In electromagnetics, proximity effect is a redistribution of electric current occurring in nearby parallel electrical conductors carrying alternating current (AC), caused by magnetic effects. In adjacent conductors carrying AC current in the same direction, it causes the current in the conductor to concentrate on the side away from the nearby conductor. In conductors carrying AC current in opposite directions, it causes the current in the conductor to concentrate on the side adjacent to the nearby conductor. Proximity effect is caused by eddy currents induced within a conductor by the time-varying magnetic field of the other conductor, by electromagnetic induction. For example, in a coil of wire carrying alternating current with multiple turns of wire lying next to each other, the current in each wire will be concentrated in a strip on each side of the wire facing away from the adjacent wires. This "current crowding" effect causes the current to occupy a smaller effective cross-sectional area of the conductor, increasing current density and AC electrical resistance of the conductor. The concentration of current on the side of the conductor gets larger with increasing frequency, so proximity effect causes adjacent wires carrying the same current to have more resistance at higher frequencies.
A changing magnetic field will influence the distribution of an electric current flowing within an electrical conductor, by electromagnetic induction. [1] [2] : p.141 When an alternating current (AC) flows through a conductor, it creates an associated alternating magnetic field around it. The alternating magnetic field induces eddy currents in adjacent conductors, altering the overall distribution of current flowing through them. The result is that the current is concentrated in the areas of the conductor farthest away from nearby conductors carrying current in the same direction.
The proximity effect can significantly increase the AC resistance of adjacent conductors when compared to their resistance with a DC current. The effect increases with frequency. At higher frequencies, the AC resistance of a conductor can easily exceed ten times its DC resistance.
The cause of proximity effect can be seen from the accompanying drawings of two parallel wires next to each other carrying alternating current (AC). [1] [2] : p.142-143 The righthand wire in each drawing has the top part transparent to show the currents inside the metal. Each drawing depicts a point in the alternating current cycle when the current is increasing.
In the first drawing the current (I, red arrows) in both wires is in the same direction. The current in the lefthand wire creates a circular magnetic field (B, green lines) which passes through the other wire. From the right hand rule the field lines pass through the wire in an upward direction. From Faraday's law of induction, when the time-varying magnetic field is increasing, it creates a circular current (E, red loops) within the wire around the magnetic field lines in a clockwise direction. These are called eddy currents.
On the lefthand side nearest to the other wire (1) the eddy current is in the opposite direction to the main current (big pink arrow) in the wire, so it subtracts from the main current, reducing it. On the righthand side (2) the eddy current is in the same direction as the main current so it adds to it, increasing it. The net effect is to redistribute the current in the cross section of the wire into a thin strip on the side facing away from the other wire. The current distribution is shown by the red arrows and color gradient (3) on the cross section, with blue areas indicating low current and green, yellow, and red indicating higher current.
The same argument shows that the current in the lefthand wire is also concentrated into a strip on the far side away from the other wire.
In an alternating current the currents in the wire are increasing for half the time and decreasing half the time. When the current in the wires begins to decrease, the eddy currents reverse direction, which reverses the current redistribution.
In the second drawing, the alternating current in the wires is in opposite directions; in the lefthand wire it is into the page and in the righthand wire it is out of the page. This is the case in AC electrical power cables, which have two wires in which the current direction is always opposite. In this case, since the current is opposite, from the right hand rule the magnetic field (B) created by the lefthand wire is directed downward through the righthand wire, instead of upward as in the other drawing. From Faraday's law the circular eddy currents (E) are directed in a counterclockwise direction.
On the lefthand side nearest to the other wire (1) the eddy current is now in the same direction as the main current, so it adds to the main current, increasing it. On the righthand side (2) the eddy current is in the opposite direction to the main current, reducing it. In contrast to the previous case, the net effect is to redistribute the current into a thin strip on the side adjacent to the other wire.
The additional resistance increases power losses which, in power circuits, can generate undesirable heating. Proximity and skin effect significantly complicate the design of efficient transformers and inductors operating at high frequencies, used for example in switched-mode power supplies.
In radio frequency tuned circuits used in radio equipment, proximity and skin effect losses in the inductor reduce the Q factor, broadening the bandwidth. To minimize this, special construction is used in radio frequency inductors. The winding is usually limited to a single layer, and often the turns are spaced apart to separate the conductors. In multilayer coils, the successive layers are wound in a crisscross pattern to avoid having wires lying parallel to one another; these are sometimes referred to as "basket-weave" or "honeycomb" coils. Since the current flows on the surface of the conductor, high frequency coils are sometimes silver-plated, or made of litz wire.
This one-dimensional method for transformers assumes the wires have rectangular cross-section, but can be applied approximately to circular wire by treating it as square with the same cross-sectional area.
The windings are divided into 'portions', each portion being a group of layers which contains one position of zero MMF. For a transformer with a separate primary and secondary winding, each winding is a portion. For a transformer with interleaved (or sectionalised) windings, the innermost and outermost sections are each one portion, while the other sections are each divided into two portions at the point where zero m.m.f occurs.
The total resistance of a portion is given by[ citation needed ]
This can be used for round wire or litz wire transformers or inductors with multiple windings of arbitrary geometry with arbitrary current waveforms in each winding. The diameter of each strand should be less than 2 δ. It also assumes the magnetic field is perpendicular to the axis of the wire, which is the case in most designs.
The method can be generalized to multiple windings.
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when an electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.
In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.
Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field.
In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.
In electromagnetism, skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor. It is caused by opposing eddy currents induced by the changing magnetic field resulting from the alternating current. The electric current flows mainly at the skin of the conductor, between the outer surface and a level called the skin depth.
A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.
In electromagnetism, an eddy current is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.
In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.
Litz wire is a particular type of multistrand wire or cable used in electronics to carry alternating current (AC) at radio frequencies. The wire is designed to reduce the skin effect and proximity effect losses in conductors used at frequencies up to about 1 MHz.
A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point. In SI base units, the electric current density is measured in amperes per square metre.
An inductive sensor is a device that uses the principle of electromagnetic induction to detect or measure objects. An inductor develops a magnetic field when an electric current flows through it; alternatively, a current will flow through a circuit containing an inductor when the magnetic field through it changes. This effect can be used to detect metallic objects that interact with a magnetic field. Non-metallic substances, such as liquids or some kinds of dirt, do not interact with the magnetic field, so an inductive sensor can operate in wet or dirty conditions.
The direct-quadrature-zerotransformation or zero-direct-quadraturetransformation is a tensor that rotates the reference frame of a three-element vector or a three-by-three element matrix in an effort to simplify analysis. The DQZ transform is the product of the Clarke transform and the Park transform, first proposed in 1929 by Robert H. Park.
Basket winding is a winding method for electrical wire in a coil. The winding pattern is used for radio-frequency electronic components with many parallel wires, such as inductors and transformers. The winding pattern reduces the amount of wire running in adjacent, parallel turns. The wires in successive layers of a basket wound coil cross each other at large angles, as close to 90 degrees as possible, which reduces energy loss due to electrical cross-coupling between wires at radio frequencies.
Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.
Lorentz force velocimetry (LFV) is a noncontact electromagnetic flow measurement technique. LFV is particularly suited for the measurement of velocities in liquid metals like steel or aluminium and is currently under development for metallurgical applications. The measurement of flow velocities in hot and aggressive liquids such as liquid aluminium and molten glass constitutes one of the grand challenges of industrial fluid mechanics. Apart from liquids, LFV can also be used to measure the velocity of solid materials as well as for detection of micro-defects in their structures.