Eddy current

Last updated

Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.

Magnetic field spatial distribution of vectors allowing the calculation of the magnetic force on a test particle

A magnetic field is a vector field that describes the magnetic influence of electrical currents and magnetized materials. In everyday life, the effects of magnetic fields are often seen in permanent magnets, which pull on magnetic materials and attract or repel other magnets. Magnetic fields surround and are created by magnetized material and by moving electric charges such as those used in electromagnets. Magnetic fields exert forces on nearby moving electrical charges and torques on nearby magnets. In addition, a magnetic field that varies with location exerts a force on magnetic materials. Both the strength and direction of a magnetic field varies with location. As such, it is an example of a vector field.

Faradays law of induction Basic law of electromagnetism of magnetic fields inducing a potential difference

Faraday's law of induction is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (EMF)—a phenomenon called electromagnetic induction. It is the fundamental operating principle of transformers, inductors, and many types of electrical motors, generators and solenoids.

Electromagnet Type of magnet in which the magnetic field is produced by the flow of electric current

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. The magnetic field disappears when the current is turned off. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

Contents

By Lenz's law, an eddy current creates a magnetic field that opposes the change in the magnetic field that created it, and thus eddy currents react back on the source of the magnetic field. For example, a nearby conductive surface will exert a drag force on a moving magnet that opposes its motion, due to eddy currents induced in the surface by the moving magnetic field. This effect is employed in eddy current brakes which are used to stop rotating power tools quickly when they are turned off. The current flowing through the resistance of the conductor also dissipates energy as heat in the material. Thus eddy currents are a cause of energy loss in alternating current (AC) inductors, transformers, electric motors and generators, and other AC machinery, requiring special construction such as laminated magnetic cores or ferrite cores to minimize them. Eddy currents are also used to heat objects in induction heating furnaces and equipment, and to detect cracks and flaws in metal parts using eddy-current testing instruments.

Lenzs law

Lenz's law, named after the physicist Emil Lenz who formulated it in 1834, states that the direction of the current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes the initial changing magnetic field. Or as informally, yet concisely summarised by D.J. Griffiths:

Nature abhors a change in flux.

Eddy current brake

An eddy current brake, also known as an induction brake, electric brake or electric retarder, is a device used to slow or stop a moving object by dissipating its kinetic energy as heat. However, unlike friction brakes, in which the drag force that stops the moving object is provided by friction between two surfaces pressed together, the drag force in an eddy current brake is an electromagnetic force between a magnet and a nearby conductive object in relative motion, due to eddy currents induced in the conductor through electromagnetic induction.

Heat energy transfer process, or its amount (and direction), that is associated with a temperature difference

In thermodynamics, heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. The mechanisms include conduction, through direct contact of immobile bodies, or through a wall or barrier that is impermeable to matter; or radiation between separated bodies; or isochoric mechanical work done by the surroundings on the system of interest; or Joule heating by an electric current driven through the system of interest by an external system; or a combination of these. When there is a suitable path between two systems with different temperatures, heat transfer occurs necessarily, immediately, and spontaneously from the hotter to the colder system. Thermal conduction occurs by the stochastic (random) motion of microscopic particles. In contrast, thermodynamic work is defined by mechanisms that act macroscopically and directly on the system's whole-body state variables; for example, change of the system's volume through a piston's motion with externally measurable force; or change of the system's internal electric polarization through an externally measurable change in electric field. The definition of heat transfer does not require that the process be in any sense smooth. For example, a bolt of lightning may transfer heat to a body.

Origin of term

The term eddy current comes from analogous currents seen in water in fluid dynamics, causing localised areas of turbulence known as eddies giving rise to persistent vortices. Somewhat analogously, eddy currents can take time to build up and can persist for very short times in conductors due to their inductance.

Water chemical compound

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's streams, lakes, and oceans, and the fluids of most living organisms. It is vital for all known forms of life, even though it provides no calories or organic nutrients. Its chemical formula is H2O, meaning that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. Water is the name of the liquid state of H2O at standard ambient temperature and pressure. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds are formed from suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water moves continually through the water cycle of evaporation, transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea.

Fluid dynamics subdiscipline of fluid mechanics that deals with fluid flow—the natural science of fluids (liquids and gases) in motion

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation,

Eddy (fluid dynamics) The swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime

In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.

