Harmonic

Last updated
The nodes of a vibrating string are harmonics. Moodswingerscale.svg
The nodes of a vibrating string are harmonics.
Two different notations of natural harmonics on the cello. First as sounded (more common), then as fingered (easier to sightread). Cello natural harmonics.png
Two different notations of natural harmonics on the cello. First as sounded (more common), then as fingered (easier to sightread).

In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the fundamental frequency of a periodic signal. The fundamental frequency is also called the 1st harmonic; the other harmonics are known as higher harmonics. As all harmonics are periodic at the fundamental frequency, the sum of harmonics is also periodic at that frequency. The set of harmonics forms a harmonic series .

Contents

The term is employed in various disciplines, including music, physics, acoustics, electronic power transmission, radio technology, and other fields. For example, if the fundamental frequency is 50  Hz, a common AC power supply frequency, the frequencies of the first three higher harmonics are 100 Hz (2nd harmonic), 150 Hz (3rd harmonic), 200 Hz (4th harmonic) and any addition of waves with these frequencies is periodic at 50 Hz.

An th characteristic mode, for will have nodes that are not vibrating. For example, the 3rd characteristic mode will have nodes at and where is the length of the string. In fact, each th characteristic mode, for not a multiple of 3, will not have nodes at these points. These other characteristic modes will be vibrating at the positions and If the player gently touches one of these positions, then these other characteristic modes will be suppressed. The tonal harmonics from these other characteristic modes will then also be suppressed. Consequently, the tonal harmonics from the th characteristic characteristic modes, where is a multiple of 3, will be made relatively more prominent. [1]

In music, harmonics are used on string instruments and wind instruments as a way of producing sound on the instrument, particularly to play higher notes and, with strings, obtain notes that have a unique sound quality or "tone colour". On strings, bowed harmonics have a "glassy", pure tone. On stringed instruments, harmonics are played by touching (but not fully pressing down the string) at an exact point on the string while sounding the string (plucking, bowing, etc.); this allows the harmonic to sound, a pitch which is always higher than the fundamental frequency of the string.

Terminology

Harmonics may be called "overtones", "partials", or "upper partials", and in some music contexts, the terms "harmonic", "overtone" and "partial" are used fairly interchangeably. But more precisely, the term "harmonic" includes all pitches in a harmonic series (including the fundamental frequency) while the term "overtone" only includes pitches above the fundamental.

Characteristics

A whizzing, whistling tonal character, distinguishes all the harmonics both natural and artificial from the firmly stopped intervals; therefore their application in connection with the latter must always be carefully considered.[ citation needed ]

— Richard Scholz (c.1888–1912) [2]

Most acoustic instruments emit complex tones containing many individual partials (component simple tones or sinusoidal waves), but the untrained human ear typically does not perceive those partials as separate phenomena. Rather, a musical note is perceived as one sound, the quality or timbre of that sound being a result of the relative strengths of the individual partials. Many acoustic oscillators, such as the human voice or a bowed violin string, produce complex tones that are more or less periodic, and thus are composed of partials that are nearly matched to the integer multiples of fundamental frequency and therefore resemble the ideal harmonics and are called "harmonic partials" or simply "harmonics" for convenience (although it's not strictly accurate to call a partial a harmonic, the first being actual and the second being theoretical).

Oscillators that produce harmonic partials behave somewhat like one-dimensional resonators, and are often long and thin, such as a guitar string or a column of air open at both ends (as with the metallic modern orchestral transverse flute). Wind instruments whose air column is open at only one end, such as trumpets and clarinets, also produce partials resembling harmonics. However they only produce partials matching the odd harmonics—at least in theory. In practical use, no real acoustic instrument behaves as perfectly as the simplified physical models predict; for example, instruments made of non-linearly elastic wood, instead of metal, or strung with gut instead of brass or steel strings, tend to have not-quite-integer partials.

Partials whose frequencies are not integer multiples of the fundamental are referred to as inharmonic partials. Some acoustic instruments emit a mix of harmonic and inharmonic partials but still produce an effect on the ear of having a definite fundamental pitch, such as pianos, strings plucked pizzicato, vibraphones, marimbas, and certain pure-sounding bells or chimes. Antique singing bowls are known for producing multiple harmonic partials or multiphonics. [3] [4] Other oscillators, such as cymbals, drum heads, and most percussion instruments, naturally produce an abundance of inharmonic partials and do not imply any particular pitch, and therefore cannot be used melodically or harmonically in the same way other instruments can.

