Electronic component

Last updated
Various electronic components. Componentes.JPG
Various electronic components.

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

Electronics physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter.

Electromagnetic field Electric and magnetic fields produced by moving charged objects

An electromagnetic field is a magnetic field produced by moving electrically charged objects. It affects the behavior of non-comoving charged objects at any distance of the field. The electromagnetic field extends indefinitely throughout space and describes the electromagnetic interaction. It is one of the four fundamental forces of nature.

Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases infinitesimal elements are used to model the network, in a distributed-element model.

Contents

Electronic components have a number of electrical terminals or leads. These leads connect to other electrical components, often over wire, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as components in their own right.

Terminal (electronics) Connection point in electronic circuits

A terminal is the point at which a conductor from a component, device or network comes to an end. Terminal may also refer to an electrical connector at this endpoint, acting as the reusable interface to a conductor and creating a point where external circuits can be connected. A terminal may simply be the end of a wire or it may be fitted with a connector or fastener.

Lead (electronics) connecting wire or pad within an electronic device; electrical connection consisting of a length of wire or metal pad (SMD) that comes from a device

In electronics, a lead is an electrical connection consisting of a length of wire or a metal pad that is designed to connect two locations electrically. Leads are used for many purposes, including: transfer of power; testing of an electrical circuit to see if it is working, using a test light or a multimeter; transmitting information, as when the leads from an electrocardiograph are attached to a person's body to transmit information about their heart rhythm; and sometimes to act as a heatsink. The tiny leads coming off through-hole electronic components are also often called "pins"; in ball grid array packages, they are in form of small spheres, and are therefore called "balls".

Electrical network Assemblage of connected electrical elements

An electrical network is an interconnection of electrical components or a model of such an interconnection, consisting of electrical elements. An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Linear electrical networks, a special type consisting only of sources, linear lumped elements, and linear distributed elements, have the property that signals are linearly superimposable. They are thus more easily analyzed, using powerful frequency domain methods such as Laplace transforms, to determine DC response, AC response, and transient response.

Classification

Components can be classified as passive, active, or electromechanic. The strict physics definition treats passive components as ones that cannot supply energy themselves, whereas a battery would be seen as an active component since it truly acts as a source of energy.

Passivity is a property of engineering systems, used in a variety of engineering disciplines, but most commonly found in analog electronics and control systems. A passive component, depending on field, may be either a component that consumes but does not produce energy or a component that is incapable of power gain.

However, electronic engineers who perform circuit analysis use a more restrictive definition of passivity. When only concerned with the energy of signals, it is convenient to ignore the so-called DC circuit and pretend that the power supplying components such as transistors or integrated circuits is absent (as if each such component had its own battery built in), though it may in reality be supplied by the DC circuit. Then, the analysis only concerns the AC circuit, an abstraction that ignores DC voltages and currents (and the power associated with them) present in the real-life circuit. This fiction, for instance, lets us view an oscillator as "producing energy" even though in reality the oscillator consumes even more energy from a DC power supply, which we have chosen to ignore. Under that restriction, we define the terms as used in circuit analysis as:

Direct current Unidirectional flow of electric charge

Direct current (DC) is the unidirectional flow of an electric charge. A battery is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.

Transistor Basic electronics component

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Integrated circuit electronic circuit manufactured by lithography; set of electronic circuits on one small flat piece (or "chip") of semiconductor material, normally silicon

An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon. The integration of large numbers of tiny MOS transistors into a small chip results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete electronic components. The IC's mass production capability, reliability, and building-block approach to circuit design has ensured the rapid adoption of standardized IC's in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs.

Vacuum tube Device that controls electric current between electrodes in an evacuated container

In electronics, a vacuum tube, an electron tube, or valve or, colloquially, a tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

Tunnel diode type of semiconductor diode

A tunnel diode or Esaki diode is a type of semiconductor diode that has negative resistance due to the quantum mechanical effect called tunneling. It was invented in August 1957 by Leo Esaki, Yuriko Kurose, and Takashi Suzuki when they were working at Tokyo Tsushin Kogyo, now known as Sony. In 1973, Esaki received the Nobel Prize in Physics, jointly with Brian Josephson, for discovering the electron tunneling effect used in these diodes. Robert Noyce independently devised the idea of a tunnel diode while working for William Shockley, but was discouraged from pursuing it. Tunnel diodes were first manufactured by Sony in 1957, followed by General Electric and other companies from about 1960, and are still made in low volume today.

