AC adapter

Last updated
A "wall wart" type AC adapter for a household game console Wall-Wart-AC-Adapter.jpg
A "wall wart" type AC adapter for a household game console
A power brick for Lenovo laptop Lenovo Power Adapter AC 65W 20V.jpg
A power brick for Lenovo laptop
Internal adapter circuitry Internal adapter circuit.jpg
Internal adapter circuitry

An AC adapter, AC/DC adapter, or AC/DC converter [1] is a type of external power supply, often enclosed in a case similar to an AC plug. Other common names include plug pack, plug-in adapter, adapter block, domestic mains adapter, line power adapter, wall wart, power brick, and power adapter. Adapters for battery-powered equipment may be described as chargers or rechargers (see also battery charger). AC adapters are used with electrical devices that require power but do not contain internal components to derive the required voltage and power from mains power. The internal circuitry of an external power supply is very similar to the design that would be used for a built-in or internal supply.

Power supply electronic device that supplies electric energy to an electrical load

A power supply is an electrical device that supplies electric power to an electrical load. The primary function of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.

AC power plugs and sockets connect electric equipment to the alternating current (AC) power supply in buildings and at other sites. Electrical plugs and sockets differ from one another in voltage and current rating, shape, size, and connector type. Different standard systems of plugs and sockets are used around the world.

Battery charger device used

A battery charger, or recharger, is a device used to put energy into a secondary cell or rechargeable battery by forcing an electric current through it.

Contents

External power supplies are used both with equipment with no other source of power and with battery-powered equipment, where the supply, when plugged in, can sometimes charge the battery in addition to powering the equipment.

Use of an external power supply allows portability of equipment powered either by mains or battery without the added bulk of internal power components, and makes it unnecessary to produce equipment for use only with a specified power source; the same device can be powered from 120 VAC or 230 VAC mains, vehicle or aircraft battery by using a different adapter. Another advantage of these designs can be increased safety; since the hazardous 120 or 240 volt mains power is transformed to a lower, safer voltage at the wall outlet and the appliance that is handled by the user is powered by this lower voltage.

Modes of operation

An AC adapter disassembled to reveal a simple, unregulated linear DC supply circuit: a transformer, four diodes in a bridge rectifier, and an electrolytic capacitor to smooth the waveform Wall wart opened.JPG
An AC adapter disassembled to reveal a simple, unregulated linear DC supply circuit: a transformer, four diodes in a bridge rectifier, and an electrolytic capacitor to smooth the waveform

Originally, most AC/DC adapters were linear power supplies, containing a transformer to convert the mains electricity voltage to a lower voltage, a rectifier to convert it to pulsating DC, and a filter to smooth the pulsating waveform to DC, with residual ripple variations small enough to leave the powered device unaffected. Size and weight of the device was largely determined by the transformer, which in turn was determined by the power output and mains frequency. Ratings over a few watts made the devices too large and heavy to be physically supported by a wall outlet. The output voltage of these adapters varied with load; for equipment requiring a more stable voltage, linear voltage regulator circuitry was added. Losses in the transformer and the linear regulator were considerable; efficiency was relatively low, and significant power dissipated as heat even when not driving a load.

Transformer electrical device that transfers energy through electromagnetic induction

A transformer is a static electrical device that transfers electrical energy between two or more circuits. A varying current in one coil of the transformer produces a varying magnetic flux, which, in turn, induces a varying electromotive force across a second coil wound around the same core. Electrical energy can be transferred between the two coils, without a metallic connection between the two circuits. Faraday's law of induction discovered in 1831 described the induced voltage effect in any coil due to changing magnetic flux encircled by the coil.

Mains electricity general-purpose alternating-current electric power supply delivered to homes and businesses, used by consumer for domestic appliances, televisions and electric lamps through wall outlets

Mains electricity is the general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to homes and businesses, and it is the form of electrical power that consumers use when they plug domestic appliances, televisions and electric lamps into wall outlets.

