# Alternating current

Last updated

Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage . [1] [2]

## Contents

The usual waveform of alternating current in most electric power circuits is a sine wave, whose positive half-period corresponds with positive direction of the current and vice versa (the full period is called a cycle ). In certain applications, like guitar amplifiers, different waveforms are used, such as triangular waves or square waves. Audio and radio signals carried on electrical wires are also examples of alternating current. These types of alternating current carry information such as sound (audio) or images (video) sometimes carried by modulation of an AC carrier signal. These currents typically alternate at higher frequencies than those used in power transmission.

## Transmission, distribution, and domestic power supply

Electrical energy is distributed as alternating current because AC voltage may be increased or decreased with a transformer. This allows the power to be transmitted through power lines efficiently at high voltage, which reduces the energy lost as heat due to resistance of the wire, and transformed to a lower, safer voltage for use. Use of a higher voltage leads to significantly more efficient transmission of power. The power losses (${\displaystyle P_{\rm {w}}}$) in the wire are a product of the square of the current ( I ) and the resistance (R) of the wire, described by the formula:

${\displaystyle P_{\rm {w}}=I^{2}R\,.}$

This means that when transmitting a fixed power on a given wire, if the current is halved (i.e. the voltage is doubled), the power loss due to the wire's resistance will be reduced to one quarter.

The power transmitted is equal to the product of the current and the voltage (assuming no phase difference); that is,

${\displaystyle P_{\rm {t}}=IV\,.}$

Consequently, power transmitted at a higher voltage requires less loss-producing current than for the same power at a lower voltage. Power is often transmitted at hundreds of kilovolts on pylons, and transformed down to tens of kilovolts to be transmitted on lower level lines, and finally transformed down to 100 V – 240 V for domestic use.

High voltages have disadvantages, such as the increased insulation required, and generally increased difficulty in their safe handling. In a power plant, energy is generated at a convenient voltage for the design of a generator, and then stepped up to a high voltage for transmission. Near the loads, the transmission voltage is stepped down to the voltages used by equipment. Consumer voltages vary somewhat depending on the country and size of load, but generally motors and lighting are built to use up to a few hundred volts between phases. The voltage delivered to equipment such as lighting and motor loads is standardized, with an allowable range of voltage over which equipment is expected to operate. Standard power utilization voltages and percentage tolerance vary in the different mains power systems found in the world.

High-voltage direct-current (HVDC) electric power transmission systems have become more viable as technology has provided efficient means of changing the voltage of DC power. Transmission with high voltage direct current was not feasible in the early days of electric power transmission, as there was then no economically viable way to step the voltage of DC down for end user applications such as lighting incandescent bulbs.

Three-phase electrical generation is very common. The simplest way is to use three separate coils in the generator stator, physically offset by an angle of 120° (one-third of a complete 360° phase) to each other. Three current waveforms are produced that are equal in magnitude and 120° out of phase to each other. If coils are added opposite to these (60° spacing), they generate the same phases with reverse polarity and so can be simply wired together. In practice, higher "pole orders" are commonly used. For example, a 12-pole machine would have 36 coils (10° spacing). The advantage is that lower rotational speeds can be used to generate the same frequency. For example, a 2-pole machine running at 3600 rpm and a 12-pole machine running at 600 rpm produce the same frequency; the lower speed is preferable for larger machines. If the load on a three-phase system is balanced equally among the phases, no current flows through the neutral point. Even in the worst-case unbalanced (linear) load, the neutral current will not exceed the highest of the phase currents. Non-linear loads (e.g. the switch-mode power supplies widely used) may require an oversized neutral bus and neutral conductor in the upstream distribution panel to handle harmonics. Harmonics can cause neutral conductor current levels to exceed that of one or all phase conductors.

For three-phase at utilization voltages a four-wire system is often used. When stepping down three-phase, a transformer with a Delta (3-wire) primary and a Star (4-wire, center-earthed) secondary is often used so there is no need for a neutral on the supply side. For smaller customers (just how small varies by country and age of the installation) only a single phase and neutral, or two phases and neutral, are taken to the property. For larger installations all three phases and neutral are taken to the main distribution panel. From the three-phase main panel, both single and three-phase circuits may lead off. Three-wire single-phase systems, with a single center-tapped transformer giving two live conductors, is a common distribution scheme for residential and small commercial buildings in North America. This arrangement is sometimes incorrectly referred to as "two phase". A similar method is used for a different reason on construction sites in the UK. Small power tools and lighting are supposed to be supplied by a local center-tapped transformer with a voltage of 55 V between each power conductor and earth. This significantly reduces the risk of electric shock in the event that one of the live conductors becomes exposed through an equipment fault whilst still allowing a reasonable voltage of 110 V between the two conductors for running the tools.

