Direct current

Last updated
Direct current (DC) (red line). The vertical axis shows current or voltage and the horizontal 't' axis measures time and shows the zero value. Types of current.svg
Direct current (DC) (red line). The vertical axis shows current or voltage and the horizontal 't' axis measures time and shows the zero value.

Direct current (DC) is the unidirectional flow of an electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current. [1]

Contents

The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage . [2] [3]

Direct current may be converted from an alternating current supply by use of a rectifier, which contains electronic elements (usually) or electromechanical elements (historically) that allow current to flow only in one direction. Direct current may be converted into alternating current via an inverter.

Direct current has many uses, from the charging of batteries to large power supplies for electronic systems, motors, and more. Very large quantities of electrical energy provided via direct-current are used in smelting of aluminum and other electrochemical processes. It is also used for some railways, especially in urban areas. High-voltage direct current is used to transmit large amounts of power from remote generation sites or to interconnect alternating current power grids.

History

Brush Electric Company's central power plant with dynamos generating direct current to power arc lamps for public lighting in New York. Beginning operation in December 1880 at 133 West Twenty-Fifth Street, the high voltages it operated at allowed it to power a 2-mile (3.2 km) long circuit. Brush central power station dynamos New York 1881.jpg
Brush Electric Company's central power plant with dynamos generating direct current to power arc lamps for public lighting in New York. Beginning operation in December 1880 at 133 West Twenty-Fifth Street, the high voltages it operated at allowed it to power a 2-mile (3.2 km) long circuit.

Direct current was produced in 1800 by Italian physicist Alessandro Volta's battery, his Voltaic pile. [5] The nature of how current flowed was not yet understood. French physicist André-Marie Ampère conjectured that current travelled in one direction from positive to negative. [6] When French instrument maker Hippolyte Pixii built the first dynamo electric generator in 1832, he found that as the magnet used passed the loops of wire each half turn, it caused the flow of electricity to reverse, generating an alternating current. [7] At Ampère's suggestion, Pixii later added a commutator, a type of "switch" where contacts on the shaft work with "brush" contacts to produce direct current.

The late 1870s and early 1880s saw electricity starting to be generated at power stations. These were initially set up to power arc lighting (a popular type of street lighting) running on very high voltage (usually higher than 3000 volt) direct current or alternating current. [8] This was followed by the wide spread use of low voltage direct current for indoor electric lighting in business and homes after inventor Thomas Edison launched his incandescent bulb based electric "utility" in 1882. Because of the significant advantages of alternating current over direct current in using transformers to raise and lower voltages to allow much longer transmission distances, direct current was replaced over the next few decades by alternating current in power delivery. In the mid-1950s, high-voltage direct current transmission was developed, and is now an option instead of long-distance high voltage alternating current systems. For long distance underseas cables (e.g. between countries, such as NorNed), this DC option is the only technically feasible option. For applications requiring direct current, such as third rail power systems, alternating current is distributed to a substation, which utilizes a rectifier to convert the power to direct current.

Various definitions

Types of direct current Current rectification diagram.svg
Types of direct current

The term DC is used to refer to power systems that use only one polarity of voltage or current, and to refer to the constant, zero-frequency, or slowly varying local mean value of a voltage or current. [9] For example, the voltage across a DC voltage source is constant as is the current through a DC current source. The DC solution of an electric circuit is the solution where all voltages and currents are constant. It can be shown that any stationary voltage or current waveform can be decomposed into a sum of a DC component and a zero-mean time-varying component; the DC component is defined to be the expected value, or the average value of the voltage or current over all time.

Although DC stands for "direct current", DC often refers to "constant polarity". Under this definition, DC voltages can vary in time, as seen in the raw output of a rectifier or the fluctuating voice signal on a telephone line.

Some forms of DC (such as that produced by a voltage regulator) have almost no variations in voltage, but may still have variations in output power and current.

Circuits

A direct current circuit is an electrical circuit that consists of any combination of constant voltage sources, constant current sources, and resistors. In this case, the circuit voltages and currents are independent of time. A particular circuit voltage or current does not depend on the past value of any circuit voltage or current. This implies that the system of equations that represent a DC circuit do not involve integrals or derivatives with respect to time.

