Electrical reactance

Last updated

In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy is returned to the circuit. Greater reactance gives smaller current for the same applied voltage.

Contents

Reactance is used to compute amplitude and phase changes of sinusoidal alternating current going through a circuit element. Like resistance, reactance is measured in ohms, with positive values indicating inductive reactance and negative indicating capacitive reactance. It is denoted by the symbol . An ideal resistor has zero reactance, whereas ideal inductors and capacitors have zero resistance. As frequency increases, inductive reactance increases and capacitive reactance decreases.

Comparison to resistance

Reactance is similar to resistance in that larger reactance leads to smaller currents for the same applied voltage. Further, a circuit made entirely of elements that have only reactance (and no resistance) can be treated the same way as a circuit made entirely of resistances. These same techniques can also be used to combine elements with reactance with elements with resistance but complex numbers are typically needed. This is treated below in the section on impedance.

There are several important differences between reactance and resistance, though. First, reactance changes the phase so that the current through the element is shifted by a quarter of a cycle relative to the phase of the voltage applied across the element. Second, power is not dissipated in a purely reactive element but is stored instead. Third, reactances can be negative so that they can 'cancel' each other out. Finally, the main circuit elements that have reactance (capacitors and inductors) have a frequency dependent reactance, unlike resistors which have the same resistance for all frequencies, at least in the ideal case.

The term reactance was first suggested by French engineer M. Hospitalier in L'Industrie Electrique on 10 May 1893. It was officially adopted by the American Institute of Electrical Engineers in May 1894. [2]

Capacitive reactance

A capacitor consists of two conductors separated by an insulator, also known as a dielectric.

Capacitive reactance is an opposition to the change of voltage across an element. Capacitive reactance is inversely proportional to the signal frequency (or angular frequency ) and the capacitance . [3]

There are two choices in the literature for defining reactance for a capacitor. One is to use a uniform notion of reactance as the imaginary part of impedance, in which case the reactance of a capacitor is the negative number, [3] [4] [5]

.

Another choice is to define capacitive reactance as a positive number, [6] [7] [8]

.

In this case however one needs to remember to add a negative sign for the impedance of a capacitor, i.e. .

At , the magnitude of the capacitor's reactance is infinite, behaving like an open circuit (preventing any current from flowing through the dielectric). As frequency increases, the magnitude of reactance decreases, allowing more current to flow. As approaches , the capacitor's reactance approaches , behaving like a short circuit.

The application of a DC voltage across a capacitor causes positive charge to accumulate on one side and negative charge to accumulate on the other side; the electric field due to the accumulated charge is the source of the opposition to the current. When the potential associated with the charge exactly balances the applied voltage, the current goes to zero.

Driven by an AC supply (ideal AC current source), a capacitor will only accumulate a limited amount of charge before the potential difference changes polarity and the charge is returned to the source. The higher the frequency, the less charge will accumulate and the smaller the opposition to the current.

Inductive reactance

Inductive reactance is a property exhibited by an inductor, and inductive reactance exists based on the fact that an electric current produces a magnetic field around it. In the context of an AC circuit (although this concept applies any time current is changing), this magnetic field is constantly changing as a result of current that oscillates back and forth. It is this change in magnetic field that induces another electric current to flow in the same wire (counter-EMF), in a direction such as to oppose the flow of the current originally responsible for producing the magnetic field (known as Lenz's Law). Hence, inductive reactance is an opposition to the change of current through an element.

For an ideal inductor in an AC circuit, the inhibitive effect on change in current flow results in a delay, or a phase shift, of the alternating current with respect to alternating voltage. Specifically, an ideal inductor (with no resistance) will cause the current to lag the voltage by a quarter cycle, or 90°.

In electric power systems, inductive reactance (and capacitive reactance, however inductive reactance is more common) can limit the power capacity of an AC transmission line, because power is not completely transferred when voltage and current are out-of-phase (detailed above). That is, current will flow for an out-of-phase system, however real power at certain times will not be transferred, because there will be points during which instantaneous current is positive while instantaneous voltage is negative, or vice versa, implying negative power transfer. Hence, real work is not performed when power transfer is "negative". However, current still flows even when a system is out-of-phase, which causes transmission lines to heat up due to current flow. Consequently, transmission lines can only heat up so much (or else they would physically sag too much, due to the heat expanding the metal transmission lines), so transmission line operators have a "ceiling" on the amount of current that can flow through a given line, and excessive inductive reactance can limit the power capacity of a line. Power providers utilize capacitors to shift the phase and minimize the losses, based on usage patterns.

Inductive reactance is proportional to the sinusoidal signal frequency and the inductance , which depends on the physical shape of the inductor:

.

The average current flowing through an inductance in series with a sinusoidal AC voltage source of RMS amplitude and frequency is equal to:

Because a square wave has multiple amplitudes at sinusoidal harmonics, the average current flowing through an inductance in series with a square wave AC voltage source of RMS amplitude and frequency is equal to:

making it appear as if the inductive reactance to a square wave was about 19% smaller than the reactance to the AC sine wave.

Any conductor of finite dimensions has inductance; the inductance is made larger by the multiple turns in an electromagnetic coil. Faraday's law of electromagnetic induction gives the counter-emf (voltage opposing current) due to a rate-of-change of magnetic flux density through a current loop.

For an inductor consisting of a coil with loops this gives:

.

The counter-emf is the source of the opposition to current flow. A constant direct current has a zero rate-of-change, and sees an inductor as a short-circuit (it is typically made from a material with a low resistivity). An alternating current has a time-averaged rate-of-change that is proportional to frequency, this causes the increase in inductive reactance with frequency.