Rectifier AC-DC conversion device; electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.

Early in the twenty-first century, switched-mode power supplies (SMPSs) became almost ubiquitous for this purpose. Mains voltage is rectified to a high direct voltage driving a switching circuit, which contains a transformer operating at a high frequency and outputs direct current at the desired voltage. The high-frequency ripple is more easily filtered out than mains-frequency. The high frequency allows the transformer to be small, which reduces its losses; and the switching regulator can be much more efficient than a linear regulator. The result is a much more efficient, smaller, and lighter device. Safety is ensured, as in the older linear circuit, because a transformer still provides galvanic isolation.

Switched-mode power supply electronic power supply that incorporates a switching regulator

A switched-mode power supply is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently. Like other power supplies, an SMPS transfers power from a DC or AC source to DC loads, such as a personal computer, while converting voltage and current characteristics. Unlike a linear power supply, the pass transistor of a switching-mode supply continually switches between low-dissipation, full-on and full-off states, and spends very little time in the high dissipation transitions, which minimizes wasted energy. Ideally, a switched-mode power supply dissipates no power. Voltage regulation is achieved by varying the ratio of on-to-off time. In contrast, a linear power supply regulates the output voltage by continually dissipating power in the pass transistor. This higher power conversion efficiency is an important advantage of a switched-mode power supply. Switched-mode power supplies may also be substantially smaller and lighter than a linear supply due to the smaller transformer size and weight.

Galvanic isolation

Galvanic isolation is a principle of isolating functional sections of electrical systems to prevent current flow; no direct conduction path is permitted. Energy or information can still be exchanged between the sections by other means, such as capacitance, induction or electromagnetic waves, or by optical, acoustic or mechanical means.

A linear circuit must be designed for a specific, narrow range of input voltages (e.g., 220–240 VAC) and must use a transformer appropriate for the frequency (usually 50 or 60 Hz), but a switched-mode supply can work efficiently over a very wide range of voltages and frequencies; a single 100–240 VAC unit will handle almost any mains supply in the world.

However, unless very carefully designed and using suitable components, switching adapters are more likely to fail than the older type, due in part to complex circuitry and the use of semiconductors. Unless designed well, these adapters may be easily damaged by overloads, even transient ones, which can come from lightning, brief mains overvoltage (sometimes caused by an incandescent light on the same power circuit failing), component degradation, etc. A very common mode of failure is due to the use of electrolytic capacitors whose equivalent series resistance (ESR) increases with age; switching regulators are very sensitive to high ESR (the older linear circuit also used electrolytic capacitors, but the effect of degradation is much less dramatic). Well-designed circuits pay attention to the ESR, ripple current rating, pulse operation, and temperature rating of capacitors. [2]

Transient (oscillation) short burst of energy in a system caused by a sudden change of state

A transient event is a short-lived burst of energy in a system caused by a sudden change of state.

Lightning Atmospheric discharge of electricity

Lightning is a violent and sudden electrostatic discharge where two electrically charged regions in the atmosphere temporarily equalize themselves, usually during a thunderstorm.

Electrolytic capacitor polarized capacitor whose anode is made of a metal that forms an insulating oxide layer through anodization, acting as the dielectric of the capacitor; a solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode

An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the (cathode) or negative plate of the capacitor. Due to their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values. There are three families of electrolytic capacitor: aluminum electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors.

Advantages

External AC adapters are widely used to power small or portable electronic devices. The advantages include:

AC adapter supporting four different AC plug systems Steckernetzteil mit Adaptern IMGP2309 smial wp.jpg
AC adapter supporting four different AC plug systems

Problems

"Power brick" in-line configuration, with detachable AC cord Notebook-Computer-AC-Adapter.jpg
"Power brick" in-line configuration, with detachable AC cord

A survey of consumers showed widespread dissatisfaction with the cost, inconvenience, and wastefulness of the profusion of power adapters used by electronic devices. [3] Science fiction author and satirist Douglas Adams wrote an essay bemoaning the profusion and confusion of power adapters, and calling for more standardization. [4]

Efficiency

Millions of still-usable AC power adapters are thrown out annually, because of poor or unknown compatibility with new equipment. Steckernetzteile.jpg
Millions of still-usable AC power adapters are thrown out annually, because of poor or unknown compatibility with new equipment.