If a capacitor or inductor is added to a DC circuit, the resulting circuit is not, strictly speaking, a DC circuit. However, most such circuits have a DC solution. This solution gives the circuit voltages and currents when the circuit is in DC steady state. Such a circuit is represented by a system of differential equations. The solution to these equations usually contain a time varying or transient part as well as constant or steady state part. It is this steady state part that is the DC solution. There are some circuits that do not have a DC solution. Two simple examples are a constant current source connected to a capacitor and a constant voltage source connected to an inductor.

In electronics, it is common to refer to a circuit that is powered by a DC voltage source such as a battery or the output of a DC power supply as a DC circuit even though what is meant is that the circuit is DC powered.

Applications

Domestic and commercial buildings

This symbol which can be represented with Unicode character U+2393 ([?]) is found on many electronic devices that either require or produce direct current. Direct current symbol.svg
This symbol which can be represented with Unicode character U+ 2393 (⎓) is found on many electronic devices that either require or produce direct current.

DC is commonly found in many extra-low voltage applications and some low-voltage applications, especially where these are powered by batteries or solar power systems (since both can produce only DC).

Most electronic circuits require a DC power supply.

Domestic DC installations usually have different types of sockets, connectors, switches, and fixtures from those suitable for alternating current. This is mostly due to the lower voltages used, resulting in higher currents to produce the same amount of power.

It is usually important with a DC appliance to observe polarity, unless the device has a diode bridge to correct for this.

EMerge Alliance is the open industry association developing standards of DC power distribution in hybrid houses and commercial buildings.

Automotive

Most automotive applications use DC. An automotive battery provides power for engine starting, lighting, and ignition system. The alternator is an AC device which uses a rectifier to produce DC for battery charging. Most highway passenger vehicles use nominally 12  V systems. Many heavy trucks, farm equipment, or earth moving equipment with Diesel engines use 24 volt systems. In some older vehicles, 6 V was used, such as in the original classic Volkswagen Beetle. At one point a 42 V electrical system was considered for automobiles, but this found little use. To save weight and wire, often the metal frame of the vehicle is connected to one pole of the battery and used as the return conductor in a circuit. Often the negative pole is the chassis "ground" connection, but positive ground may be used in some wheeled or marine vehicles.

Telecommunication

Telephone exchange communication equipment uses standard −48 V DC power supply. The negative polarity is achieved by grounding the positive terminal of power supply system and the battery bank. This is done to prevent electrolysis depositions. Telephone installations have a battery system to ensure power is maintained for subscriber lines during power interruptions.

Other devices may be powered from the telecommunications DC system using a DC-DC converter to provide any convenient voltage.

Many telephones connect to a twisted pair of wires, and use a bias tee to internally separate the AC component of the voltage between the two wires (the audio signal) from the DC component of the voltage between the two wires (used to power the phone).

High-voltage power transmission

High-voltage direct current (HVDC) electric power transmission systems use DC for the bulk transmission of electrical power, in contrast with the more common alternating current systems. For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses.

Other

Applications using fuel cells (mixing hydrogen and oxygen together with a catalyst to produce electricity and water as byproducts) also produce only DC.

Light aircraft electrical systems are typically 12 V or 24 V DC similar to automobiles.

See also

Related Research Articles

Three-phase electric power Common electrical power generation, transmission and distribution method for alternating currents

Three-phase electric power is a common method of alternating current electric power generation, transmission, and distribution. It is a type of polyphase system and is the most common method used by electrical grids worldwide to transfer power. It is also used to power large motors and other heavy loads.

In electrical engineering, the power factor of an AC electrical power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit, and is a dimensionless number in the closed interval of −1 to 1. A power factor of less than one indicates the voltage and current are not in phase, reducing the average product of the two. Real power is the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of RMS current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power. A negative power factor occurs when the device generates power, which then flows back towards the source.

Alternating current Electric current which periodically reverses direction

Alternating current (AC) is an electric current which periodically reverses direction, in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. A common source of DC power is a battery cell in a flashlight. The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage.