A third wire, called the bond (or earth) wire, is often connected between non-current-carrying metal enclosures and earth ground. This conductor provides protection from electric shock due to accidental contact of circuit conductors with the metal chassis of portable appliances and tools. Bonding all non-current-carrying metal parts into one complete system ensures there is always a low electrical impedance path to ground sufficient to carry any fault current for as long as it takes for the system to clear the fault. This low impedance path allows the maximum amount of fault current, causing the overcurrent protection device (breakers, fuses) to trip or burn out as quickly as possible, bringing the electrical system to a safe state. All bond wires are bonded to ground at the main service panel, as is the neutral/identified conductor if present.

## AC power supply frequencies

The frequency of the electrical system varies by country and sometimes within a country; most electric power is generated at either 50 or 60  Hertz. Some countries have a mixture of 50 Hz and 60 Hz supplies, notably electricity power transmission in Japan. A low frequency eases the design of electric motors, particularly for hoisting, crushing and rolling applications, and commutator-type traction motors for applications such as railways. However, low frequency also causes noticeable flicker in arc lamps and incandescent light bulbs. The use of lower frequencies also provided the advantage of lower transmission losses, which are proportional to frequency. The original Niagara Falls generators were built to produce 25 Hz power, as a compromise between low frequency for traction and heavy induction motors, while still allowing incandescent lighting to operate (although with noticeable flicker). Most of the 25 Hz residential and commercial customers for Niagara Falls power were converted to 60 Hz by the late 1950s, although some[ which? ] 25 Hz industrial customers still existed as of the start of the 21st century. 16.7 Hz power (formerly 16 2/3 Hz) is still used in some European rail systems, such as in Austria, Germany, Norway, Sweden and Switzerland. Off-shore, military, textile industry, marine, aircraft, and spacecraft applications sometimes use 400 Hz, for benefits of reduced weight of apparatus or higher motor speeds. Computer mainframe systems were often powered by 400 Hz or 415 Hz for benefits of ripple reduction while using smaller internal AC to DC conversion units.[ citation needed ]

## Effects at high frequencies

A direct current flows uniformly throughout the cross-section of a homogeneous electrically conducting wire. An alternating current of any frequency is forced away from the wire's center, toward its outer surface. This is because an alternating current (which is the result of the acceleration of electric charge) creates electromagnetic waves (a phenomenon known as electromagnetic radiation). Electric conductors are not conducive to electromagnetic waves (a perfect electric conductor prohibits all electromagnetic waves within its boundary), so a wire that is made of a non-perfect conductor (a conductor with finite, rather than infinite, electrical conductivity) pushes the alternating current, along with their associated electromagnetic fields, away from the wire's center. The phenomenon of alternating current being pushed away from the center of the conductor is called skin effect, and a direct current does not exhibit this effect, since a direct current does not create electromagnetic waves.

At very high frequencies, the current no longer flows in the wire, but effectively flows on the surface of the wire, within a thickness of a few skin depths. The skin depth is the thickness at which the current density is reduced by 63%. Even at relatively low frequencies used for power transmission (50 Hz – 60 Hz), non-uniform distribution of current still occurs in sufficiently thick conductors. For example, the skin depth of a copper conductor is approximately 8.57 mm at 60 Hz, so high current conductors are usually hollow to reduce their mass and cost. This tendency of alternating current to flow predominantly in the periphery of conductors reduces the effective cross-section of the conductor. This increases the effective AC resistance of the conductor, since resistance is inversely proportional to the cross-sectional area. A conductor's AC resistance is higher than its DC resistance, causing a higher energy loss due to ohmic heating (also called I2R loss).

### Techniques for reducing AC resistance

For low to medium frequencies, conductors can be divided into stranded wires, each insulated from the others, with the relative positions of individual strands specially arranged within the conductor bundle. Wire constructed using this technique is called Litz wire. This measure helps to partially mitigate skin effect by forcing more equal current throughout the total cross section of the stranded conductors. Litz wire is used for making high-Q inductors, reducing losses in flexible conductors carrying very high currents at lower frequencies, and in the windings of devices carrying higher radio frequency current (up to hundreds of kilohertz), such as switch-mode power supplies and radio frequency transformers.

