Octave

Last updated
Octave
A perfect octave between two C's
Perfect octave
Inverse unison
Name
Other names-
AbbreviationP8
Size
Semitones 12
Interval class 0
Just interval 2:1 [1]
Cents
Equal temperament 1200 [1]
24 equal temperament 1200
Just intonation 1200 [1]

In music, an octave (Latin : octavus: eighth) or perfect octave (sometimes called the diapason) [2] is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been referred to as the "basic miracle of music", the use of which is "common in most musical systems". [3] The interval between the first and second harmonics of the harmonic series is an octave.

Music form of art using sound and silence

Music is an art form and cultural activity whose medium is sound organized in time. General definitions of music include common elements such as pitch, rhythm, dynamics, and the sonic qualities of timbre and texture. Different styles or types of music may emphasize, de-emphasize or omit some of these elements. Music is performed with a vast range of instruments and vocal techniques ranging from singing to rapping; there are solely instrumental pieces, solely vocal pieces and pieces that combine singing and instruments. The word derives from Greek μουσική . See glossary of musical terminology.

Pythagorean interval

In musical tuning theory, a Pythagorean interval is a musical interval with frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/21) and the perfect fourth with ratio 4/3 (equivalent to 22/31) are Pythagorean intervals.

In music theory, an interval is the difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.

Contents

In music notation, notes separated by an octave (or multiple octaves) have the same letter name and are of the same pitch class.

Pitch class

In music, a pitch class (p.c. or pc) is a set of all pitches that are a whole number of octaves apart, e.g., the pitch class C consists of the Cs in all octaves. "The pitch class C stands for all possible Cs, in whatever octave position." Important to musical set theory, a pitch class is, "all pitches related to each other by octave, enharmonic equivalence, or both." Thus, using scientific pitch notation, the pitch class "C" is the set

To emphasize that it is one of the perfect intervals (including unison, perfect fourth, and perfect fifth), the octave is designated P8. Other interval qualities are also possible, though rare. The octave above or below an indicated note is sometimes abbreviated 8a or 8va (Italian : all'ottava), 8va bassa (Italian : all'ottava bassa, sometimes also 8vb), or simply 8 for the octave in the direction indicated by placing this mark above or below the staff.

Perfect fourth musical interval

A fourth is a musical interval encompassing four staff positions in the music notation of Western culture, and a perfect fourth is the fourth spanning five semitones. For example, the ascending interval from C to the next F is a perfect fourth, because the note F is the fifth semitone above C, and there are four staff positions between C and F. Diminished and augmented fourths span the same number of staff positions, but consist of a different number of semitones.

Perfect fifth musical interval

In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.

Musical note Sign used in musical notation, a pitched sound

In music, a note is the pitch and duration of a sound, and also its representation in musical notation. A note can also represent a pitch class. Notes are the building blocks of much written music: discretizations of musical phenomena that facilitate performance, comprehension, and analysis.

Explanation and definition

For example, if one note has a frequency of 440  Hz, the note one octave above is at 880 Hz, and the note one octave below is at 220 Hz. The ratio of frequencies of two notes an octave apart is therefore 2:1. Further octaves of a note occur at times the frequency of that note (where n is an integer), such as 2, 4, 8, 16, etc. and the reciprocal of that series. For example, 55 Hz and 440 Hz are one and two octaves away from 110 Hz because they are  12 (or ) and 4 (or ) times the frequency, respectively.

Hertz SI unit for frequency

The hertz (symbol: Hz) is the derived unit of frequency in the International System of Units (SI) and is defined as one cycle per second. It is named after Heinrich Rudolf Hertz, the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (103 Hz, kHz), megahertz (106 Hz, MHz), gigahertz (109 Hz, GHz), terahertz (1012 Hz, THz), petahertz (1015 Hz, PHz), exahertz (1018 Hz, EHz), and zettahertz (1021 Hz, ZHz).

The number of octaves between two frequencies is given by the formula:

The octave is defined by ANSI [4] as the unit of frequency level when the base of the logarithm is two.

Logarithm Inverse function of exponentiation that also maps products to sums

In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x. In the simplest case, the logarithm counts the number of occurrences of the same factor in repeated multiplication; e.g., since 1000 = 10 × 10 × 10 = 103, the "logarithm to base 10" of 1000 is 3. The logarithm of x to baseb is denoted as logb (x), or without parentheses, logbx, or even without the explicit base, log x—if no confusion is possible.

