Neutral interval

Last updated
Neutral third Neutral interval.png
Neutral third

In music theory, a neutral interval is an interval that is neither a major nor minor, but instead in between. For example, in equal temperament, a major third is 400 cents, a minor third is 300 cents, and a neutral third is 350 cents. A neutral interval inverts to a neutral interval. For example, the inverse of a neutral third is a neutral sixth.

Contents

Roughly, neutral intervals are a quarter tone sharp from minor intervals and a quarter tone flat from major intervals. In just intonation, as well as in tunings such as 31-ET, 41-ET, or 72-ET, which more closely approximate just intonation, the intervals are closer together.

minorneutralmajor
secondsDD Llpd- 1/2 .svg D
thirdsE≊ E Llpd- 1/2 .svg E
sixthsA≊ A Llpd- 1/2 .svg A
seventhsB≊ B Llpd- 1/2 .svg B

Second

Neutral second
Inverse neutral seventh
Name
Abbreviationn2
Size
Semitones ~1+12
Interval class ~1+12
Just interval 11:10 or 12:11 [1]
Cents
12-Tone equal temperament 100 or 200
24-Tone equal temperament 150
Just intonation 165 or 151
Neutral second on C Play. Neutral second on C.png
Neutral second on C Play .

A neutral second or medium second is an interval wider than a minor second and narrower than a major second. Three distinct intervals may be termed neutral seconds:

The equal-tempered neutral is found in some traditional Arabic music (see also Arab tone system). Because the equal tempered neutral second is essentially a semitone (minor second) plus a quarter-tone, they may be considered three-quarter tones in the quarter tone scale.

In equal temperament

Approximations to the 12:11 and 11:10 neutral seconds can be found in a number of equally tempered tuning systems. 11:10 is very closely matched by 22-ET, whereas 12:11 is matched by 24-ET, 31-ET and 41-ET. 72-ET matches both intervals closely and is also the smallest widely used equal temperament that uniquely matches both intervals. Tuning systems that temper out the comma of 121:120 do not distinguish between the two intervals. 17-ET has a neutral second between 12:11 and 13:12, and a neutral third between 16:13 and 11:9.

Seventh

Neutral seventh
Inverse neutral second
Name
Other names-
Abbreviationn7
Size
Semitones ~10+12
Interval class ~1+12
Just interval 11:6, [1] 64:35, [2] or 24:13
Cents
12-Tone equal temperament 1000 or 1100
24-Tone equal temperament 1050
Just intonation 1049, 1045, or 1061
Neutral seventh on C Play. Neutral seventh on C.png
Neutral seventh on C Play .

A neutral seventh is a musical interval wider than a minor seventh play but narrower than a major seventh play . Four distinct intervals may be termed neutral sevenths:

These intervals are all within about 12 cents of each other and are difficult for most people to distinguish.

A neutral seventh can be formed by stacking a neutral third together with a perfect fifth. Based on its positioning in the harmonic series, the undecimal neutral seventh implies a root one perfect fifth below the lower of the two notes.

See also

Related Research Articles

<span class="mw-page-title-main">Semitone</span> Musical interval

A semitone, also called a half step or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C; the interval between them is a semitone.

<span class="mw-page-title-main">Minor third</span> Musical interval

In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions. The minor third is one of two commonly occurring thirds. It is called minor because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A. Coincidentally, there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones. The minor third is a skip melodically.

<span class="mw-page-title-main">Major sixth</span> Musical interval

In music from Western culture, a sixth is a musical interval encompassing six note letter names or staff positions, and the major sixth is one of two commonly occurring sixths. It is qualified as major because it is the larger of the two. The major sixth spans nine semitones. Its smaller counterpart, the minor sixth, spans eight semitones. For example, the interval from C up to the nearest A is a major sixth. It is a sixth because it encompasses six note letter names and six staff positions. It is a major sixth, not a minor sixth, because the note A lies nine semitones above C. Diminished and augmented sixths span the same number of note letter names and staff positions, but consist of a different number of semitones.

The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees (of a major scale are called major.

<span class="mw-page-title-main">Minor sixth</span> Musical interval

In Western classical music, a minor sixth is a musical interval encompassing six staff positions, and is one of two commonly occurring sixths. It is qualified as minor because it is the smaller of the two: the minor sixth spans eight semitones, the major sixth nine. For example, the interval from A to F is a minor sixth, as the note F lies eight semitones above A, and there are six staff positions from A to F. Diminished and augmented sixths span the same number of staff positions, but consist of a different number of semitones.

<span class="mw-page-title-main">Quarter tone</span> Musical interval

A quarter tone is a pitch halfway between the usual notes of a chromatic scale or an interval about half as wide as a semitone, which itself is half a whole tone. Quarter tones divide the octave by 50 cents each, and have 24 different pitches.

<span class="mw-page-title-main">Comma (music)</span> Very small interval arising from discrepancies in tuning

In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Strictly speaking, there are only two kinds of comma, the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F tuned using the D-based Pythagorean tuning system, and another F tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B and A are both approximated by the same interval although they are a septimal kleisma apart.

<span class="mw-page-title-main">31 equal temperament</span> In music, a microtonal tuning system

In music, 31 equal temperament, 31-ET, which can also be abbreviated 31-TET or 31-EDO, also known as tricesimoprimal, is the tempered scale derived by dividing the octave into 31 equal-sized steps. Each step represents a frequency ratio of 312, or 38.71 cents.

In music, septimal meantone temperament, also called standard septimal meantone or simply septimal meantone, refers to the tempering of 7-limit musical intervals by a meantone temperament tuning in the range from fifths flattened by the amount of fifths for 12 equal temperament to those as flat as 19 equal temperament, with 31 equal temperament being a more or less optimal tuning for both the 5- and 7-limits.