The issue of inefficiency of some power supplies has become well known, with U.S. president George W. Bush referring in 2001 to such devices as "Energy Vampires". [5] Legislation is being enacted in the EU and a number of U.S. states, to reduce the level of energy wasted by some of these devices. Such initiatives include standby power and the One Watt Initiative.

But others [ who? ] have argued that these inefficient devices are low-powered, e.g., devices that are used for small battery chargers, so even if they have a low efficiency, the amount of energy they waste is less than 1% of household consumption of electric energy.[ citation needed ]

Considering the total efficiency of power supplies for small electronic equipment, the older mains-frequency linear transformer-based power supply was found in a 2002 report to have efficiencies from 20–75%, and have considerable energy loss even when powered up but not supplying power. Switched-mode power supplies (SMPSs) are much more efficient; a good design can be 80–90% efficient, and is also much smaller and lighter. In 2002 most external plug-in "wall wart" power adapters commonly used for low-power consumer electronics devices were of linear design, as well as supplies built into some equipment.

External supplies are usually left plugged in even when not in use, and consume from a few watts to 35 watts of power in that state. The report concluded that about 32 billion kilowatt-hours (kWh) per year, about 1% of total electrical energy consumption, could be saved in the United States by replacing all linear power supplies (average efficiency 40–50%) with advanced switching designs (efficiency 80–90%), by replacing older switching supplies (efficiencies of less than 70%) with advanced designs (efficiency of at least 80%), and by reducing standby consumption of supplies to not more than 1 watt. [6]

Since the report was published, SMPSs have indeed replaced linear supplies to a great extent, even in wall warts. The 2002 report estimated that 6% of electrical energy used in the U.S. "flows through" power supplies (not counting only the wall warts). The website where the report was published said in 2010 that despite the spread of SMPSs, "today's power supplies consume at least 2% of all U.S. electricity production. More efficient power supply designs could cut that usage in half". [7]

Since wasted electrical energy is released as heat, an inefficient power supply is hot to the touch, as is one that wastes power without an electrical load. This waste heat is itself a problem in warm weather, since it may require additional air conditioning to prevent overheating, and even to remove the unwanted heat from large supplies.

Universal power adapters

A six-way connector on a "universal" DC power supply, consisting of a four-way X connector and two separate individual connectors (one is the nine-volt battery connector). The X-connector here provides 3.5 and 2.5 mm phone plugs and two sizes of coaxial power connector Dcxconnector.jpg
A six-way connector on a "universal" DC power supply, consisting of a four-way X connector and two separate individual connectors (one is the nine-volt battery connector). The X-connector here provides 3.5 and 2.5 mm phone plugs and two sizes of coaxial power connector

External power adapters can fail, and can become separated from the product they are intended to power. Consequently, there is a market for replacement adapters. The replacement must match input and output voltages, match or exceed current capability, and be fitted with a matching connector. Many electrical products are poorly labeled with information concerning the power supply they require, so it is prudent to record the specifications of the original power supply in advance, to ease replacement if the original is later lost. Careful labeling of power adapters can also reduce the likelihood of a mixup which could cause equipment damage.

