Electronic component

Last updated
Various electronic components. Componentes.JPG
Various electronic components.

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

Contents

Electronic components have a number of electrical terminals or leads. These leads connect to other electrical components, often over wire, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as components in their own right.

Classification

Components can be classified as passive, active, or electromechanic. The strict physics definition treats passive components as ones that cannot supply energy themselves, whereas a battery would be seen as an active component since it truly acts as a source of energy.

However, electronic engineers who perform circuit analysis use a more restrictive definition of passivity. When only concerned with the energy of signals, it is convenient to ignore the so-called DC circuit and pretend that the power supplying components such as transistors or integrated circuits is absent (as if each such component had its own battery built in), though it may in reality be supplied by the DC circuit. Then, the analysis only concerns the AC circuit, an abstraction that ignores DC voltages and currents (and the power associated with them) present in the real-life circuit. This fiction, for instance, lets us view an oscillator as "producing energy" even though in reality the oscillator consumes even more energy from a DC power supply, which we have chosen to ignore. Under that restriction, we define the terms as used in circuit analysis as:

Most passive components with more than two terminals can be described in terms of two-port parameters that satisfy the principle of reciprocity—though there are rare exceptions. [2] In contrast, active components (with more than two terminals) generally lack that property.

Active components

Semiconductors

Transistors

Transistors were considered the invention of the twentieth century that changed electronic circuits forever. A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power.

Diodes

Conduct electricity easily in one direction, among more specific behaviors.

Various examples of Light-emitting diodes Verschiedene LEDs.jpg
Various examples of Light-emitting diodes

Integrated circuits

Optoelectronic devices

Display technologies

Current:

Obsolete:

Vacuum tubes (valves)

A vacuum tube is based on current conduction through a vacuum (see Vacuum tube).

Optical detectors or emitters

Discharge devices

Obsolete:

Power sources

Sources of electrical power:

Passive components

Components incapable of controlling current by means of another electrical signal are called passive devices. Resistors, capacitors, inductors, and transformers are all considered passive devices.

Resistors

SMD resistors on a backside of a PCB Surface Mounted Device, soldered.jpg
SMD resistors on a backside of a PCB

Pass current in proportion to voltage (Ohm's law) and oppose current.

Capacitors

Some different capacitors for electronic equipment Verschiedene Kondensatoren 2.JPG
Some different capacitors for electronic equipment

Capacitors store and release electrical charge. They are used for filtering power supply lines, tuning resonant circuits, and for blocking DC voltages while passing AC signals, among numerous other uses.

Magnetic (inductive) devices

Electrical components that use magnetism in the storage and release of electrical charge through current:

Memristor

Electrical components that pass charge in proportion to magnetism or magnetic flux, and have the ability to retain a previous resistive state, hence the name of Memory plus Resistor.

Networks

Components that use more than one type of passive component:

Transducers, sensors, detectors

  1. Transducers generate physical effects when driven by an electrical signal, or vice versa.
  2. Sensors (detectors) are transducers that react to environmental conditions by changing their electrical properties or generating an electrical signal.
  3. The transducers listed here are single electronic components (as opposed to complete assemblies), and are passive (see Semiconductors and Tubes for active ones). Only the most common ones are listed here.

Antennas

Antennas transmit or receive radio waves

Assemblies, modules

Multiple electronic components assembled in a device that is in itself used as a component

Prototyping aids

Electromechanical

A quartz crystal (left) and a crystal oscillator 18MHZ 12MHZ Crystal 110.jpg
A quartz crystal (left) and a crystal oscillator

Piezoelectric devices, crystals, resonators

Passive components that use piezoelectric effect:

Terminals and connectors

Devices to make electrical connection

Cable assemblies

Electrical cables with connectors or terminals at their ends

2 different miniature pushbutton switches Micro switch.jpg
2 different miniature pushbutton switches

Switches

Components that can pass current ("closed") or break the current ("open"):

Protection devices

Passive components that protect circuits from excessive currents or voltages:

Mechanical accessories

Other

Obsolete

Standard symbols

On a circuit diagram, electronic devices are represented by conventional symbols. Reference designators are applied to the symbols to identify the components.

See also

Related Research Articles

Diode abstract electronic component with two terminals that allows current to flow in one direction

A diode is a two-terminal electronic component that conducts current primarily in one direction ; it has low resistance in one direction, and high resistance in the other. A diode vacuum tube or thermionic diode is a vacuum tube with two electrodes, a heated cathode and a plate, in which electrons can flow in only one direction, from cathode to plate. A semiconductor diode, the most commonly used type today, is a crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals. Semiconductor diodes were the first semiconductor electronic devices. The discovery of asymmetric electrical conduction across the contact between a crystalline mineral and a metal was made by German physicist Ferdinand Braun in 1874. Today, most diodes are made of silicon, but other materials such as gallium arsenide and germanium are also used.