### Techniques for reducing radiation loss

As written above, an alternating current is made of electric charge under periodic acceleration, which causes radiation of electromagnetic waves. Energy that is radiated is lost. Depending on the frequency, different techniques are used to minimize the loss due to radiation.

#### Twisted pairs

At frequencies up to about 1 GHz, pairs of wires are twisted together in a cable, forming a twisted pair. This reduces losses from electromagnetic radiation and inductive coupling. A twisted pair must be used with a balanced signalling system, so that the two wires carry equal but opposite currents. Each wire in a twisted pair radiates a signal, but it is effectively cancelled by radiation from the other wire, resulting in almost no radiation loss.

#### Coaxial cables

Coaxial cables are commonly used at audio frequencies and above for convenience. A coaxial cable has a conductive wire inside a conductive tube, separated by a dielectric layer. The current flowing on the surface of the inner conductor is equal and opposite to the current flowing on the inner surface of the outer tube. The electromagnetic field is thus completely contained within the tube, and (ideally) no energy is lost to radiation or coupling outside the tube. Coaxial cables have acceptably small losses for frequencies up to about 5 GHz. For microwave frequencies greater than 5 GHz, the losses (due mainly to the dielectric separating the inner and outer tubes being a non-ideal insulator) become too large, making waveguides a more efficient medium for transmitting energy. Coaxial cables often use a perforated dielectric layer to separate the inner and outer conductors in order to minimize the power dissipated by the dielectric.

#### Waveguides

Waveguides are similar to coaxial cables, as both consist of tubes, with the biggest difference being that waveguides have no inner conductor. Waveguides can have any arbitrary cross section, but rectangular cross sections are the most common. Because waveguides do not have an inner conductor to carry a return current, waveguides cannot deliver energy by means of an electric current, but rather by means of a guided electromagnetic field. Although surface currents do flow on the inner walls of the waveguides, those surface currents do not carry power. Power is carried by the guided electromagnetic fields. The surface currents are set up by the guided electromagnetic fields and have the effect of keeping the fields inside the waveguide and preventing leakage of the fields to the space outside the waveguide. Waveguides have dimensions comparable to the wavelength of the alternating current to be transmitted, so they are feasible only at microwave frequencies. In addition to this mechanical feasibility, electrical resistance of the non-ideal metals forming the walls of the waveguide causes dissipation of power (surface currents flowing on lossy conductors dissipate power). At higher frequencies, the power lost to this dissipation becomes unacceptably large.

#### Fiber optics

At frequencies greater than 200 GHz, waveguide dimensions become impractically small, and the ohmic losses in the waveguide walls become large. Instead, fiber optics, which are a form of dielectric waveguides, can be used. For such frequencies, the concepts of voltages and currents are no longer used.

## Mathematics of AC voltages

Alternating currents are accompanied (or caused) by alternating voltages. An AC voltage v can be described mathematically as a function of time by the following equation:

${\displaystyle v(t)=V_{\text{peak}}\sin(\omega t)}$,

where

• ${\displaystyle V_{\text{peak}}}$ is the peak voltage (unit: volt),
• ${\displaystyle \omega }$ is the angular frequency (unit: radians per second).
The angular frequency is related to the physical frequency, ${\displaystyle f}$ (unit: hertz), which represents the number of cycles per second, by the equation ${\displaystyle \omega =2\pi f}$.
• ${\displaystyle t}$ is the time (unit: second).

The peak-to-peak value of an AC voltage is defined as the difference between its positive peak and its negative peak. Since the maximum value of ${\displaystyle \sin(x)}$ is +1 and the minimum value is −1, an AC voltage swings between ${\displaystyle +V_{\text{peak}}}$ and ${\displaystyle -V_{\text{peak}}}$. The peak-to-peak voltage, usually written as ${\displaystyle V_{\text{pp}}}$ or ${\displaystyle V_{\text{P-P}}}$, is therefore ${\displaystyle V_{\text{peak}}-(-V_{\text{peak}})=2V_{\text{peak}}}$.

### Root mean square voltage

Below an AC waveform (with no DC component) is assumed.

The RMS voltage is the square root of the mean over one cycle of the square of the instantaneous voltage.