In engineering, electromechanics combines processes and procedures drawn from electrical engineering and mechanical engineering. Electromechanics focuses on the interaction of electrical and mechanical systems as a whole and how the two systems interact with each other. This process is especially prominent in systems such as those of DC or AC rotating electrical machines which can be designed and operated to generate power from a mechanical process (generator) or used to power a mechanical effect (motor). Electrical engineering in this context also encompasses electronics engineering.

Most passive components with more than two terminals can be described in terms of two-port parameters that satisfy the principle of reciprocity—though there are rare exceptions. [2] In contrast, active components (with more than two terminals) generally lack that property.

In classical electromagnetism, reciprocity refers to a variety of related theorems involving the interchange of time-harmonic electric current densities (sources) and the resulting electromagnetic fields in Maxwell's equations for time-invariant linear media under certain constraints. Reciprocity is closely related to the concept of Hermitian operators from linear algebra, applied to electromagnetism.

Active components

Semiconductors

Transistors

Transistors were considered the invention of the twentieth century that changed electronic circuits forever. A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power.

Diodes

Conduct electricity easily in one direction, among more specific behaviors.

Various examples of Light-emitting diodes Verschiedene LEDs.jpg
Various examples of Light-emitting diodes

Integrated circuits

Optoelectronic devices

Display technologies

Current:

Obsolete:

Vacuum tubes (valves)

A vacuum tube is based on current conduction through a vacuum (see Vacuum tube).

Optical detectors or emitters

Discharge devices

Obsolete:

Power sources

Sources of electrical power:

Passive components

Components incapable of controlling current by means of another electrical signal are called passive devices. Resistors, capacitors, inductors, and transformers are all considered passive devices.

Resistors

SMD resistors on a backside of a PCB SMD aufgelotet.jpg
SMD resistors on a backside of a PCB

Pass current in proportion to voltage (Ohm's law) and oppose current.

Capacitors

Some different capacitors for electronic equipment Verschiedene Kondensatoren 2.JPG
Some different capacitors for electronic equipment

Capacitors store and release electrical charge. They are used for filtering power supply lines, tuning resonant circuits, and for blocking DC voltages while passing AC signals, among numerous other uses.

Magnetic (inductive) devices

Electrical components that use magnetism in the storage and release of electrical charge through current:

Memristor

Electrical components that pass charge in proportion to magnetism or magnetic flux, and have the ability to retain a previous resistive state, hence the name of Memory plus Resistor.

Networks

Components that use more than one type of passive component:

Transducers, sensors, detectors

  1. Transducers generate physical effects when driven by an electrical signal, or vice versa.
  2. Sensors (detectors) are transducers that react to environmental conditions by changing their electrical properties or generating an electrical signal.
  3. The transducers listed here are single electronic components (as opposed to complete assemblies), and are passive (see Semiconductors and Tubes for active ones). Only the most common ones are listed here.

Antennas

Antennas transmit or receive radio waves

Assemblies, modules

Multiple electronic components assembled in a device that is in itself used as a component

Prototyping aids

Electromechanical

A quartz crystal (left) and a crystal oscillator 18MHZ 12MHZ Crystal 110.jpg
A quartz crystal (left) and a crystal oscillator

Piezoelectric devices, crystals, resonators

Passive components that use piezoelectric effect:

Terminals and connectors

Devices to make electrical connection

Cable assemblies

Electrical cables with connectors or terminals at their ends

2 different miniature pushbutton switches Micro switch.jpg
2 different miniature pushbutton switches

Switches

Components that can pass current ("closed") or break the current ("open"):

Protection devices

Passive components that protect circuits from excessive currents or voltages:

Mechanical accessories

Other

Obsolete

Electromechanical

A quartz crystal (left) and a crystal oscillator 18MHZ 12MHZ Crystal 110.jpg
A quartz crystal (left) and a crystal oscillator

Piezoelectric devices, crystals, resonators

Passive components that use piezoelectric effect:

Terminals and connectors

Devices to make electrical connection

Cable assemblies

Electrical cables with connectors or terminals at their ends

2 different miniature pushbutton switches Micro switch.jpg
2 different miniature pushbutton switches

Switches

Components that can pass current ("closed") or break the current ("open"):

Protection devices

Passive components that protect circuits from excessive currents or voltages:

Mechanical accessories

Other

Obsolete

Standard symbols

On a circuit diagram, electronic devices are represented by conventional symbols. Reference designators are applied to the symbols to identify the components.

See also

Related Research Articles

Amplifier electronic circuit or component or device that increases the level of incoming audio signal (includes pre-amplifiers and power amplifiers)

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

Rectifier AC-DC conversion device; electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.