Electronics physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter.

Electronic oscillator electronic circuit that produces a repetitive, oscillating electronic signal, often a sine wave or a square wave

An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current (AC) signal. They are widely used in many electronic devices ranging from simplest clock generators to digital instruments and complex computers and peripherals etc. Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.

Amplifier electronic circuit or component or device that increases the level of incoming audio signal (includes pre-amplifiers and power amplifiers)

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

Transistor Basic electronics component

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Photodiode type of photodetector based on a p–n junction

A photodiode is a semiconductor device that converts light into an electrical current. The current is generated when photons are absorbed in the photodiode. Photodiodes may contain optical filters, built-in lenses, and may have large or small surface areas. Photodiodes usually have a slower response time as their surface area increases. The common, traditional solar cell used to generate electric solar power is a large area photodiode.

Rectifier AC-DC conversion device; electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.

Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases infinitesimal elements are used to model the network, in a distributed-element model.

In electronics, a linear regulator is a system used to maintain a steady voltage. The resistance of the regulator varies in accordance with the load resulting in a constant voltage output. The regulating device is made to act like a variable resistor, continuously adjusting a voltage divider network to maintain a constant output voltage and continually dissipating the difference between the input and regulated voltages as waste heat. By contrast, a switching regulator uses an active device that switches on and off to maintain an average value of output. Because the regulated voltage of a linear regulator must always be lower than input voltage, efficiency is limited and the input voltage must be high enough to always allow the active device to drop some voltage.

Varicap semiconductor diode used as voltage-controlled capacitor

In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction.

Voltage multiplier Voltage doubler

A voltage multiplier is an electrical circuit that converts AC electrical power from a lower voltage to a higher DC voltage, typically using a network of capacitors and diodes.

Small-signal modeling is a common analysis technique in electronics engineering which is used to approximate the behavior of electronic circuits containing nonlinear devices with linear equations. It is applicable to electronic circuits in which the AC signals, the time-varying currents and voltages in the circuit, have a small magnitude compared to the DC bias currents and voltages. A small-signal model is an AC equivalent circuit in which the nonlinear circuit elements are replaced by linear elements whose values are given by the first-order (linear) approximation of their characteristic curve near the bias point.

Hybrid integrated circuit miniaturized electronic circuit combining different semiconductor devices and passive components on a substrate

A hybrid integrated circuit (HIC), hybrid microcircuit, hybrid circuit or simply hybrid is a miniaturized electronic circuit constructed of individual devices, such as semiconductor devices and passive components, bonded to a substrate or printed circuit board (PCB). A PCB having components on a Printed Wiring Board (PWB) is not considered a true hybrid circuit according to the definition of MIL-PRF-38534.

A current–voltage characteristic or I–V curve is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference across it.

Electronic symbol pictogram used to represent various electrical and electronic devices in a schematic diagram of an electrical or electronic circuit

An electronic symbol is a pictogram used to represent various electrical and electronic devices or functions, such as wires, batteries, resistors, and transistors, in a schematic diagram of an electrical or electronic circuit. These symbols are largely standardized internationally today, but may vary from country to country, or engineering discipline, based on traditional conventions.

Blocking oscillator

A blocking oscillator is a simple configuration of discrete electronic components which can produce a free-running signal, requiring only a resistor, a transformer, and one amplifying element such as a transistor or vacuum tube. The name is derived from the fact that the amplifying element is cut-off or "blocked" for most of the duty cycle, producing periodic pulses. The non-sinusoidal output is not suitable for use as a radio-frequency local oscillator, but it can serve as a timing generator, to power lights, LEDs, Elwire, or small neon indicators. If the output is used as an audio signal, the simple tones are also sufficient for applications such as alarms or a Morse code practice device. Some cameras use a blocking oscillator to strobe the flash prior to a shot to reduce the red-eye effect.

Biasing Predetermined voltages or currents establishing proper operating conditions in electronic components

Biasing in electronics means establishing predetermined voltages or currents at various points of an electronic circuit for the purpose of establishing proper operating conditions in electronic components.

Passivity is a property of engineering systems, used in a variety of engineering disciplines, but most commonly found in analog electronics and control systems. A passive component, depending on field, may be either a component that consumes but does not produce energy or a component that is incapable of power gain.

The following outline is provided as an overview of and topical guide to electronics:

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. For instance, a computer could be contained inside a black box with two external terminals. It might do various calculations and signal its results by varying its resistance, but always consuming power as a resistance does. Nevertheless, it's an active component, since it relies on a power source to operate.
  2. Nonreciprocal passive devices include the gyrator (though as a truly passive component, this exists more in theoretical terms, and is usually implemented using an active circuit)—and the circulator, which is used at microwave and optical frequencies
  3. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum . April 2, 2018. Retrieved 28 July 2019.
  4. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN   978-1118038239.
  5. What is a Thermistor. U.S. Sensor Corp.