• For an arbitrary periodic waveform ${\displaystyle v(t)}$ of period ${\displaystyle T}$:
${\displaystyle V_{\text{rms}}={\sqrt {{\frac {1}{T}}\int _{0}^{T}{[v(t)]^{2}dt}}}.}$
• For a sinusoidal voltage:
{\displaystyle {\begin{aligned}V_{\text{rms}}&={\sqrt {{\frac {1}{T}}\int _{0}^{T}[{V_{\text{peak}}\sin(\omega t+\phi )]^{2}dt}}}\\&=V_{\text{peak}}{\sqrt {{\frac {1}{2T}}\int _{0}^{T}[{1-\cos(2\omega t+2\phi )]dt}}}\\&=V_{\text{peak}}{\sqrt {{\frac {1}{2T}}\int _{0}^{T}{dt}}}\\&={\frac {V_{\text{peak}}}{\sqrt {2}}}\end{aligned}}}
where the trigonometric identity ${\displaystyle \sin ^{2}(x)={\frac {1-\cos(2x)}{2}}}$ has been used and the factor ${\displaystyle {\sqrt {2}}}$ is called the crest factor, which varies for different waveforms.
• For a triangle waveform centered about zero
${\displaystyle V_{\text{rms}}={\frac {V_{\text{peak}}}{\sqrt {3}}}.}$
• For a square waveform centered about zero
${\displaystyle V_{\text{rms}}=V_{\text{peak}}.}$

### Power

The relationship between voltage and the power delivered is:

${\displaystyle p(t)={\frac {v^{2}(t)}{R}}}$,

where ${\displaystyle R}$ represents a load resistance.

Rather than using instantaneous power, ${\displaystyle p(t)}$, it is more practical to use a time-averaged power (where the averaging is performed over any integer number of cycles). Therefore, AC voltage is often expressed as a root mean square (RMS) value, written as ${\displaystyle V_{\text{rms}}}$, because

${\displaystyle P_{\text{average}}={\frac {{V_{\text{rms}}}^{2}}{R}}.}$
Power oscillation
{\displaystyle {\begin{aligned}v(t)&=V_{\text{peak}}\sin(\omega t)\\i(t)&={\frac {v(t)}{R}}={\frac {V_{\text{peak}}}{R}}\sin(\omega t)\\p(t)&=v(t)i(t)={\frac {(V_{\text{peak}})^{2}}{R}}\sin ^{2}(\omega t)\end{aligned}}}

For this reason, AC power's waveform becomes Full-wave rectified sine, and its fundamental period is half of the one of the voltage's.

### Examples of alternating current

To illustrate these concepts, consider a 230 V AC mains supply used in many countries around the world. It is so called because its root mean square value is 230 V. This means that the time-averaged power delivered ${\displaystyle P_{\text{average}}}$ is equivalent to the power delivered by a DC voltage of 230 V. To determine the peak voltage (amplitude), we can rearrange the above equation to:

${\displaystyle V_{\text{peak}}={\sqrt {2}}\ V_{\text{rms}}}$
${\displaystyle P_{\text{peak}}={\frac {(V_{\text{rms}})^{2}}{R}}{\frac {(V_{\text{peak}})^{2}}{(V_{\text{rms}})^{2}}}={\text{P}}_{\text{average}}{\sqrt {2}}^{2}={\text{2}}P_{\text{average}}.}$

For 230 V AC, the peak voltage ${\displaystyle V_{\text{peak}}}$ is therefore ${\displaystyle 230{\text{ V}}\times {\sqrt {2}}}$, which is about 325 V, and the peak power ${\displaystyle P_{\text{peak}}}$ is ${\displaystyle 230\times R\times W\times 2}$, that is 460 RW. During the course of one cycle (two cycle as the power) the voltage rises from zero to 325 V, the power from zero to 460 RW, and both falls through zero. Next, the voltage descends to reverse direction, -325 V, but the power ascends again to 460 RW, and both returns to zero.

## Information transmission

Alternating current is used to transmit information, as in the cases of telephone and cable television. Information signals are carried over a wide range of AC frequencies. POTS telephone signals have a frequency of about 3 kHz, close to the baseband audio frequency. Cable television and other cable-transmitted information currents may alternate at frequencies of tens to thousands of megahertz. These frequencies are similar to the electromagnetic wave frequencies often used to transmit the same types of information over the air.

## History

The first alternator to produce alternating current was an electric generator based on Michael Faraday's principles constructed by the French instrument maker Hippolyte Pixii in 1832. [3] Pixii later added a commutator to his device to produce the (then) more commonly used direct current. The earliest recorded practical application of alternating current is by Guillaume Duchenne, inventor and developer of electrotherapy. In 1855, he announced that AC was superior to direct current for electrotherapeutic triggering of muscle contractions. [4] Alternating current technology was developed further by the Hungarian Ganz Works company (1870s), and in the 1880s: Sebastian Ziani de Ferranti, Lucien Gaulard, and Galileo Ferraris.