Building on of Sethares (2004), [5] dynamic tonality introduces the notion of pseudo-harmonic partials, in which the frequency of each partial is aligned to match the pitch of a corresponding note in a pseudo-just tuning, thereby maximizing the consonance of that pseudo-harmonic timbre with notes of that pseudo-just tuning. [6] [7] [8] [9]

Partials, overtones, and harmonics

An overtone is any partial higher than the lowest partial in a compound tone. The relative strengths and frequency relationships of the component partials determine the timbre of an instrument. The similarity between the terms overtone and partial sometimes leads to their being loosely used interchangeably in a musical context, but they are counted differently, leading to some possible confusion. In the special case of instrumental timbres whose component partials closely match a harmonic series (such as with most strings and winds) rather than being inharmonic partials (such as with most pitched percussion instruments), it is also convenient to call the component partials "harmonics", but not strictly correct, because harmonics are numbered the same even when missing, while partials and overtones are only counted when present. This chart demonstrates how the three types of names (partial, overtone, and harmonic) are counted (assuming that the harmonics are present):

FrequencyOrder
(n)
Name 1Name 2Name 3 Standing wave representation Longitudinal wave representation
1 × f = 440 Hzn = 11st partial fundamental tone 1st harmonic Pipe001.gif Molecule1.gif
2 × f = 880 Hzn = 22nd partial1st overtone2nd harmonic Pipe002.gif Molecule2.gif
3 × f = 1320 Hzn = 33rd partial2nd overtone3rd harmonic Pipe003.gif Molecule3.gif
4 × f = 1760 Hzn = 44th partial3rd overtone4th harmonic Pipe004.gif Molecule4.gif

In many musical instruments, it is possible to play the upper harmonics without the fundamental note being present. In a simple case (e.g., recorder) this has the effect of making the note go up in pitch by an octave, but in more complex cases many other pitch variations are obtained. In some cases it also changes the timbre of the note. This is part of the normal method of obtaining higher notes in wind instruments, where it is called overblowing . The extended technique of playing multiphonics also produces harmonics. On string instruments it is possible to produce very pure sounding notes, called harmonics or flageolets by string players, which have an eerie quality, as well as being high in pitch. Harmonics may be used to check at a unison the tuning of strings that are not tuned to the unison. For example, lightly fingering the node found halfway down the highest string of a cello produces the same pitch as lightly fingering the node  1 / 3 of the way down the second highest string. For the human voice see Overtone singing, which uses harmonics.

While it is true that electronically produced periodic tones (e.g. square waves or other non-sinusoidal waves) have "harmonics" that are whole number multiples of the fundamental frequency, practical instruments do not all have this characteristic. For example, higher "harmonics" of piano notes are not true harmonics but are "overtones" and can be very sharp, i.e. a higher frequency than given by a pure harmonic series. This is especially true of instruments other than strings, brass, or woodwinds. Examples of these "other" instruments are xylophones, drums, bells, chimes, etc.; not all of their overtone frequencies make a simple whole number ratio with the fundamental frequency. (The fundamental frequency is the reciprocal of the longest time period of the collection of vibrations in some single periodic phenomenon. [10] )

On stringed instruments

Playing a harmonic on a string Flageolette.svg
Playing a harmonic on a string

Harmonics may be singly produced [on stringed instruments] (1) by varying the point of contact with the bow, or (2) by slightly pressing the string at the nodes, or divisions of its aliquot parts (, , , etc.). (1) In the first case, advancing the bow from the usual place where the fundamental note is produced, towards the bridge, the whole scale of harmonics may be produced in succession, on an old and highly resonant instrument. The employment of this means produces the effect called 'sul ponticello.' (2) The production of harmonics by the slight pressure of the finger on the open string is more useful. When produced by pressing slightly on the various nodes of the open strings they are called 'natural harmonics'. ... Violinists are well aware that the longer the string in proportion to its thickness, the greater the number of upper harmonics it can be made to yield.