History

The first person to observe eddy currents was François Arago (1786–1853), the 25th Prime Minister of France, who was also a mathematician, physicist and astronomer. In 1824 he observed what has been called rotatory magnetism, and that most conductive bodies could be magnetized; these discoveries were completed and explained by Michael Faraday (1791–1867).

François Arago French mathematician, physicist, astronomer and politician

Dominique François Jean Arago, known simply as François Arago, was a French mathematician, physicist, astronomer, freemason, supporter of the carbonari and politician.

Michael Faraday English scientist

Michael Faraday FRS was a British scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic induction, diamagnetism and electrolysis.

In 1834, Heinrich Lenz stated Lenz's law, which says that the direction of induced current flow in an object will be such that its magnetic field will oppose the change of magnetic flux that caused the current flow. Eddy currents produce a secondary field that cancels a part of the external field and causes some of the external flux to avoid the conductor.

French physicist Léon Foucault (1819–1868) is credited with having discovered eddy currents. In September, 1855, he discovered that the force required for the rotation of a copper disc becomes greater when it is made to rotate with its rim between the poles of a magnet, the disc at the same time becoming heated by the eddy current induced in the metal. The first use of eddy current for non-destructive testing occurred in 1879 when David E. Hughes used the principles to conduct metallurgical sorting tests.

Léon Foucault French physicist

Jean Bernard Léon Foucault was a French physicist best known for his demonstration of the Foucault pendulum, a device demonstrating the effect of the Earth's rotation. He also made an early measurement of the speed of light, discovered eddy currents, and is credited with naming the gyroscope.

Explanation

Eddy currents (I, red) induced in a conductive metal plate (C) as it moves to right under a magnet (N). The magnetic field (B, green) is directed down through the plate. The increasing field at the leading edge of the magnet (left) induces a counterclockwise current, which by Lenz's law creates its own magnetic field (left blue arrow) directed up, which opposes the magnet's field, producing a retarding force. Similarly, at the trailing edge of the magnet (right), a clockwise current and downward counterfield is created (right blue arrow) also producing a retarding force. Eddy currents due to magnet.svg
Eddy currents (I, red) induced in a conductive metal plate (C) as it moves to right under a magnet (N). The magnetic field (B, green) is directed down through the plate. The increasing field at the leading edge of the magnet (left) induces a counterclockwise current, which by Lenz's law creates its own magnetic field (left blue arrow) directed up, which opposes the magnet's field, producing a retarding force. Similarly, at the trailing edge of the magnet (right), a clockwise current and downward counterfield is created (right blue arrow) also producing a retarding force.
Eddy current brake. The North magnetic pole piece (top) in this drawing is shown further away from the disk than the South; this is just to leave room to show the currents. In an actual eddy current brake the pole pieces are positioned as close to the disk as possible. Eddy current brake diagram.svg
Eddy current brake. The North magnetic pole piece (top) in this drawing is shown further away from the disk than the South; this is just to leave room to show the currents. In an actual eddy current brake the pole pieces are positioned as close to the disk as possible.

A magnet induces circular electric currents in a metal sheet moving past it. See the diagram at right. It shows a metal sheet (C) moving to the right under a stationary magnet. The magnetic field (B, green arrows) of the magnet's north pole N passes down through the sheet. Since the metal is moving, the magnetic flux through the sheet is changing. At the part of the sheet under the leading edge of the magnet (left side) the magnetic field through the sheet is increasing as it gets nearer the magnet, . From Faraday's law of induction, this creates a circular electric field in the sheet in a counterclockwise direction around the magnetic field lines. This field induces a counterclockwise flow of electric current (I, red), in the sheet. This is the eddy current. At the trailing edge of the magnet (right side) the magnetic field through the sheet is decreasing, , inducing a second eddy current in a clockwise direction in the sheet.

Another way to understand the current is to see that the free charge carriers (electrons) in the metal sheet are moving with the sheet to the right, so the magnetic field exerts a sideways force on them due to the Lorentz force. Since the velocity v of the charges is to the right and the magnetic field B is directed down, from the right hand rule the Lorentz force on positive charges F = q(v × B) is toward the rear of the diagram (to the left when facing in the direction of motion v). This causes a current I toward the rear under the magnet, which circles around through parts of the sheet outside the magnetic field, clockwise to the right and counterclockwise to the left, to the front of the magnet again. The mobile charge carriers in the metal, the electrons, actually have a negative charge (q < 0) so their motion is opposite in direction to the conventional current shown.