In 1876, Russian engineer Pavel Yablochkov invented a lighting system where sets of induction coils were installed along a high voltage AC line. Instead of changing voltage, the primary windings transferred power to the secondary windings which were connected to one or several 'electric candles' (arc lamps) of his own design, [5] [6] used to keep the failure of one lamp from disabling the entire circuit. [5] In 1878, the Ganz factory, Budapest, Hungary, began manufacturing equipment for electric lighting and, by 1883, had installed over fifty systems in Austria-Hungary. Their AC systems used arc and incandescent lamps, generators, and other equipment. [7]

### Transformers

Alternating current systems can use transformers to change voltage from low to high level and back, allowing generation and consumption at low voltages but transmission, possibly over great distances, at high voltage, with savings in the cost of conductors and energy losses. A bipolar open-core power transformer developed by Lucien Gaulard and John Dixon Gibbs was demonstrated in London in 1881, and attracted the interest of Westinghouse. They also exhibited the invention in Turin in 1884. However, these early induction coils with open magnetic circuits are inefficient at transferring power to loads. Until about 1880, the paradigm for AC power transmission from a high voltage supply to a low voltage load was a series circuit. Open-core transformers with a ratio near 1:1 were connected with their primaries in series to allow use of a high voltage for transmission while presenting a low voltage to the lamps. The inherent flaw in this method was that turning off a single lamp (or other electric device) affected the voltage supplied to all others on the same circuit. Many adjustable transformer designs were introduced to compensate for this problematic characteristic of the series circuit, including those employing methods of adjusting the core or bypassing the magnetic flux around part of a coil. [8] The direct current systems did not have these drawbacks, giving it significant advantages over early AC systems.

In the UK, Sebastian de Ferranti, who had been developing AC generators and transformers in London since 1882, redesigned the AC system at the Grosvenor Gallery power station in 1886 for the London Electric Supply Corporation (LESCo) including alternators of his own design and open core transformer designs with serial connections for utilization loads - similar to Gaulard and Gibbs. [9] In 1890, he designed their power station at Deptford [10] and converted the Grosvenor Gallery station across the Thames into an electrical substation, showing the way to integrate older plants into a universal AC supply system. [11]

### Pioneers

In the autumn[ ambiguous ] of 1884, Károly Zipernowsky, Ottó Bláthy and Miksa Déri (ZBD), three engineers associated with the Ganz Works of Budapest, determined that open-core devices were impractical, as they were incapable of reliably regulating voltage. [12] Bláthy had suggested the use of closed cores, Zipernowsky had suggested the use of parallel shunt connections, and Déri had performed the experiments; [13] In their joint 1885 patent applications for novel transformers (later called ZBD transformers), they described two designs with closed magnetic circuits where copper windings were either wound around a ring core of iron wires or else surrounded by a core of iron wires. [8] In both designs, the magnetic flux linking the primary and secondary windings traveled almost entirely within the confines of the iron core, with no intentional path through air (see toroidal cores). The new transformers were 3.4 times more efficient than the open-core bipolar devices of Gaulard and Gibbs. [14] The Ganz factory in 1884 shipped the world's first five high-efficiency AC transformers. [15] This first unit had been manufactured to the following specifications: 1,400 W, 40 Hz, 120:72 V, 11.6:19.4 A, ratio 1.67:1, one-phase, shell form. [15]

The ZBD patents included two other major interrelated innovations: one concerning the use of parallel connected, instead of series connected, utilization loads, the other concerning the ability to have high turns ratio transformers such that the supply network voltage could be much higher (initially 1400 V to 2000 V) than the voltage of utilization loads (100 V initially preferred). [16] [17] When employed in parallel connected electric distribution systems, closed-core transformers finally made it technically and economically feasible to provide electric power for lighting in homes, businesses and public spaces. [18] [19] The other essential milestone was the introduction of 'voltage source, voltage intensive' (VSVI) systems' [20] by the invention of constant voltage generators in 1885. [21] In early 1885, the three engineers also eliminated the problem of eddy current losses with the invention of the lamination of electromagnetic cores. [22] Ottó Bláthy also invented the first AC electricity meter. [23] [24] [25] [26]