Octave equivalence

Octave
Octave
Octave
Demonstration of octave equivalence. The melody to "Twinkle Twinkle Little Star" with parallel harmony. The melody is paralleled in three ways: (1) in octaves (consonant and equivalent); (2) in fifths (fairly consonant but not equivalent); and (3) in seconds (neither consonant nor equivalent).

After the unison, the octave is the simplest interval in music. The human ear tends to hear both notes as being essentially "the same", due to closely related harmonics. Notes separated by an octave "ring" together, adding a pleasing sound to music. The interval is so natural to humans that when men and women are asked to sing in unison, they typically sing in octave. [5]

Unison musical parts sounding at the same pitch

In music, unison is two or more musical parts sounding the same pitch or at an octave interval, usually at the same time.

For this reason, notes an octave apart are given the same note name in the Western system of music notation—the name of a note an octave above A is also A. This is called octave equivalence, the assumption that pitches one or more octaves apart are musically equivalent in many ways, leading to the convention "that scales are uniquely defined by specifying the intervals within an octave". [6] The conceptualization of pitch as having two dimensions, pitch height (absolute frequency) and pitch class (relative position within the octave), inherently include octave circularity. [6] Thus all Cs, or all 1s (if C = 0), in any octave are part of the same pitch class.

Octave equivalence is a part of most "advanced musical cultures", but is far from universal in "primitive" and early music. [7] [8] The languages in which the oldest extant written documents on tuning are written, Sumerian and Akkadian, have no known word for "octave". However, it is believed that a set of cuneiform tablets that collectively describe the tuning of a nine-stringed instrument, believed to be a Babylonian lyre, describe tunings for seven of the strings, with indications to tune the remaining two strings an octave from two of the seven tuned strings. [9] Leon Crickmore recently proposed that "The octave may not have been thought of as a unit in its own right, but rather by analogy like the first day of a new seven-day week". [10]

Monkeys experience octave equivalence, and its biological basis apparently is an octave mapping of neurons in the auditory thalamus of the mammalian brain. [11] Studies have also shown the perception of octave equivalence in rats ( Blackwell & Schlosberg 1943 ), human infants ( Demany & Armand 1984 ), [12] and musicians ( Allen 1967 ) but not starlings ( Cynx 1993 ), 4–9 year old children ( Sergeant 1983 ), or nonmusicians ( Allen 1967 ). [6]

Music theory

Most musical scales are written so that they begin and end on notes that are an octave apart. For example, the C major scale is typically written C D E F G A B C (shown below), the initial and final C's being an octave apart.

Octave

Because of octave equivalence, notes in a chord that are one or more octaves apart are said to be doubled (even if there are more than two notes in different octaves) in the chord. The word is also used to describe melodies played in parallel in more than multiple octaves.

While octaves commonly refer to the perfect octave (P8), the interval of an octave in music theory encompasses chromatic alterations within the pitch class, meaning that G to G (13 semitones higher) is an Augmented octave (A8), and G to G (11 semitones higher) is a diminished octave (d8). The use of such intervals is rare, as there is frequently a preferable enharmonically-equivalent notation available (minor ninth and major seventh respectively), but these categories of octaves must be acknowledged in any full understanding of the role and meaning of octaves more generally in music.

Notation

Octave of a pitch

Octaves are identified with various naming systems. Among the most common are the scientific, Helmholtz, organ pipe, MIDI, and MIDI note systems. In scientific pitch notation, a specific octave is indicated by a numerical subscript number after note name. In this notation, middle C is C4, because of the note's position as the fourth C key on a standard 88-key piano keyboard, while the C an octave higher is C5.