The following table displays the stop points on a stringed instrument at which gentle touching of a string will force it into a harmonic mode when vibrated. String harmonics (flageolet tones) are described as having a "flutelike, silvery quality" that can be highly effective as a special color or tone color (timbre) when used and heard in orchestration. [12] It is unusual to encounter natural harmonics higher than the fifth partial on any stringed instrument except the double bass, on account of its much longer strings. [12]

Harmonic order Stop note Note sounded
(relative to
open string)
Audio frequency (Hz) Cents above
fundamental(offset by octave)
Audio
(octave shifted)
1st fundamental,
perfect unison
P1600Hz0.0 ¢ Play
2ndfirst perfect octave P81200Hz0.0 ¢ Play
3rd perfect fifth P8 + P51800Hz702.0 ¢ Play
4thdoubled perfect octave 2 · P82400Hz0.0 ¢ Play
5th just major third,
major third
2 · P8 + M33000Hz386.3 ¢ Play
6th perfect fifth 2 · P8 + P53600Hz702.0 ¢ Play
7th harmonic seventh,
septimal minor seventh
(‘the lost chord’)
2 · P8 + m 74200Hz968.8 ¢ Play
8ththird perfect octave 3 · P84800Hz0.0 ¢ Play
9th Pythagorean major second
harmonic ninth
3 · P8 + M25400Hz203.9 ¢ Play
10th just major third 3 · P8 + M36000Hz386.3 ¢ Play
11thlesser undecimal tritone,
undecimal semi-augmented fourth
3 · P8 + A4 Llpd- 1/2 .svg 6600Hz551.3 ¢ Play
12th perfect fifth 3 · P8 + P57200Hz702.0 ¢ Play
13thtridecimal neutral sixth 3 · P8 + n 6 Llpd- 1/2 .svg 7800Hz840.5 ¢ Play
14th harmonic seventh,
septimal minor seventh
(‘the lost chord’)
3 · P8 + m 78400Hz968.8 ¢ Play
15th just major seventh 3 · P8 + M79000Hz1088.3 ¢ Play
16thfourth perfect octave 4 · P89600Hz0.0 ¢ Play
17thseptidecimal semitone 4 · P8 + m 210200Hz105.0 ¢ Play
18th Pythagorean major second 4 · P8 + M210800Hz203.9 ¢ Play
19thnanodecimal minor third 4 · P8 + m 3 Llpd- 1/2 .svg 11400Hz297.5 ¢ Play
20thjust major third 4 · P8 + M312000Hz386.3 ¢ Play
Notation key
P perfect interval
A augmented interval (sharpened)
M major interval
m minor interval (flattened major)
n neutral interval (between major and minor)
Llpd- 1/2 .svg half-flattened (approximate) (≈ −38 ¢ for just, −50 ¢ for 12 TET)
flattened by a syntonic comma (approximate) (≈ −21 ¢ )
flattened by a half-comma (approximate) (≈ −10 ¢ )
flattened by a quarter-comma (approximate) (≈ −5 ¢ )

Artificial harmonics

Occasionally a score will call for an artificial harmonic, produced by playing an overtone on an already stopped string. As a performance technique, it is accomplished by using two fingers on the fingerboard, the first to shorten the string to the desired fundamental, with the second touching the node corresponding to the appropriate harmonic.

Other information

Harmonics may be either used in or considered as the basis of just intonation systems. Composer Arnold Dreyblatt is able to bring out different harmonics on the single string of his modified double bass by slightly altering his unique bowing technique halfway between hitting and bowing the strings. Composer Lawrence Ball uses harmonics to generate music electronically.

See also

Related Research Articles

Additive synthesis is a sound synthesis technique that creates timbre by adding sine waves together.

<span class="mw-page-title-main">Fundamental frequency</span> Lowest frequency of a periodic waveform, such as sound

The fundamental frequency, often referred to simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of sinusoids, the fundamental frequency is the lowest frequency sinusoidal in the sum of harmonically related frequencies, or the frequency of the difference between adjacent frequencies. In some contexts, the fundamental is usually abbreviated as f0, indicating the lowest frequency counting from zero. In other contexts, it is more common to abbreviate it as f1, the first harmonic.

<span class="mw-page-title-main">Harmonic series (music)</span> Sequence of frequencies

The harmonic series is the sequence of harmonics, musical tones, or pure tones whose frequency is an integer multiple of a fundamental frequency.

<span class="mw-page-title-main">Musical tuning</span> Terms for tuning an instrument and a systems of pitches

In music, there are two common meanings for tuning:

<span class="mw-page-title-main">Overtone</span> Tone with a frequency higher than the frequency of the reference tone

An overtone is any resonant frequency above the fundamental frequency of a sound. In other words, overtones are all pitches higher than the lowest pitch within an individual sound; the fundamental is the lowest pitch. While the fundamental is usually heard most prominently, overtones are actually present in any pitch except a true sine wave. The relative volume or amplitude of various overtone partials is one of the key identifying features of timbre, or the individual characteristic of a sound.