Some "universal" replacement power supplies allow output voltage and polarity to be switched to match a range of equipment. [8] With the advent of switch-mode supplies, adapters which can work with any voltage from 110 VAC to 240 VAC became widely available; previously either 100–120 VAC or 200–240 VAC versions were used. Adapters which can also be used with motor vehicle and aircraft power (see EmPower) are available. [9]

Four-way X connectors or six-way star connectors, also known as spider connectors, with multiple plug sizes and types are common on generic power supplies. Other replacement power supplies have arrangements for changing the power connector, with four to nine different alternatives available when purchased in a set. RadioShack sells universal AC adapters of various capacities, branded as "Enercell Adaptaplug", and fitted with two-pin female sockets compatible with their Adaptaplug connector lineup. This allows many different configurations of AC adapters to be put together, without requiring soldering. Philmore and other competing brands offer similar AC adapters with interchangeable connectors.

The label on a power supply may not be a reliable guide to the actual voltage it supplies under varying conditions. Many low-cost power supplies are "unregulated", in that their voltage can change considerably with load. If they are lightly loaded, they may put out much more than the nominal "name plate" voltage, which could damage the load. If they are heavily loaded, the output voltage may droop appreciably, in some cases well below the nominal label voltage even within the nominal rated current, causing the equipment being supplied to malfunction or be damaged. Supplies with linear (as against switched) regulators are heavy, bulky, and expensive.

Modern switched-mode power supplies (SMPSs) are smaller, lighter, and more efficient. They put out a much more constant voltage than unregulated supplies as the input voltage and the load current vary. When introduced, their prices were high, but by the early 21st century the prices of switch-mode components had dropped to a degree which allowed even cheap supplies to use this technology, saving the cost of a larger and heavier mains-frequency transformer.

Auto-sensing adapters

Some universal adapters automatically set their output voltage and maximum current according to which of a range of interchangeable tips is fitted; tips are available to fit and supply appropriate power to many notebook computers and mobile devices. Different tips may use the same connector, but automatically supply different power; it is essential to use the right tip for the apparatus being powered, but no switch needs to be set correctly by the user. The advent of switch-mode power supplies has allowed adapters to work from any AC mains supply from 100 to 240 V with an appropriate plug; operation from standard 12 V DC vehicle and aircraft supplies can also be supported. With the appropriate adapter, accessories, and tips, a variety of equipment can be powered from almost any source of power.

A "Green Plug" system has been proposed, based on USB technology, by which the consuming device would tell the external power supply what kind of power is needed. [10]

Use of USB

Common sizes of USB AC adapters USB AC Adapters.JPG
Common sizes of USB AC adapters

The USB connector (and voltage) has emerged as a de facto standard in low-power AC adapters for many portable devices. In addition to serial digital data exchange, the USB standard also provides 5 VDC power, up to 500 mA (900 mA over USB 3.0). Numerous accessory gadgets ("USB decorations") were designed to connect to USB only for DC power and not for data interchange. The USB Implementers Forum in March, 2007 released the USB Battery Charging Specification which defines, "...limits as well as detection, control and reporting mechanisms to permit devices to draw current in excess of the USB 2.0 specification for charging ...". [11] Electric fans, lamps, alarms, coffee warmers, battery chargers, and even toys have been designed to tap power from a USB connector. Plug-in adapters equipped with USB receptacles are widely available to convert 120 VAC or 240 VAC power or 12 VDC automotive power to 5 VDC USB power (see photo at right).

The trend towards more-compact electronic devices has driven a shift towards the micro-USB and mini-USB connectors, which are electrically compatible in function to the original USB connector but physically smaller.

In 2012, a USB Power Delivery Specification was proposed to standardize delivery of up to 100 watts, suitable for devices such as laptop computers that usually depend on proprietary adapters.

Standards

In 2009, the International Telecommunication Union (ITU) announced support of the Open Mobile Terminal Platform's (OMTP) "Common Charging and Local Data Connectivity" standard. [12] The ITU published Recommendation ITU-T L.1000, "Universal power adapter and charger solution for mobile terminals and other hand-held ICT devices", which specifies a charger similar in most respects to that of the GSMA/OMTP proposal and to the European Common external power supply. The ITU recommendation was expanded and updated in June, 2011. [13] The hope is to markedly reduce the profusion of non-interchangeable power adapters.