Due to Ampere's circuital law each of these circular currents creates a counter magnetic field (blue arrows), which due to Lenz's law opposes the change in magnetic field which caused it, exerting a drag force on the sheet. At the leading edge of the magnet (left side) by the right hand rule the counterclockwise current creates a magnetic field pointed up, opposing the magnet's field, causing a repulsive force between the sheet and the leading edge of the magnet. In contrast, at the trailing edge (right side), the clockwise current causes a magnetic field pointed down, in the same direction as the magnet's field, creating an attractive force between the sheet and the trailing edge of the magnet. Both of these forces oppose the motion of the sheet. The kinetic energy which is consumed overcoming this drag force is dissipated as heat by the currents flowing through the resistance of the metal, so the metal gets warm under the magnet.

Properties

Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers. In this application, they are minimized with thin plates, by lamination of conductors or other details of conductor shape.

Self-induced eddy currents are responsible for the skin effect in conductors. [1] The latter can be used for non-destructive testing of materials for geometry features, like micro-cracks. [2] A similar effect is the proximity effect, which is caused by externally induced eddy currents. [3]

An object or part of an object experiences steady field intensity and direction where there is still relative motion of the field and the object (for example in the center of the field in the diagram), or unsteady fields where the currents cannot circulate due to the geometry of the conductor. In these situations charges collect on or within the object and these charges then produce static electric potentials that oppose any further current. Currents may be initially associated with the creation of static potentials, but these may be transitory and small.

(left) Eddy currents (I, red) within a solid iron transformer core. (right) Making the core out of thin laminations parallel to the field (B, green) with insulation between them reduces the eddy currents. Although the field and currents are shown in one direction, they actually reverse direction with the alternating current in the transformer winding. Laminated core eddy currents 2.svg
(left) Eddy currents (I, red) within a solid iron transformer core. (right) Making the core out of thin laminations parallel to the field (B, green) with insulation between them reduces the eddy currents. Although the field and currents are shown in one direction, they actually reverse direction with the alternating current in the transformer winding.

Eddy currents generate resistive losses that transform some forms of energy, such as kinetic energy, into heat. This Joule heating reduces efficiency of iron-core transformers and electric motors and other devices that use changing magnetic fields. Eddy currents are minimized in these devices by selecting magnetic core materials that have low electrical conductivity (e.g., ferrites) or by using thin sheets of magnetic material, known as laminations. Electrons cannot cross the insulating gap between the laminations and so are unable to circulate on wide arcs. Charges gather at the lamination boundaries, in a process analogous to the Hall effect, producing electric fields that oppose any further accumulation of charge and hence suppressing the eddy currents. The shorter the distance between adjacent laminations (i.e., the greater the number of laminations per unit area, perpendicular to the applied field), the greater the suppression of eddy currents.

The conversion of input energy to heat is not always undesirable, however, as there are some practical applications. One is in the brakes of some trains known as eddy current brakes. During braking, the metal wheels are exposed to a magnetic field from an electromagnet, generating eddy currents in the wheels. This eddy current is formed by the movement of the wheels. So, by Lenz's law, the magnetic field formed by the Eddy current will oppose its cause. Thus the wheel will face a force opposing the initial movement of the wheel. The faster the wheels are spinning, the stronger the effect, meaning that as the train slows the braking force is reduced, producing a smooth stopping motion.

Induction heating makes use of eddy currents to provide heating of metal objects.

Power dissipation of eddy currents

Under certain assumptions (uniform material, uniform magnetic field, no skin effect, etc.) the power lost due to eddy currents per unit mass for a thin sheet or wire can be calculated from the following equation: [4]

where

P is the power lost per unit mass (W/kg),
Bp is the peak magnetic field (T),
d is the thickness of the sheet or diameter of the wire (m),
f is the frequency (Hz),
k is a constant equal to 1 for a thin sheet and 2 for a thin wire,
ρ is the resistivity of the material (Ω m), and
D is the density of the material (kg/m3).

This equation is valid only under the so-called quasi-static conditions, where the frequency of magnetisation does not result in the skin effect; that is, the electromagnetic wave fully penetrates the material.

Skin effect

In very fast-changing fields, the magnetic field does not penetrate completely into the interior of the material. This skin effect renders the above equation invalid. However, in any case increased frequency of the same value of field will always increase eddy currents, even with non-uniform field penetration.[ citation needed ]

The penetration depth for a good conductor can be calculated from the following equation: [5]

where δ is the penetration depth (m), f is the frequency (Hz), μ is the magnetic permeability of the material (H/m), and σ is the electrical conductivity of the material (S/m).

