ruyan; Bhalla, Amar S.; Hirano, S.-I.; Suvorov, D. (2012-04-11). Developments in Dielectric Materials and Electronic Devices: Proceedings of the 106th Annual Meeting of The American Ceramic Society, Indianapolis, Indiana, USA 2004. John Wiley & Sons. ISBN   9781118408193.
  19. Nair, K. M.; Bhalla, Amar S.; Hirano, S.-I.; Suvorov, D.; Schwartz, Robert W.; Zhu, Wei (2012-04-11). Ceramic Materials and Multilayer Electronic Devices. John Wiley & Sons. ISBN   9781118406762.
  20. Cole, M. W.; Hubbard, C.; Ngo, E.; Ervin, M.; Wood, M.; Geyer, R. G. (July 2002). "Structure–property relationships in pure and acceptor-doped Ba1−xSrxTiO3 thin films for tunable microwave device applications". Journal of Applied Physics. 92 (1): 475–483. Bibcode:2002JAP....92..475C. doi:10.1063/1.1484231. ISSN   0021-8979.
  21. Lyon, David (2013). "Gap size dependence of the dielectric strength in nano vacuum gaps". IEEE Transactions on Dielectrics and Electrical Insulation. 20 (4): 1467–1471. doi:10.1109/TDEI.2013.6571470.

Further reading