Octave
ScientificC−1C0C1C2C3C4C5C6C7C8C9
HelmholtzC,,,C,,C,Ccc'c''c'''c''''c'''''c''''''
Organ64 Foot32 Foot16 Foot8 Foot4 Foot2 Foot1 Foot3 Line4 Line5 Line6 Line
NameDbl ContraSub ContraContraGreatSmall1 Line2 Line3 Line4 Line5 Line6 Line
MIDI-5-4-3-2-1012345
MIDI Note01224364860728496108120

Ottava alta and bassa

Octave
An example of the same three notes expressed in three ways: (1) regularly, (2) in an 8va bracket, and (3) in a 15ma bracket
Octave
A similar example with 8vb and 15mb

The notation 8a or 8va is sometimes seen in sheet music, meaning "play this an octave higher than written" (all' ottava: "at the octave" or all' 8va). 8a or 8va stands for ottava, the Italian word for octave (or "eighth"); the octave above may be specified as ottava alta or ottava sopra). Sometimes 8va is used to tell the musician to play a passage an octave lower (when placed under rather than over the staff), though the similar notation 8vb (ottava bassa or ottava sotto) is also used. Similarly, 15ma (quindicesima) means "play two octaves higher than written" and 15mb (quindicesima bassa) means "play two octaves lower than written."

The abbreviations col 8, coll' 8, and c. 8va stand for coll'ottava, meaning "play the notes in the passage together with the notes in the notated octaves". Any of these directions can be cancelled with the word loco, but often a dashed line or bracket indicates the extent of the music affected. [13] [ verification needed ]

Octave bands and fractional octave bands

An octave band is a frequency band that spans one octave. In this context an octave can be a factor of 2 [14] or a factor of 100.3. [15] [16]

Fractional octave bands such as  13 or  112 of an octave are widely used in engineering acoustics. [17]

See also

Related Research Articles

Equal temperament The musical tuning system where the ratio between successive notes is constant

An equal temperament is a musical temperament, or a system of tuning, in which the frequency interval between every pair of adjacent notes has the same ratio. In other words, the ratios of the frequencies of any adjacent pair of notes is the same, and, as pitch is perceived roughly as the logarithm of frequency, equal perceived "distance" from every note to its nearest neighbor.

Just intonation

In music, just intonation or pure intonation is the tuning of musical intervals as (small) whole number ratios of frequencies. Any interval tuned in this way is called a just interval. Just intervals and chords are aggregates of harmonic series partials and may be seen as sharing a (lower) implied fundamental. For example, a tone with a frequency of 300 Hz and another with a frequency of 200 Hz are both multiples of 100 Hz. Their interval is, therefore, an aggregate of the second and third partials of the harmonic series of an implied fundamental frequency 100 Hz.

Pythagorean tuning

Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2. This ratio, also known as the "pure" perfect fifth, is chosen because it is one of the most consonant and easiest to tune by ear and because of importance attributed to the integer 3. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈702 cents wide.

Pitch (music) Perceptual property in music ordering sounds from low to high

Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch can be determined only in sounds that have a frequency that is clear and stable enough to distinguish from noise. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.

Enharmonic (in modern musical notation and tuning) note, interval, or key signature that is equivalent to some other note, interval, or key signature but "spelled", or named differently

In modern musical notation and tuning, an enharmonic equivalent is a note, interval, or key signature that is equivalent to some other note, interval, or key signature but "spelled", or named differently. Thus, the enharmonic spelling of a written note, interval, or chord is an alternative way to write that note, interval, or chord. For example, in twelve-tone equal temperament, the notes C and D are enharmonic notes. Namely, they are the same key on a keyboard, and thus they are identical in pitch, although they have different names and different roles in harmony and chord progressions. Arbitrary amounts of accidentals can produce further enharmonic equivalents, such as B, although these are much rarer and have less practical use.

Pythagorean comma small interval in Pythagorean tuning between two enharmonically equivalent notes such as C and B♯

In musical tuning, the Pythagorean comma (or ditonic comma), named after the ancient mathematician and philosopher Pythagoras, is the small interval (or comma) existing in Pythagorean tuning between two enharmonically equivalent notes such as C and B (Play ), or D and C. It is equal to the frequency ratio (1.5)12/128 = about 1.01364, or about 23.46 cents, roughly a quarter of a semitone (in between 75:74 and 74:73). The comma which musical temperaments often refer to tempering is the Pythagorean comma.

The cent is a logarithmic unit of measure used for musical intervals. Twelve-tone equal temperament divides the octave into 12 semitones of 100 cents each. Typically, cents are used to express small intervals, or to compare the sizes of comparable intervals in different tuning systems, and in fact the interval of one cent is too small to be perceived between successive notes.

Semitone musical interval

A semitone, also called a half step or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale. For example, C is adjacent to C; the interval between them is a semitone.

Scientific pitch notation

Scientific pitch notation is a method of specifying musical pitch by combining a musical note name and a number identifying the pitch's octave.