Thyristor semiconductor device with three or more p-n junctions, having two steady states: off (non-conducting) and on (conducting)

A thyristor is a solid-state semiconductor device with four layers of alternating P- and N-type materials. It acts exclusively as a bistable switch, conducting when the gate receives a current trigger, and continuing to conduct until the voltage across the device is reversed biased, or until the voltage is removed. There are two designs, differing in what triggers the conducting state. In a three-lead thyristor, a small current on its Gate lead controls the larger current of the Anode to Cathode path. In a two-lead thyristor, conduction begins when the potential difference between the Anode and Cathode themselves is sufficiently large.

Switched-mode power supply electronic power supply that incorporates a switching regulator

A switched-mode power supply is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently. Like other power supplies, an SMPS transfers power from a DC or AC source to DC loads, such as a personal computer, while converting voltage and current characteristics. Unlike a linear power supply, the pass transistor of a switching-mode supply continually switches between low-dissipation, full-on and full-off states, and spends very little time in the high dissipation transitions, which minimizes wasted energy. A hypothetical ideal switched-mode power supply dissipates no power. Voltage regulation is achieved by varying the ratio of on-to-off time. In contrast, a linear power supply regulates the output voltage by continually dissipating power in the pass transistor. This higher power conversion efficiency is an important advantage of a switched-mode power supply. Switched-mode power supplies may also be substantially smaller and lighter than a linear supply due to the smaller transformer size and weight.

Varicap semiconductor diode used as voltage-controlled capacitor

In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction.

Gyrator analog circuit

A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the conventional four elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.

Hybrid integrated circuit miniaturized electronic circuit combining different semiconductor devices and passive components on a substrate

A hybrid integrated circuit (HIC), hybrid microcircuit, hybrid circuit or simply hybrid is a miniaturized electronic circuit constructed of individual devices, such as semiconductor devices and passive components, bonded to a substrate or printed circuit board (PCB). A PCB having components on a Printed Wiring Board (PWB) is not considered a hybrid circuit according to the definition of MIL-PRF-38534.

A current–voltage characteristic or I–V curve is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference across it.

Electronic symbol pictogram used to represent various electrical and electronic devices in a schematic diagram of an electrical or electronic circuit

An electronic symbol is a pictogram used to represent various electrical and electronic devices or functions, such as wires, batteries, resistors, and transistors, in a schematic diagram of an electrical or electronic circuit. These symbols are largely standardized internationally today, but may vary from country to country, or engineering discipline, based on traditional conventions.

p–n junction isolation is a method used to electrically isolate electronic components, such as transistors, on an integrated circuit (IC) by surrounding the components with reverse biased p–n junctions.

Vibrator (electronic) electromechanical component

In electronics before the development of switch-mode power supplies and the introduction of semiconductor devices operating off low voltage, there was a requirement to generate voltages of about 50 to 250 V DC from vehicle batteries. Electromechanical components known as vibrators were used in a circuit similar to modern solid state inverter circuits to provide a pulsating DC which could be converted to a higher voltage with a transformer, rectified, and filtered to create higher-voltage DC. This "vibrator" is essentially a relay using normally closed contacts to supply power to the relay coil, thus immediately breaking the connection, only to be reconnected very quickly through the normally closed contacts. It happens so rapidly it vibrates, and sounds like a buzzer. This same rapidly pulsing contact applies the rising and falling DC voltage to the transformer which can step it up to a higher voltage.

Biasing Predetermined voltages or currents establishing proper operating conditions in electronic components

Biasing in electronics means establishing predetermined voltages or currents at various points of an electronic circuit for the purpose of establishing proper operating conditions in electronic components.

Electronic circuit electrical circuit with active components such as transistors, valves and integrated circuits; electrical network that contains active electronic components, generally nonlinear and require complex design and analysis tools

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. To be referred to as electronic, rather than electrical, generally at least one active component must be present. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be performed, and data can be moved from one place to another.

The following outline is provided as an overview of and topical guide to electronics:

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. For instance, a computer could be contained inside a black box with two external terminals. It might do various calculations and signal its results by varying its resistance, but always consuming power as a resistance does. Nevertheless, it's an active component, since it relies on a power source to operate.
  2. Nonreciprocal passive devices include the gyrator (though as a truly passive component, this exists more in theoretical terms, and is usually implemented using an active circuit)—and the circulator, which is used at microwave and optical frequencies
  3. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum . April 2, 2018. Retrieved 28 July 2019.
  4. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN   978-1118038239.
  5. What is a Thermistor. U.S. Sensor Corp.