The AC power system was developed and adopted rapidly after 1886 due to its ability to distribute electricity efficiently over long distances, overcoming the limitations of the direct current system. In 1886, the ZBD engineers designed the world's first power station that used AC generators to power a parallel-connected common electrical network, the steam-powered Rome-Cerchi power plant. [27] The reliability of the AC technology received impetus after the Ganz Works electrified a large European metropolis: Rome in 1886. [27]

Building on the advancement of AC technology in Europe, [28] George Westinghouse founded the Westinghouse Electric in Pittsburgh, Pennsylvania, on January 8, 1886. [29] The new firm became active in developing alternating current (AC) electric infrastructure throughout the United States. The Edison Electric Light Company held an option on the US rights for the Ganz ZBD transformers, requiring Westinghouse to pursue alternative designs on the same principles. George Westinghouse had bought Gaulard and Gibbs' patents for \$50,000 in February 1886. [30] He assigned to William Stanley the task of redesigning the Gaulard and Gibbs transformer for commercial use in United States. [31] On March 20, 1886, Stanley conducted a demonstrative experiment in Great Barrington: A Siemens generator's voltage of 500 volts was converted into 3000 volts, and then the voltage was stepped down to 500 volts by six Westinghouse transformers. With this setup, the Westinghouse company successfully powered thirty 100-volt incandescent bulbs in twenty shops along the main street of Great Barrington. [32] The spread of Westinghouse and other AC systems triggered a push back in late 1887 by Thomas Edison (a proponent of direct current), who attempted to discredit alternating current as too dangerous in a public campaign called the "war of the currents". In 1888, alternating current systems gained further viability with introduction of a functional AC motor, something these systems had lacked up till then. The design, an induction motor, was independently invented by Galileo Ferraris and Nikola Tesla (with Tesla's design being licensed by Westinghouse in the US). This design was independently further developed into the modern practical three-phase form by Mikhail Dolivo-Dobrovolsky and Charles Eugene Lancelot Brown in Germany on one side, [33] and Jonas Wenström in Sweden on the other, though Brown favoured the two-phase system.

The Ames Hydroelectric Generating Plant and the original Niagara Falls Adams Power Plant were among the first hydroelectric alternating current power plants. The first long distance transmission of single-phase electricity was from a hydroelectric generating plant in Oregon at Willamette Falls which in 1890 sent power fourteen miles downriver to downtown Portland for street lighting. [34] In 1891, a second transmission system was installed in Telluride Colorado. [35] The San Antonio Canyon Generator was the third commercial single-phase hydroelectric AC power plant in the United States to provide long-distance electricity. It was completed on December 31, 1892, by Almarian William Decker to provide power to the city of Pomona, California, which was 14 miles away. Meanwhile, the possibility of transferring electrical power from a waterfall at a distance was explored at the Grängesberg mine in Sweden. A 45  m fall at Hällsjön, Smedjebackens kommun, where a small iron work had been located, was selected. In 1893, a three-phase 9.5  kv system was used to transfer 400 horsepower a distance of 15  km , becoming the first commercial application. [36] In 1893, Decker designed the first American commercial three-phase power plant using alternating current—the hydroelectric Mill Creek No. 1 Hydroelectric Plant near Redlands, California. Decker's design incorporated 10 kV three-phase transmission and established the standards for the complete system of generation, transmission and motors used in USA today. The Jaruga Hydroelectric Power Plant in Croatia was set in operation on 28 August 1895. The two generators (42 Hz, 550 kW each) and the transformers were produced and installed by the Hungarian company Ganz. The transmission line from the power plant to the City of Šibenik was 11.5 kilometers (7.1 mi) long on wooden towers, and the municipal distribution grid 3000 V/110 V included six transforming stations.

Alternating current circuit theory developed rapidly in the latter part of the 19th and early 20th century. Notable contributors to the theoretical basis of alternating current calculations include Charles Steinmetz, Oliver Heaviside, and many others. [37] [38] Calculations in unbalanced three-phase systems were simplified by the symmetrical components methods discussed by Charles LeGeyt Fortescue in 1918.

## Related Research Articles

In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

Three-phase electric power is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires and is the most common method used by electrical grids worldwide to transfer power.

In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.

In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of root mean square (RMS) current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.

In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy is returned to the circuit. Greater reactance gives smaller current for the same applied voltage.

Mains electricity or utility power, power grid, domestic power, and wall power, or, in some parts of Canada, hydro, is a general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to homes and businesses through the electrical grid in many parts of the world. People use this electricity to power everyday items by plugging them into a wall outlet.

Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 33 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.

In electromagnetism, skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor. It is caused by opposing eddy currents induced by the changing magnetic field resulting from the alternating current. The electric current flows mainly at the skin of the conductor, between the outer surface and a level called the skin depth. Skin depth depends on the frequency of the alternating current; as frequency increases, current flow becomes more concentrated near the surface, resulting in less skin depth. Skin effect reduces the effective cross-section of the conductor and thus increases its effective resistance. At 60 Hz in copper, skin depth is about 8.5 mm. At high frequencies, skin depth becomes much smaller.

Joule heating is the process by which the passage of an electric current through a conductor produces heat.

In an electrical system, a ground loop or earth loop occurs when two points of a circuit are intended to have the same ground reference potential but instead have a different potential between them. This is typically caused when enough current is flowing in the connection between the two ground points to produce a voltage drop and cause two points to be at different potentials. Current may be produced in a circular ground connection by electromagnetic induction.

A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the alternating current (AC) equivalent of the original Edison Machine Works three-wire direct-current system. Its primary advantage is that, for a given capacity of a distribution system, it saves conductor material over a single-ended single-phase system, while only requiring a single phase on the supply side of the distribution transformer.

A motor–generator is a device for converting electrical power to another form. Motor–generator sets are used to convert frequency, voltage, or phase of power. They may also be used to isolate electrical loads from the electrical power supply line. Large motor–generators were widely used to convert industrial amounts of power while smaller motor–generators were used to convert battery power to higher DC voltages.

A traction network or traction power network is an electricity grid for the supply of electrified rail networks. The installation of a separate traction network generally is done only if the railway in question uses alternating current (AC) with a frequency lower than that of the national grid, such as in Germany, Austria and Switzerland.

The volt-ampere is the unit of measurement for apparent power in an electrical circuit. It is the product of the root mean square voltage and the root mean square current. Volt-amperes are usually used for analyzing alternating current (AC) circuits. In direct current (DC) circuits, this product is equal to the real power, measured in watts. The volt-ampere is dimensionally equivalent to the watt: in SI units, 1 V⋅A = 1 W. VA rating is most used for generators and transformers, and other power handling equipment, where loads may be reactive.

In an electric power system, a harmonic of a voltage or current waveform is a sinusoidal wave whose frequency is an integer multiple of the fundamental frequency. Harmonic frequencies are produced by the action of non-linear loads such as rectifiers, discharge lighting, or saturated electric machines. They are a frequent cause of power quality problems and can result in increased equipment and conductor heating, misfiring in variable speed drives, and torque pulsations in motors and generators.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