The European Union defined a Common external power supply for "hand-held data-enabled mobile phones" (smartphones) sold from 2010, intended to replace the many incompatible proprietary power supplies and eliminate waste by reducing the total number of supplies manufactured. Conformant supplies deliver 5 VDC via a micro-USB connector, with preferred input voltage handled ranging from 90 to 264 VAC.

In 2006 Larry Page, a founder of Google, proposed a 12 V and up to 15 A standard for almost all equipment requiring an external converter, with new buildings fitted with 12 VDC wiring, making external AC-to-DC adapter circuitry unnecessary. [14] [15]

IEC has created a standard for interchangeable laptop power supplies, IEC 62700 (full name "IEC Technical Specification 62700: DC Power supply for notebook computer"), which was published on February 6, 2014.

See also

Related Research Articles

Uninterruptible power supply electrical device that uses batteries to prevent a power flow interruption

An uninterruptible power supply or uninterruptible power source (UPS) is an electrical apparatus that provides emergency power to a load when the input power source or mains power fails. A UPS differs from an auxiliary or emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions, by supplying energy stored in batteries, supercapacitors, or flywheels. The on-battery run-time of most uninterruptible power sources is relatively short but sufficient to start a standby power source or properly shut down the protected equipment. It is a type of continual power system.

Power inverter electronic device or circuitry that changes direct current (DC) to alternating current (AC)

A power inverter, or inverter, is an electronic device or circuitry that changes direct current (DC) to alternating current (AC).

A DC connector is an electrical connector for supplying direct current (DC) power.

In electrical engineering, power engineering, and the electric power industry, power conversion is converting electric energy from one form to another such as converting between AC and DC; or changing the voltage or frequency; or some combination of these. A power converter is an electrical or electro-mechanical device for converting electrical energy. This could be as simple as a transformer to change the voltage of AC power, but also includes far more complex systems. The term can also refer to a class of electrical machinery that is used to convert one frequency of alternating current into another frequency.

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

Adapter Accessory for adapting or connecting two devices or two workpieces

An adapter or adaptor is a device that converts attributes of one device or system to those of an otherwise incompatible device or system. Some modify power or signal attributes, while others merely adapt the physical form of one connector to another.

In the electrical appliance manufacturing industry, the following IEC protection classes are defined in IEC 61140 and used to differentiate between the protective-earth connection requirements of devices.

A voltage converter is an electric power converter which changes the voltage of an electrical power source. It may be combined with other components to create a power supply.

Vibrator (electronic) electromechanical component

In electronics before the development of switch-mode power supplies and the introduction of semiconductor devices operating off low voltage, there was a requirement to generate voltages of about 50 to 250 V DC from vehicle batteries. Electromechanical components known as vibrators were used in a circuit similar to modern solid state inverter circuits to provide a pulsating DC which could be converted to a higher voltage with a transformer, rectified, and filtered to create higher-voltage DC. This "vibrator" is essentially a relay using normally closed contacts to supply power to the relay coil, thus immediately breaking the connection, only to be reconnected very quickly through the normally closed contacts. It happens so rapidly it vibrates, and sounds like a buzzer. This same rapidly pulsing contact applies the rising and falling DC voltage to the transformer which can step it up to a higher voltage.

Power supply unit (computer) provides power for the internal components of a computer

A power supply unit converts mains AC to low-voltage regulated DC power for the internal components of a computer. Modern personal computers universally use switched-mode power supplies. Some power supplies have a manual switch for selecting input voltage, while others automatically adapt to the mains voltage.

PoweredUSB

PoweredUSB, also known as Retail USB, USB PlusPower, and USB +Power, is an addition to the Universal Serial Bus standard that allows for higher-power devices to obtain power through their USB host instead of requiring an independent power supply or external AC adapter. It is mostly used in point-of-sale equipment, such as receipt printers and barcode readers.