<span class="mw-page-title-main">Timbre</span> Quality of a musical note or sound or tone

In music, timbre, also known as tone color or tone quality, is the perceived sound quality of a musical note, sound or tone. Timbre distinguishes different types of sound production, such as choir voices and musical instruments. It also enables listeners to distinguish different instruments in the same category.

<span class="mw-page-title-main">Pitch (music)</span> Perceptual property in music ordering sounds from low to high

Pitch is a perceptual property that allows sounds to be ordered on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.

<span class="mw-page-title-main">Inharmonicity</span>

In music, inharmonicity is the degree to which the frequencies of overtones depart from whole multiples of the fundamental frequency.

<span class="mw-page-title-main">Pseudo-octave</span>

A pseudo-octave, pseudooctave, or paradoxical octave in music is an interval whose frequency ratio is not exactly 2:1 = octave : tonic expected for perfectly harmonic pitches, but slightly wider or narrower in pitch – for example 1.98:1, 2.01:1, or even as large as 2.3:1 . The pseudo-octave is never-the-less perceived as if it were equivalent to the conventional 2:1 harmonic ratio, and consequently is treated the same: Pitches separated by a pseudo-octave appropriate for a given instrument are considered equivalent to each other just as with normal "pitch classes".

Piano acoustics is the set of physical properties of the piano that affect its sound. It is an area of study within musical acoustics.

<span class="mw-page-title-main">Piano tuning</span> Profession

Piano tuning is the process of adjusting the tension of the strings of an acoustic piano so that the musical intervals between strings are in tune. The meaning of the term 'in tune', in the context of piano tuning, is not simply a particular fixed set of pitches. Fine piano tuning requires an assessment of the vibration interaction among notes, which is different for every piano, thus in practice requiring slightly different pitches from any theoretical standard. Pianos are usually tuned to a modified version of the system called equal temperament.

Musical acoustics or music acoustics is a multidisciplinary field that combines knowledge from physics, psychophysics, organology, physiology, music theory, ethnomusicology, signal processing and instrument building, among other disciplines. As a branch of acoustics, it is concerned with researching and describing the physics of music – how sounds are employed to make music. Examples of areas of study are the function of musical instruments, the human voice, computer analysis of melody, and in the clinical use of music in music therapy.

<span class="mw-page-title-main">Consonance and dissonance</span> Categorizations of simultaneous or successive sounds

In music, consonance and dissonance are categorizations of simultaneous or successive sounds. Within the Western tradition, some listeners associate consonance with sweetness, pleasantness, and acceptability, and dissonance with harshness, unpleasantness, or unacceptability, although there is broad acknowledgement that this depends also on familiarity and musical expertise. The terms form a structural dichotomy in which they define each other by mutual exclusion: a consonance is what is not dissonant, and a dissonance is what is not consonant. However, a finer consideration shows that the distinction forms a gradation, from the most consonant to the most dissonant. In casual discourse, as German composer and music theorist Paul Hindemith stressed,

Stretched tuning is a detail of musical tuning, applied to wire-stringed musical instruments, older, non-digital electric pianos, and some sample-based synthesizers based on these instruments, to accommodate the natural inharmonicity of their vibrating elements. In stretched tuning, two notes an octave apart, whose fundamental frequencies theoretically have an exact 2:1 ratio, are tuned slightly farther apart. If the frequency ratios of octaves are greater than a factor of 2, the tuning is stretched; if smaller than a factor of 2, it is compressed."

<span class="mw-page-title-main">Acoustic resonance</span> Resonance phenomena in sound and musical devices

Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration.

In music, the undertone series or subharmonic series is a sequence of notes that results from inverting the intervals of the overtone series. While overtones naturally occur with the physical production of music on instruments, undertones must be produced in unusual ways. While the overtone series is based upon arithmetic multiplication of frequencies, resulting in a harmonic series, the undertone series is based on arithmetic division.

<span class="mw-page-title-main">Violin acoustics</span> Area of study within musical acoustics

Violin acoustics is an area of study within musical acoustics concerned with how the sound of a violin is created as the result of interactions between its many parts. These acoustic qualities are similar to those of other members of the violin family, such as the viola.