Impedance

Both reactance and resistance are components of impedance .

where:

When both a capacitor and an inductor are placed in series in a circuit, their contributions to the total circuit impedance are opposite. Capacitive reactance and inductive reactance contribute to the total reactance as follows:

where:

Hence: [5]

Note however that if and are assumed both positive by definition, then the intermediary formula changes to a difference: [7]

but the ultimate value is the same.

Phase relationship

The phase of the voltage across a purely reactive device (i.e. with zero parasitic resistance) lags the current by radians for a capacitive reactance and leads the current by radians for an inductive reactance. Without knowledge of both the resistance and reactance the relationship between voltage and current cannot be determined.

The origin of the different signs for capacitive and inductive reactance is the phase factor in the impedance.

For a reactive component the sinusoidal voltage across the component is in quadrature (a phase difference) with the sinusoidal current through the component. The component alternately absorbs energy from the circuit and then returns energy to the circuit, thus a pure reactance does not dissipate power.

See also

Related Research Articles

<span class="mw-page-title-main">Inductor</span> Passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.

<span class="mw-page-title-main">Electrical impedance</span> Opposition of a circuit to a current when a voltage is applied

In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.

<span class="mw-page-title-main">Gyrator</span> Two-port non-reciprocal network element

A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.

Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cubic metre, or in the MKS system the rayl per square metre (Rayl/m2), while that of specific acoustic impedance is the pascal-second per metre (Pa·s/m), or in the MKS system the rayl (Rayl). There is a close analogy with electrical impedance, which measures the opposition that a system presents to the electric current resulting from a voltage applied to the system.

<span class="mw-page-title-main">Antenna tuner</span> Telecommunications device

An antenna tuner is a passive electronic device inserted between a radio transmitter and its antenna. Its purpose is to optimize power transfer by matching the impedance of the radio to the signal impedance on the feedline to the antenna.

<span class="mw-page-title-main">LC circuit</span> Electrical "resonator" circuit, consisting of inductive and capacitive elements with no resistance

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

<span class="mw-page-title-main">AC power</span> Power in alternating current systems

In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.

<span class="mw-page-title-main">Stub (electronics)</span> Short electrical transmission line

In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit, or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.

<span class="mw-page-title-main">Capacitor types</span> Manufacturing styles of an electronic device

Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices.

<span class="mw-page-title-main">Q meter</span>

A Q meter is a piece of equipment used in the testing of radio frequency circuits. It has been largely replaced in professional laboratories by other types of impedance measuring devices, though it is still in use among radio amateurs. It was developed at Boonton Radio Corporation in Boonton, New Jersey in 1934 by William D. Loughlin.

<span class="mw-page-title-main">Electrical resonance</span> Canceling impedances at a particular frequency

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.

<span class="mw-page-title-main">Capacitor</span> Passive two-terminal electronic component that stores electrical energy in an electric field

In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.

The telegrapher's equations are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory. The equations and their solutions are applicable from 0 Hz to frequencies at which the transmission line structure can support higher order non-TEM modes. The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. The resulting time domain equations are partial differential equations of both time and distance. In the frequency domain the independent variables are distance and either frequency, or complex frequency, The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors. The resulting frequency domain equations are ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.

A bias tee is a three-port network used for setting the DC bias point of some electronic components without disturbing other components. The bias tee is a diplexer. The low-frequency port is used to set the bias; the high-frequency port passes the radio-frequency signals but blocks the biasing levels; the combined port connects to the device, which sees both the bias and RF. It is called a tee because the 3 ports are often arranged in the shape of a T.

In electronics, a differentiator is a circuit that outputs a signal approximately proportional to the rate of change of its input signal. Because the derivative of a sinusoid in another sinusoid whose amplitude is multiplied by its frequency, a true differentiator that works across all frequencies can't be realized. Real circuits such as a 1st-order high-pass filter are able to approximate differentiation at lower frequencies by limiting the gain above its cutoff frequency. An active differentiator includes an amplifier, while a passive differentiator is made only of resistors, capacitors and inductors.

<span class="mw-page-title-main">Gyrator–capacitor model</span> Model for magnetic circuits

The gyrator–capacitor model - sometimes also the capacitor-permeance model - is a lumped-element model for magnetic circuits, that can be used in place of the more common resistance–reluctance model. The model makes permeance elements analogous to electrical capacitance rather than electrical resistance. Windings are represented as gyrators, interfacing between the electrical circuit and the magnetic model.

References

  1. Veley, Victor F. C. (1987). The Benchtop Electronics Reference Manual (1st ed.). New York: Tab Books. pp. 229, 232.
  2. Charles Proteus Steinmetz, Frederick Bedell, "Reactance", Transactions of the American Institute of Electrical Engineers, vol. 11, pp. 640–648, January–December 1894.
  3. 1 2 Irwin, D. (2002). Basic Engineering Circuit Analysis, page 274. New York: John Wiley & Sons, Inc.
  4. Hayt, W.H., Kimmerly J.E. (2007). Engineering Circuit Analysis, 7th ed., McGraw-Hill, p. 388
  5. 1 2 Glisson, T.H. (2011). Introduction to Circuit Analysis and Design, Springer, p. 408
  6. Horowitz P., Hill W. (2015). The Art of Electronics , 3rd ed., p. 42
  7. 1 2 Hughes E., Hiley J., Brown K., Smith I.McK., (2012). Hughes Electrical and Electronic Technology, 11th edition, Pearson, pp. 237-241
  8. Robbins, A.H., Miller W. (2012). Circuit Analysis: Theory and Practice, 5th ed., Cengage Learning, pp. 554-558