Diffusion equation

The derivation of a useful equation for modelling the effect of eddy currents in a material starts with the differential, magnetostatic form of Ampère's Law, [6] providing an expression for the magnetizing field H surrounding a current density J:

Taking the curl on both sides of this equation and then using a common vector calculus identity for the curl of the curl results in

From Gauss's law for magnetism, ·H = 0, so

Using Ohm's law, J= σE, which relates current density J to electric field E in terms of a material's conductivity σ, and assuming isotropic homogeneous conductivity, the equation can be written as

Using the differential form of Faraday's law, ×E = −∂B/∂t, this gives

By definition, B = μ0(H + M), where M is the magnetization of the material and μ0 is the vacuum permeability. The diffusion equation therefore is

Applications

Electromagnetic braking

Demonstration of Waltenhofen’s pendulum, precursor of eddy current brakes. The formation and suppression of eddy currents is here demonstrated by means of this pendulum, a metal plate oscillating between the pole pieces of a strong electromagnet. As soon as a sufficiently strong magnetic field has been switched on, the pendulum is stopped on entering the field.

Eddy current brakes use the drag force created by eddy currents as a brake to slow or stop moving objects. Since there is no contact with a brake shoe or drum, there is no mechanical wear. However, an eddy current brake cannot provide a "holding" torque and so may be used in combination with mechanical brakes, for example, on overhead cranes. Another application is on some roller coasters, where heavy copper plates extending from the car are moved between pairs of very strong permanent magnets. Electrical resistance within the plates causes a dragging effect analogous to friction, which dissipates the kinetic energy of the car. The same technique is used in electromagnetic brakes in railroad cars and to quickly stop the blades in power tools such as circular saws. Using electromagnets, as opposed to permanent magnets, the strength of the magnetic field can be adjusted and so the magnitude of braking effect changed.

Repulsive effects and levitation

A cross section through a linear motor placed above a thick aluminium slab. As the linear induction motor's field pattern sweeps to the left, eddy currents are left behind in the metal and this causes the field lines to lean. Linear motor field.gif
A cross section through a linear motor placed above a thick aluminium slab. As the linear induction motor's field pattern sweeps to the left, eddy currents are left behind in the metal and this causes the field lines to lean.

In a varying magnetic field the induced currents exhibit diamagnetic-like repulsion effects. A conductive object will experience a repulsion force. This can lift objects against gravity, though with continual power input to replace the energy dissipated by the eddy currents. An example application is separation of aluminum cans from other metals in an eddy current separator. Ferrous metals cling to the magnet, and aluminum (and other non-ferrous conductors) are forced away from the magnet; this can separate a waste stream into ferrous and non-ferrous scrap metal.

With a very strong handheld magnet, such as those made from neodymium, one can easily observe a very similar effect by rapidly sweeping the magnet over a coin with only a small separation. Depending on the strength of the magnet, identity of the coin, and separation between the magnet and coin, one may induce the coin to be pushed slightly ahead of the magnet – even if the coin contains no magnetic elements, such as the US penny. Another example involves dropping a strong magnet down a tube of copper [7] – the magnet falls at a dramatically slow pace.

In a perfect conductor with no resistance (a superconductor), surface eddy currents exactly cancel the field inside the conductor, so no magnetic field penetrates the conductor. Since no energy is lost in resistance, eddy currents created when a magnet is brought near the conductor persist even after the magnet is stationary, and can exactly balance the force of gravity, allowing magnetic levitation. Superconductors also exhibit a separate inherently quantum mechanical phenomenon called the Meissner effect in which any magnetic field lines present in the material when it becomes superconducting are expelled, thus the magnetic field in a superconductor is always zero.

Using electromagnets with electronic switching comparable to electronic speed control it is possible to generate electromagnetic fields moving in an arbitrary direction. As described in the section above about eddy current brakes, a non-ferromagnetic conductor surface tends to rest within this moving field. When however this field is moving, a vehicle can be levitated and propelled. This is comparable to a maglev but is not bound to a rail. [8]

Identification of metals

In a coin-operated vending machine, eddy currents are used to detect counterfeit coins, or slugs. The coin rolls past a stationary magnet, and eddy currents slow its speed. The strength of the eddy currents, and thus the retardation, depends on the conductivity of the coin's metal. Slugs are slowed to a different degree than genuine coins, and this is used to send them into the rejection slot.