## References

1. N. N. Bhargava & D. C. Kulshreshtha (1983). Basic Electronics & Linear Circuits. Tata McGraw-Hill Education. p. 90. ISBN   978-0-07-451965-3.
2. National Electric Light Association (1915). Electrical meterman's handbook. Trow Press. p. 81.
3. "Pixii Machine invented by Hippolyte Pixii, National High Magnetic Field Laboratory". Archived from the original on 2008-09-07. Retrieved 2012-03-23.
4. Licht, Sidney Herman (1967). "History of Electrotherapy". Therapeutic Electricity and Ultraviolet Radiation (2 ed.). New Haven. pp. 1–70. ISBN   9780853240631.{{cite book}}: CS1 maint: location missing publisher (link)
5. "Stanley Transformer". Los Alamos National Laboratory; University of Florida. Archived from the original on 2009-01-19. Retrieved Jan 9, 2009.
6. De Fonveille, W. (Jan 22, 1880). "Gas and Electricity in Paris". Nature . 21 (534): 283. Bibcode:1880Natur..21..282D. doi:. Retrieved Jan 9, 2009.
7. Hughes, Thomas P. (1993). Networks of Power: Electrification in Western Society, 1880–1930. Baltimore: The Johns Hopkins University Press. p. 96. ISBN   0-8018-2873-2 . Retrieved Sep 9, 2009.
8. Uppenborn, F. J. (1889). History of the Transformer. London: E. & F. N. Spon. pp. 35–41.
9. Hughes (1993), p. 98.
10. "Ferranti Timeline". Museum of Science and Industry (Manchester). Archived from the original on 2015-10-03. Retrieved February 22, 2012.
11. Hughes (1993), p. 208.
12. Hughes (1993), p. 95.
13. Smil, Vaclav (2005). . Oxford: Oxford University Press. p.  71. ISBN   978-0-19-803774-3. ZBD transformer.
14. Jeszenszky, Sándor. "Electrostatics and Electrodynamics at Pest University in the Mid-19th Century" (PDF). University of Pavia. Archived (PDF) from the original on 2022-10-09. Retrieved Mar 3, 2012.
15. Halacsy, A. A.; Von Fuchs, G. H. (April 1961). "Transformer Invented 75 Years Ago". IEEE Transactions of the American Institute of Electrical Engineers. 80 (3): 121–125. doi:10.1109/AIEEPAS.1961.4500994. S2CID   51632693.
16. "Hungarian Inventors and Their Inventions". Institute for Developing Alternative Energy in Latin America. Archived from the original on 2012-03-22. Retrieved Mar 3, 2012.
17. "Bláthy, Ottó Titusz". Budapest University of Technology and Economics, National Technical Information Centre and Library. Retrieved Feb 29, 2012.
18. "Bláthy, Ottó Titusz (1860–1939)". Hungarian Patent Office. Archived from the original on December 2, 2010. Retrieved Jan 29, 2004.
19. Zipernowsky, K.; Déri, M.; Bláthy, O.T. "Induction Coil" (PDF). U.S. Patent 352 105, issued Nov. 2, 1886. Archived (PDF) from the original on 2022-10-09. Retrieved July 8, 2009.
20. American Society for Engineering Education. Conference – 1995: Annual Conference Proceedings, Volume 2, (PAGE: 1848)
21. Hughes (1993), p. 96.
22. Electrical Society of Cornell University (1896). Proceedings of the Electrical Society of Cornell University. Andrus & Church. p. 39.
23. Eugenii Katz. "Blathy". People.clarkson.edu. Archived from the original on June 25, 2008. Retrieved 2009-08-04.
24. Ricks, G.W.D. (March 1896). "Electricity Supply Meters". Journal of the Institution of Electrical Engineers. 25 (120): 57–77. doi:10.1049/jiee-1.1896.0005. Student paper read on January 24, 1896, at the Students' Meeting.
25. The Electrician, Volume 50. 1923
26. Official gazette of the United States Patent Office: Volume 50. (1890)
27. "Ottó Bláthy, Miksa Déri, Károly Zipernowsky". IEC Techline. Archived from the original on September 30, 2007. Retrieved Apr 16, 2010.
28. Brusso, Barry; Allerhand, Adam (January 2021). "A Contrarian History of Early Electric Power Distribution". IEEE Industry Applications Magazine. IEEE.org: 12. doi:. S2CID   230605234. Archived from the original on December 12, 2020. Retrieved January 1, 2023.
29. History of Tinicum Township (PA) 1643–1993 (PDF). Tinicum Township Historical Society. 1993. Archived (PDF) from the original on April 23, 2015.
30. William R. Huber (2022). George Westinghouse Powering the World. McFarland & Company. p. 84. ISBN   9781476686929.
31. Skrabec, Quentin R. (2007). George Westinghouse: Gentle Genius. Algora Publishing. p. 102. ISBN   978-0-87586-508-9.
32. Clark W. Gellings (2020). The Smart Grid Enabling Energy Efficiency and Demand Response. River Publishers. p. 62. ISBN   9781000355314.
33. Heertje, Arnold; Perlman, Mark (1990). Evolving Technology and Market Structure: Studies in Schumpeterian Economics. University of Michigan Press. p. 138. ISBN   9780472101924.
34. "Electric Transmission of Power". General Electric Review. XVIII. 1915.
35. "Electric Transmission of Power". General Electric. XVIII. 1915.
36. Hjulström, Filip (1940). Elektrifieringens utveckling i Sverige, en ekonomisk-geografisk översikt. [Excerpt taken from YMER 1941, häfte 2.Utgiven av Sällskapet för antropologi och geografi: Meddelande från Upsala univeristets geografiska institution, N:o 29, published by Esselte ab, Stockholm 1941 no. 135205]
37. Grattan-Guinness, I. (September 19, 2003). Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. JHU Press. ISBN   978-0-8018-7397-3 via Google Books.
38. Suzuki, Jeff (August 27, 2009). Mathematics in Historical Context. MAA. ISBN   978-0-88385-570-6 via Google Books.
• Willam A. Meyers, History and Reflections on the Way Things Were: Mill Creek Power Plant – Making History with AC, IEEE Power Engineering Review, February 1997, pp. 22–24