The twelfth root of two or is an algebraic irrational number. It is most important in Western music theory, where it represents the frequency ratio of a semitone in twelve-tone equal temperament. This number was proposed for the first time in relationship to musical tuning in the sixteenth and seventeenth centuries. It allows measurement and comparison of different intervals as consisting of different numbers of a single interval, the equal tempered semitone. A semitone itself is divided into 100 cents.

Fifteenth musical interval

In music, a fifteenth or double octave, abbreviated 15ma, is the interval between one musical note and another with one-quarter the wavelength or quadruple the frequency. It has also been referred to as the bisdiapason. The fourth harmonic, it is two octaves. It is referred to as a fifteenth because, in the diatonic scale, there are 15 notes between them if one counts both ends. Two octaves do not make a sixteenth, but a fifteenth. In other contexts, the term two octaves is likely to be used.

Music and mathematics Relationships between music and mathematics

Music theory has no axiomatic foundation in modern mathematics, yet the basis of musical sound can be described mathematically and exhibits "a remarkable array of number properties". Elements of music such as its form, rhythm and metre, the pitches of its notes and the tempo of its pulse can be related to the measurement of time and frequency, offering ready analogies in geometry.

Interval ratio ratio of the frequencies of the pitches in a musical interval

In music, an interval ratio is a ratio of the frequencies of the pitches in a musical interval. For example, a just perfect fifth is 3:2, 1.5, and may be approximated by an equal tempered perfect fifth which is 27/12. If the A above middle C is 440 Hz, the perfect fifth above it would be E, at (440*1.5=) 660 Hz, while the equal tempered E5 is 659.255 Hz.

Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2−3·31·51 = 15/8.

References

  1. 1 2 3 Duffin, Ross W. (2008). How equal temperament ruined harmony : (and why you should care) (First published as a Norton paperback. ed.). New York: W. W. Norton. p. 163. ISBN   978-0-393-33420-3. Archived from the original on 5 December 2017. Retrieved 28 June 2017.
  2. William Smith & Samuel Cheetham (1875). A Dictionary of Christian Antiquities. London: John Murray. Archived from the original on 2016-04-30.
  3. Cooper, Paul (1973). Perspectives in Music Theory: An Historical-Analytical Approach, p. 16. ISBN   0-396-06752-2.
  4. ANSI/ASA S1.1-2013 Acoustical Terminology
  5. "Music". Vox Explained. Event occurs at 12:50. Retrieved 2018-11-01. When you ask men and women to sing in unison, what typically happens is they actually sing an octave apart.
  6. 1 2 3 Burns, Edward M. (1999). "Intervals, Scales, and Tuning", The Psychology of Music second edition, p. 252. Deutsch, Diana, ed. San Diego: Academic Press. ISBN   0-12-213564-4.
  7. e.g., Nettl, 1956; Sachs, C. and Kunst, J. (1962). In The wellsprings of music, ed. Kunst, J. The Hague: Marinus Nijhoff.
  8. e.g., Nettl, 1956; Sachs, C. and Kunst, J. (1962). Cited in Burns, Edward M. (1999), p. 217.
  9. Clint Goss (2012). "Flutes of Gilgamesh and Ancient Mesopotamia". Flutopedia. Archived from the original on 2012-06-28. Retrieved 2012-01-08.
  10. Leon Crickmore (2008). "New Light on the Babylonian Tonal System". ICONEA 2008: Proceedings of the International Conference of Near Eastern Archaeomusicology, held at the British Museum, December 4–6, 2008. 24: 11–22.
  11. "The mechanism of octave circularity in the auditory brain Archived 2010-04-01 at the Wayback Machine ", Neuroscience of Music.
  12. Demany L, Armand F. The perceptual reality of tone chroma in early infancy. J Acoust Soc Am 1984; 76:57–66.
  13. Ebenezer Prout & David Fallows. "All'ottava". In Deane L. Root (ed.). Grove Music Online. Oxford Music Online . Oxford University Press.(subscription required)
  14. Crocker 1997 Archived 2017-12-05 at the Wayback Machine
  15. IEC 61260-1:2014
  16. IANSI S1-6-2016
  17. "Archived copy". Archived from the original on 2017-05-14. Retrieved 2017-11-23.CS1 maint: Archived copy as title (link)