Vibration and position sensing

Eddy currents are used in certain types of proximity sensors to observe the vibration and position of rotating shafts within their bearings. This technology was originally pioneered in the 1930s by researchers at General Electric using vacuum tube circuitry. In the late 1950s, solid-state versions were developed by Donald E. Bently at Bently Nevada Corporation. These sensors are extremely sensitive to very small displacements making them well suited to observe the minute vibrations (on the order of several thousandths of an inch) in modern turbomachinery. A typical proximity sensor used for vibration monitoring has a scale factor of 200 mV/mil. Widespread use of such sensors in turbomachinery has led to development of industry standards that prescribe their use and application. Examples of such standards are American Petroleum Institute (API) Standard 670 and ISO 7919.

A Ferraris acceleration sensor, also called a Ferraris sensor, is a contactless sensor that uses eddy currents to measure relative acceleration. [9] [10] [11]

Structural testing

Eddy current techniques are commonly used for the nondestructive examination (NDE) and condition monitoring of a large variety of metallic structures, including heat exchanger tubes, aircraft fuselage, and aircraft structural components.

Skin effects

Eddy currents are the root cause of the skin effect in conductors carrying AC current.

Lamination of magnetic cores in transformers greatly improves the efficiency by minimising eddy currents EI-transformer core interleaved.svg
Lamination of magnetic cores in transformers greatly improves the efficiency by minimising eddy currents

Similarly, in magnetic materials of finite conductivity eddy currents cause the confinement of the majority of the magnetic fields to only a couple skin depths of the surface of the material. This effect limits the flux linkage in inductors and transformers having magnetic cores.

Other applications

Related Research Articles

Electromagnetic field physical field produced by electrically charged objects

An electromagnetic field is a physical field produced by electrically charged objects. It affects the behavior of charged objects in the vicinity of the field. The electromagnetic field extends indefinitely throughout space and describes the electromagnetic interaction. It is one of the four fundamental forces of nature.

Lorentz force mutual force exerted by two punctual charges in relative motion

In physics the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

Maxwells equations set of partial differential equations that describe how electric and magnetic fields are generated and altered by each other and by charges and currents

Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. Maxwell's equations describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. One important consequence of the equations is that they demonstrate how fluctuating electric and magnetic fields propagate at the speed of light. Known as electromagnetic radiation, these waves may occur at various wavelengths to produce a spectrum from radio waves to γ-rays. The equations are named after the physicist and mathematician James Clerk Maxwell, who between 1861 and 1862 published an early form of the equations that included the Lorentz force law. He also first used the equations to propose that light is an electromagnetic phenomenon.

Electrical resistivity is a fundamental property of a material that quantifies how strongly that material opposes the flow of electric current. A low resistivity indicates a material that readily allows the flow of electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). As an example, if a 1 m × 1 m × 1 m solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

Electromagnetic induction production of voltage by a varying magnetic field

Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.

Skin effect

Skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor, and decreases with greater depths in the conductor. The electric current flows mainly at the "skin" of the conductor, between the outer surface and a level called the skin depth. The skin effect causes the effective resistance of the conductor to increase at higher frequencies where the skin depth is smaller, thus reducing the effective cross-section of the conductor. The skin effect is due to opposing eddy currents induced by the changing magnetic field resulting from the alternating current. At 60 Hz in copper, the skin depth is about 8.5 mm. At high frequencies the skin depth becomes much smaller. Increased AC resistance due to the skin effect can be mitigated by using specially woven litz wire. Because the interior of a large conductor carries so little of the current, tubular conductors such as pipe can be used to save weight and cost.

Thermoelectric effect direct conversion of temperature differences to electric voltage and vice versa

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side.

"A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. In the paper, Maxwell derives an electromagnetic wave equation with a velocity for light in close agreement with measurements made by experiment, and deduces that light is an electromagnetic wave.

Electromagnetic shielding

Electromagnetic shielding is the practice of reducing the electromagnetic field in a space by blocking the field with barriers made of conductive or magnetic materials. Shielding is typically applied to enclosures to isolate electrical devices from their surroundings, and to cables to isolate wires from the environment through which the cable runs. Electromagnetic shielding that blocks radio frequency electromagnetic radiation is also known as RF shielding.