<span class="mw-page-title-main">String harmonic</span> String instrument technique

Playing a string harmonic is a string instrument technique that uses the nodes of natural harmonics of a musical string to isolate overtones. Playing string harmonics produces high pitched tones, often compared in timbre to a whistle or flute. Overtones can be isolated "by lightly touching the string with the finger instead of pressing it down" against the fingerboard. For some instruments this is a fundamental technique, such as the Chinese guqin, where it is known as fan yin, and the Vietnamese đàn bầu.

Sympathetic resonance or sympathetic vibration is a harmonic phenomenon wherein a passive string or vibratory body responds to external vibrations to which it has a harmonic likeness. The classic example is demonstrated with two similarly-tuned tuning forks. When one fork is struck and held near the other, vibrations are induced in the unstruck fork, even though there is no physical contact between them. In similar fashion, strings will respond to the vibrations of a tuning fork when sufficient harmonic relations exist between them. The effect is most noticeable when the two bodies are tuned in unison or an octave apart, as there is the greatest similarity in vibrational frequency. Sympathetic resonance is an example of injection locking occurring between coupled oscillators, in this case coupled through vibrating air. In musical instruments, sympathetic resonance can produce both desirable and undesirable effects.

Dynamic tonality is a paradigm for tuning and timbre which generalizes the special relationship between just intonation, and the harmonic series to apply to a wider set of pseudo-just tunings and related pseudo-harmonic timbres.

References

  1. Walker, Russell (14 June 2019). "Russell Walker" . Authors' group (online magazine). Catonsville, MD: Institute for Operations Research and the Management Sciences. doi:10.1287/7648739e-8e59-466e-82cb-3ded22bbebf6. S2CID   241172832 . Retrieved 21 December 2020 via informs.scienceconnect.io.
  2. "Category:Scholz, Richard". Petrucci Music Library / International Music Score Library Project (IMSLP) (imslp.org) (site sub-index & mini-bio for Scholz). Canada. Retrieved 2020-12-21.
  3. Galembo, Alexander; Cuddly, Lola L. (2 December 1997). "Large grand and small upright pianos". acoustics.org (Press release). Acoustical Society of America. Archived from the original on 2012-02-09. Retrieved 13 January 2024. There are many ways to make matters worse, but very few to improve. — Minimally technical summary of string acoustics research given at conference; discusses listeners' perceptions of pianos' inharmonic partials.
  4. Court, Sophie R.A. (April 1927). "Golo und Genovefa[by] Hanna Rademacher". Books Abroad (book review). 1 (2): 34–36. doi:10.2307/40043442. ISSN   0006-7431. JSTOR   40043442.
  5. Sethares, W.A. (2004). Tuning, Timbre, Spectrum, Scale. Springer. ISBN   978-1852337971 via Google books.
  6. Sethares, W.A.; Milne, A.; Tiedje, S.; Prechtl, A.; Plamondon, J. (2009). "Spectral tools for dynamic tonality and audio morphing". Computer Music Journal . 33 (2): 71–84. doi: 10.1162/comj.2009.33.2.71 . S2CID   216636537 . Retrieved 2009-09-20.
  7. Milne, Andrew; Sethares, William; Plamondon, James (29 August 2008). "Tuning continua and keyboard layouts" (PDF). Journal of Mathematics and Music . 2 (1): 1–19. doi:10.1080/17459730701828677. S2CID   1549755. Archived (PDF) from the original on 2022-10-09. "Alt URL" (PDF). Sethares pers. academic site. University of Wisconsin.
  8. Milne, A.; Sethares, W.A.; Plamondon, J. (Winter 2007). "Invariant fingerings across a tuning continuum". Computer Music Journal . 31 (4): 15–32. doi: 10.1162/comj.2007.31.4.15 . S2CID   27906745.
  9. Milne, A.; Sethares, W.A.; Plamondon, J. (2006). X System (PDF) (technical report). Thumtronics Inc. Retrieved 2020-05-02.
  10. PD-icon.svg This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.
  11. George alike (21 January 2011). "Free Online Games for Kids". MyFavoriteGamez.com / SciVee.tv. doi:10.4016/26742.01 (inactive 16 December 2024). Archived from the original on 14 February 2021. Retrieved 21 December 2020.{{cite web}}: CS1 maint: DOI inactive as of December 2024 (link)
  12. 1 2 Marrocco, W. Thomas (2001). "Kennan, Kent". Oxford Music Online. Oxford University Press. doi:10.1093/gmo/9781561592630.article.14882 . Retrieved 2020-12-21.