Cigarette lighter receptacle

The cigarette lighter receptacle in an automobile was initially designed to power an electrically heated cigarette lighter, but became a de facto standard DC connector to supply electrical power for portable accessories used in or near an automobile. While the cigarette lighter receptacle is a common feature of automobiles and trucks, as a DC power connector it has the disadvantages of bulkiness, relatively low current rating, and poor contact reliability.

EmPower is a brand name that refers to three different power outlets available on commercial airlines:

The Universal Power Adapter for Mobile Devices (UPAMD), codename P1823, is an IEEE group working on global power supply standards intended to cater to the power range of 10–130 W for mobile devices like laptop computers. The power supply was required to have an output capacitive energy of less than 15.1 µJ and an inductive energy at disconnect of less than 5.3 µJ.

SAE J3068

SAE J3068 is a North American recommended practice published and maintained by SAE International. J3068 defines electrical connectors and a control protocol for electric vehicles. It has the formal title "SAE Surface Vehicle Recommended Practice J3068". J3068 defines a system of conductive power transfer to an electric vehicle using a coupler capable of transferring single-phase and three-phase AC power as well as DC power, and defines a digital communication system for control. J3068 also specifies requirements for the vehicle inlet, supply equipment connector, mating housings and contacts.

This article provides information about the physical aspects of Universal Serial Bus, USB: connectors, cabling, and power. The initial versions of the USB standard specified connectors that were easy to use and that would have acceptable life spans; revisions of the standard added smaller connectors useful for compact portable devices. Higher-speed development of the USB standard gave rise to another family of connectors to permit additional data paths. All versions of USB specify cable properties; version 3.X cables include additional data paths. The USB standard included power supply to peripheral devices; modern versions of the standard extend the power delivery limits for battery charging and devices requiring up to 100 watts. USB has been selected as the standard charging format for many mobile phones, reducing the proliferation of proprietary chargers.

References

  1. Lee, Richard M.L. "U.S. Patent 5245220". USPTO. Google Patents.
  2. Article on capacitor ESR and its effects
  3. Morrison, David. "Survey Finds Consumers Grow Weary of Wall Warts". Power Electronics Technology. Penton Media, Inc. Archived from the original on 15 July 2011. Retrieved 2011-06-03.
  4. Adams, Douglas. "Dongly things". douglasadams.com. The Digital Village, Ltd. Archived from the original on 11 June 2011. Retrieved 2011-06-03.
  5. Bush Takes Aim at "Wall Warts" Archived 2007-11-13 at the Wayback Machine   Extreme Tech article
  6. Calwell, Chris and Travis Reeder (2002), Power Supplies: A Hidden Opportunity for Energy Savings, Natural Resources Defense Council, pp. 4–9. Retrieved 2010-02-19.
  7. Efficiency of Power Supplies in the Active Mode
  8. Computer Times: 2006 review of a satisfactory third-party universal AC adapter Archived 2014-10-13 at the Wayback Machine
  9. Andrew Ku (September 2, 2011). "Universal Laptop Power Adapters For The Air, Road, And Wall". Tom's Hardware.
  10. Green Plug tries to replace the worry warts Engadget May 2008
  11. "USB-IF Enhances Battery Charging Capabilities with New Spec" (PDF). 2007-04-17. Archived from the original (PDF) on 2011-07-28. Retrieved 2011-02-21.
  12. OMTP: Common Charging and Local Data Connectivity (link [ permanent dead link ]), 2009-02-11
  13. "Universal power adapter and charger solution for mobile terminals and other hand-held ICT devices". International Telecommunications Union. 2011-06-13. Retrieved 2013-03-23.
  14. Markoff, John (September 26, 2006). "Google to Push for More Electrical Efficiency in PC's". New York Times. Retrieved 2011-06-03.
  15. Alter, Lloyd. "Google Pushes for PC Electrical Efficiency; Side Effect: No More Wall-Warts". treehugger.com. Discovery Communications, Ltd. Archived from the original on 17 July 2011. Retrieved 2011-06-03.