<span class="mw-page-title-main">Septimal comma</span>

A septimal comma is a small musical interval in just intonation that contains the number seven in its prime factorization. There is more than one such interval, so the term septimal comma is ambiguous, but it most commonly refers to the interval 64/63.

<span class="mw-page-title-main">Septimal major third</span> Musical interval

In music, the septimal major third, also called the supermajor third, septimal supermajor third, and sometimes Bohlen–Pierce third is the musical interval exactly or approximately equal to a just 9:7 ratio of frequencies, or alternately 14:11. It is equal to 435 cents, sharper than a just major third (5:4) by the septimal quarter tone (36:35). In 24-TET the septimal major third is approximated by 9 quarter tones, or 450 cents. Both 24 and 19 equal temperament map the septimal major third and the septimal narrow fourth (21:16) to the same interval.

<span class="mw-page-title-main">Septimal minor third</span> Musical interval

In music, the septimal minor third, also called the subminor third or septimal subminor third, is the musical interval exactly or approximately equal to a 7/6 ratio of frequencies. In terms of cents, it is 267 cents, a quartertone of size 36/35 flatter than a just minor third of 6/5. In 24-tone equal temperament five quarter tones approximate the septimal minor third at 250 cents. A septimal minor third is almost exactly two-ninths of an octave, and thus all divisions of the octave into multiples of nine have an almost perfect match to this interval. The septimal major sixth, 12/7, is the inverse of this interval.

<span class="mw-page-title-main">Neutral third</span> Musical interval

A neutral third is a musical interval wider than a minor third but narrower than a major third, named by Jan Pieter Land in 1880. Land makes reference to the neutral third attributed to Zalzal, described by Al-Farabi as corresponding to a ratio of 27:22 and by Avicenna as 39:32. The Zalzalian third may have been a mobile interval.

<span class="mw-page-title-main">Septimal whole tone</span> Musical interval

In music, the septimal whole tone, septimal major second, or supermajor second is the musical interval exactly or approximately equal to an 8/7 ratio of frequencies. It is about 231 cents wide in just intonation. 24 equal temperament does not match this interval particularly well, its nearest representation being at 250 cents, approximately 19 cents sharp. The septimal whole tone may be derived from the harmonic series as the interval between the seventh and eighth harmonics and the term septimal refers to the fact that it utilizes the seventh harmonic. It can also be thought of as the octave inversion of the 7/4 interval, the harmonic seventh.

<span class="mw-page-title-main">Septimal diesis</span>

In music, septimal diesis is an interval with the ratio of 49:48, which is the difference between the septimal whole tone and the septimal minor third. It is about 35.7 cents wide, which is narrower than a quarter-tone but wider than the septimal comma. It may also be the ratio 36:35, or 48.77 cents.

<span class="mw-page-title-main">Septimal quarter tone</span>

A septimal quarter tone is an interval with the ratio of 36:35, which is the difference between the septimal minor third and the Just minor third, or about 48.77 cents wide. The name derives from the interval being the 7-limit approximation of a quarter tone. The septimal quarter tone can be viewed either as a musical interval in its own right, or as a comma; if it is tempered out in a given tuning system, the distinction between the two different types of minor thirds is lost. The septimal quarter tone may be derived from the harmonic series as the interval between the thirty-fifth and thirty-sixth harmonics.

In music, 41 equal temperament, abbreviated 41-TET, 41-EDO, or 41-ET, is the tempered scale derived by dividing the octave into 41 equally sized steps. Each step represents a frequency ratio of 21/41, or 29.27 cents, an interval close in size to the septimal comma. 41-ET can be seen as a tuning of the schismatic, magic and miracle temperaments. It is the second smallest equal temperament, after 29-ET, whose perfect fifth is closer to just intonation than that of 12-ET. In other words, is a better approximation to the ratio than either or .

<span class="mw-page-title-main">Neutral sixth</span> Musical interval

A neutral sixth is a musical interval wider than a minor sixth but narrower than a major sixth. Three distinct intervals may be termed neutral sixths:

<span class="mw-page-title-main">Septimal third tone</span>

A septimal 1/3-tone is an interval with the ratio of 28:27, which is the difference between the perfect fourth and the supermajor third. It is about 62.96 cents wide. The septimal 1/3-tone can be viewed either as a musical interval in its own right, or as a comma; if it is tempered out in a given tuning system, the distinction between these two intervals is lost. The septimal 1/3-tone may be derived from the harmonic series as the interval between the twenty-seventh and twenty-eighth harmonics. It may be considered a diesis.

<span class="mw-page-title-main">Subminor and supermajor</span>

In music, a subminor interval is an interval that is noticeably wider than a diminished interval but noticeably narrower than a minor interval. It is found in between a minor and diminished interval, thus making it below, or subminor to, the minor interval. A supermajor interval is a musical interval that is noticeably wider than a major interval but noticeably narrower than an augmented interval. It is found in between a major and augmented interval, thus making it above, or supermajor to, the major interval. The inversion of a supermajor interval is a subminor interval, and there are four major and four minor intervals, allowing for eight supermajor and subminor intervals, each with variants.

References

  1. 1 2 Haluska, Jan (2003). The Mathematical Theory of Tone Systems, p.xxiii. ISBN   0-8247-4714-3. 3/4-tone, undecimal neutral second and 21/4-tone, undecimal neutral seventh.
  2. Haluska (2003), p.?. Septimal neutral seventh.
  3. 1 2 Andrew Horner, Lydia Ayres (2002). Cooking with Csound: Woodwind and Brass Recipes, p.131. ISBN   0-89579-507-8.