Magnetization physical quantity

In classical electromagnetism, magnetization or magnetic polarization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. The origin of the magnetic moments responsible for magnetization can be either microscopic electric currents resulting from the motion of electrons in atoms, or the spin of the electrons or the nuclei. Net magnetization results from the response of a material to an external magnetic field, together with any unbalanced magnetic dipole moments that may be inherent in the material itself; for example, in ferromagnets. Magnetization is not always uniform within a body, but rather varies between different points. Magnetization also describes how a material responds to an applied magnetic field as well as the way the material changes the magnetic field, and can be used to calculate the forces that result from those interactions. It can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics. Physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. It is represented by a pseudovector M.

Eddy-current testing is one of many electromagnetic testing methods used in nondestructive testing (NDT) making use of electromagnetic induction to detect and characterize surface and sub-surface flaws in conductive materials.

Moving magnet and conductor problem thought experiment

The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.

An inductive sensor is a device that uses the principle of electromagnetic induction to detect or measure objects. An inductor develops a magnetic field when a current flows through it; alternatively, a current will flow through a circuit containing an inductor when the magnetic field through it changes. This effect can be used to detect metallic objects that interact with a magnetic field. Non-metallic substances such as liquids or some kinds of dirt do not interact with the magnetic field, so an inductive sensor can operate in wet or dirty conditions.

Arago's rotations is an observable magnetic phenomenon and effect discovered by François Arago in 1824.

Magnetic levitation method by which an object is suspended with no support other than magnetic fields

Magnetic levitation, maglev, or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational acceleration and any other accelerations.

Lorentz force velocimetry (LFV) is a noncontact electromagnetic flow measurement technique. LFV is particularly suited for the measurement of velocities in liquid metals like steel or aluminium and is currently under development for metallurgical applications.The measurement of flow velocities in hot and aggressive liquids such as liquid aluminium and molten glass constitutes one of the grand challenges of industrial fluid mechanics. Apart from liquids, LFV can also be used to measure the velocity of solid materials as well as for detection of micro-defects in their structures.

References

Online citations
  1. Israel D. Vagner; B.I. Lembrikov; Peter Rudolf Wyder (17 November 2003). Electrodynamics of Magnetoactive Media. Springer Science & Business Media. pp. 73–. ISBN   978-3-540-43694-2.
  2. Walt Boyes (25 November 2009). Instrumentation Reference Book. Butterworth-Heinemann. pp. 570–. ISBN   978-0-08-094188-2.
  3. Howard Johnson; Howard W. Johnson; Martin Graham (2003). High-speed Signal Propagation: Advanced Black Magic. Prentice Hall Professional. pp. 80–. ISBN   978-0-13-084408-8.
  4. F. Fiorillo, Measurement and characterization of magnetic materials, Elsevier Academic Press, 2004, ISBN   0-12-257251-3, page. 31
  5. Wangsness, Roald. Electromagnetic Fields (2nd ed.). pp. 387–8.
  6. G. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, San Diego: Academic Press, 1998.
  7. https://www.youtube.com/watch?v=nrw-i5Ku0mI
  8. Hendo Hoverboards - World's first REAL hoverboard
  9. Bernhard Hiller. "Ferraris Acceleration Sensor - Principle and Field of Application in Servo Drives".
  10. Jian Wang, Paul Vanherck, Jan Swevers, Hendrik Van Brussel. "Speed Observer Based on Sensor Fusion Combining Ferraris Sensor and Linear Position Encoder Signals".
  11. J. Fassnacht and P. Mutschler. "Benefits and limits of using an acceleration sensor in actively damping high frequent mechanical oscillations". 2001. doi : 10.1109/IAS.2001.955949 .
  12. "TRUBLUE Auto Belay". Head Rush Technologies. Head Rush Technologies. Retrieved 8 March 2016.
  13. "zipSTOP Zip Line Brake System". Head Rush Technologies. Head Rush Technologies. Retrieved 8 March 2016.
  14. "Our Patented Technology". Head Rush Technologies. Head Rush Technologies. Retrieved 8 March 2016.
  15. "Zappi - Eddy Current Conductivity Meter - Products". zappitec.com. Retrieved 2016-05-08.
  16. "Institut Dr. Foerster: SIGMATEST". www.foerstergroup.de. Retrieved 2018-06-28.
  17. Coating Thickness Measurement with Electromagnetic Methods
  18. "Ohm/sq & OD". www.nagy-instruments.de. Archived from the original on 2016-03-04. Retrieved 2016-05-08.
  19. "Eddy Current Separator for metal separation". www.cogelme.com. Retrieved 2016-05-08.
General references

Further reading