High-voltage direct current Electric power transmission system

A high-voltage, direct current (HVDC) electric power transmission system uses direct current for the bulk transmission of electrical power, in contrast with the more common alternating current (AC) systems. For long-distance transmission, HVDC systems may be less expensive and have lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be justified, due to other benefits of direct current links.

Rectifier AC-DC conversion device; electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.

Electric generator device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motive power into electrical power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all of the power for electric power grids.

Diode bridge

A diode bridge is an arrangement of four diodes in a bridge circuit configuration that provides the same polarity of output for either polarity of input.

Electric power distribution Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electric power; it carries electricity from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 35 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment or household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

Power supply electronic device that converts or regulates electric energy and supplies it to a load

A power supply is an electrical device that supplies electric power to an electrical load. The primary function of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.

Alternator Electromechanical device that converts mechanical energy to electrical energy in the form of alternating current

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.

Power inverter Device that changes direct current (DC) to alternating current (AC)

A power inverter, or inverter, is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC).

Power electronics application of solid-state electronics to the control and conversion of electric power

Power electronics is the application of solid-state electronics to the control and conversion of electric power.

Rotary converter electrical machine

A rotary converter is a type of electrical machine which acts as a mechanical rectifier, inverter or frequency converter.

Mercury-arc valve electrical equipment for converting high-voltage or -current alternating current into direct current

A mercury-arc valve or mercury-vapor rectifier or (UK) mercury-arc rectifier is a type of electrical rectifier used for converting high-voltage or high-current alternating current (AC) into direct current (DC). It is a type of cold cathode gas-filled tube, but is unusual in that the cathode, instead of being solid, is made from a pool of liquid mercury and is therefore self-restoring. As a result, mercury-arc valves were much more rugged and long-lasting, and could carry much higher currents than most other types of gas discharge tube.

Electric power the rate per unit of time at which electrical energy is transferred by an electric circuit

Electric power is the rate, per unit time, at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second.

Dynamo electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

Electrical polarity is a term used throughout industries and fields that involve electricity. There are two types of poles: positive (+) and negative (−). This represents the electrical potential at the ends of a circuit. A battery has a positive terminal and a negative terminal. Interconnection of electrical device nearly always require correct polarity to be maintained. Correct polarity is essential for the operation of vacuum tube and semiconductor devices, many electric motors, electrochemical cells, electrical instruments, and other devices.

Electric power system system to generate, transmit and distribute electricity

An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of an electric power system is the grid that provides power to an extended area. An electrical grid power system can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centres to the load centres, and the distribution system that feeds the power to nearby homes and industries. Smaller power systems are also found in industry, hospitals, commercial buildings and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialised power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners and automobiles.

Alternator (automotive) machine

Alternators are used in modern automobiles to charge the battery and to power the electrical system when its engine is running.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Andrew J. Robinson, Lynn Snyder-Mackler (2007). Clinical Electrophysiology: Electrotherapy and Electrophysiologic Testing (3rd ed.). Lippincott Williams & Wilkins. p. 10. ISBN   978-0-7817-4484-3.
  2. N. N. Bhargava and D. C. Kulshrishtha (1984). Basic Electronics & Linear Circuits. Tata McGraw-Hill Education. p. 90. ISBN   978-0-07-451965-3.
  3. National Electric Light Association (1915). Electrical meterman's handbook. Trow Press. p. 81.
  4. Mel Gorman. "Charles F. Brush and the First Public Electric Street Lighting System in America". Ohio History . Kent State University Press. Ohio Historical Society. 70: 142.[ permanent dead link ]
  5. "Alessandro Giuseppe Antonio Anastasio Volta – grants.hhp.coe.uh.edu". Archived from the original on 2017-08-28. Retrieved 2017-05-29.
  6. Jim Breithaupt, Physics, Palgrave Macmillan – 2010, p. 175
  7. "Pixii Machine invented by Hippolyte Pixii, National High Magnetic Field Laboratory". Archived from the original on 2008-09-07. Retrieved 2008-06-12.
  8. The First Form of Electric Light History of the Carbon Arc Lamp (1800–1980s)
  9. Roger S. Amos, Geoffrey William Arnold Dummer (1999). Newnes Dictionary of Electronic (4th ed.). Newnes. p. 83. ISBN   0-7506-4331-5.