Pitch class

Last updated
Pitch class
Perfect octave
Pitch class
All Cs from C1 to C7 inclusive

In music, a pitch class (p.c. or pc) is a set of all pitches that are a whole number of octaves apart; for example, the pitch class C consists of the Cs in all octaves. "The pitch class C stands for all possible Cs, in whatever octave position." [1] Important to musical set theory, a pitch class is "all pitches related to each other by octave, enharmonic equivalence, or both." [2] Thus, using scientific pitch notation, the pitch class "C" is the set

Contents

{Cn : n is an integer} = {..., C−2, C−1, C0, C1, C2, C3 ...}.

Although there is no formal upper or lower limit to this sequence, only a few of these pitches are audible to humans. Pitch class is important because human pitch-perception is periodic: pitches belonging to the same pitch class are perceived as having a similar quality or color, a property called "octave equivalence".

Psychologists refer to the quality of a pitch as its "chroma". [3] A chroma is an attribute of pitches (as opposed to tone height), just like hue is an attribute of color. A pitch class is a set of all pitches that share the same chroma, just like "the set of all white things" is the collection of all white objects. [4]

In standard Western equal temperament, distinct spellings can refer to the same sounding object: B3, C4, and D Doubleflat.svg 4 all refer to the same pitch, hence share the same chroma, and therefore belong to the same pitch class. This phenomenon is called enharmonic equivalence.

Integer notation

To avoid the problem of enharmonic spellings, theorists typically represent pitch classes using numbers beginning from zero, with each successively larger integer representing a pitch class that would be one semitone higher than the preceding one, if they were all realised as actual pitches in the same octave. Because octave-related pitches belong to the same class, when an octave is reached, the numbers begin again at zero. This cyclical system is referred to as modular arithmetic and, in the usual case of chromatic twelve-tone scales, pitch-class numbering is regarded as "modulo 12" (customarily abbreviated "mod 12" in the music-theory literature)—that is, every twelfth member is identical. One can map a pitch's fundamental frequency f (measured in hertz) to a real number p using the equation

This creates a linear pitch space in which octaves have size 12, semitones (the distance between adjacent keys on the piano keyboard) have size 1, and middle C (C4) is assigned the number 0 (thus, the pitches on piano are −39 to +48). Indeed, the mapping from pitch to real numbers defined in this manner forms the basis of the MIDI Tuning Standard, which uses the real numbers from 0 to 127 to represent the pitches C−1 to G9 (thus, middle C is 60). To represent pitch classes, we need to identify or "glue together" all pitches belonging to the same pitch classi.e. all numbers p and p + 12. The result is a cyclical quotient group that music theorists call pitch class space and mathematicians call R/12Z. Points in this space can be labelled using real numbers in the range 0  x < 12. These numbers provide numerical alternatives to the letter names of elementary music theory:

0 = C, 1 = C/D, 2 = D, 2.5 = D Arabic music notation half sharp.svg (quarter tone sharp), 3 = D/E,

and so on. In this system, pitch classes represented by integers are classes of twelve-tone equal temperament (assuming standard concert A).

Pitch class
Integer notation.

In music, integer notation is the translation of pitch classes or interval classes into whole numbers. [5] Thus if C = 0, then C = 1 ... A = 10, B = 11, with "10" and "11" substituted by "t" and "e" in some sources, [5] A and B in others [6] (like the duodecimal numeral system, which also uses "t" and "e", or A and B, for "10" and "11"). This allows the most economical presentation of information regarding post-tonal materials. [5]

In the integer model of pitch, all pitch classes and intervals between pitch classes are designated using the numbers 0 through 11. It is not used to notate music for performance, but is a common analytical and compositional tool when working with chromatic music, including twelve tone, serial, or otherwise atonal music.

Pitch classes can be notated in this way by assigning the number 0 to some note and assigning consecutive integers to consecutive semitones; so if 0 is C natural, 1 is C, 2 is D and so on up to 11, which is B. The C above this is not 12, but 0 again (12  12 = 0). Thus arithmetic modulo 12 is used to represent octave equivalence. One advantage of this system is that it ignores the "spelling" of notes (B, C and D Doubleflat.svg are all 0) according to their diatonic functionality.

Disadvantages

There are a few disadvantages with integer notation. First, theorists have traditionally used the same integers to indicate elements of different tuning systems. Thus, the numbers 0, 1, 2, ... 5, are used to notate pitch classes in 6-tone equal temperament. This means that the meaning of a given integer changes with the underlying tuning system: "1" can refer to C in 12-tone equal temperament, but D in 6-tone equal temperament.

Also, the same numbers are used to represent both pitches and intervals. For example, the number 4 serves both as a label for the pitch class E (if C = 0) and as a label for the distance between the pitch classes D and F. (In much the same way, the term "10 degrees" can label both a temperature and the distance between two temperatures.) Only one of these labelings is sensitive to the (arbitrary) choice of pitch class 0. For example, if one makes a different choice about which pitch class is labeled 0, then the pitch class E will no longer be labeled "4". However, the distance between D and F will still be assigned the number 4. Both this and the issue in the paragraph directly above may be viewed as disadvantages (though mathematically, an element "4" should not be confused with the function "+4").

Other ways to label pitch classes

Pitch class
Pitch
class
Tonal counterpartsSolfege
0 C (also B, D Doubleflat.svg )do
1 C, D (also B DoubleSharp.svg )
2 D (also C DoubleSharp.svg , E Doubleflat.svg )re
3 D, E (also F Doubleflat.svg )
4 E (also D DoubleSharp.svg , F)mi
5 F (also E, G Doubleflat.svg )fa
6 F, G (also E DoubleSharp.svg )
7 G (also F DoubleSharp.svg , A Doubleflat.svg )sol
8 G, A
9 A (also G DoubleSharp.svg , B Doubleflat.svg )la
10, t or A A, B (also C Doubleflat.svg )
11, e or B B (also A DoubleSharp.svg , C)si

The system described above is flexible enough to describe any pitch class in any tuning system: for example, one can use the numbers {0, 2.4, 4.8, 7.2, 9.6} to refer to the five-tone scale that divides the octave evenly. However, in some contexts, it is convenient to use alternative labeling systems. For example, in just intonation, we may express pitches in terms of positive rational numbers p/q, expressed by reference to a 1 (often written "1/1"), which represents a fixed pitch. If a and b are two positive rational numbers, they belong to the same pitch class if and only if

for some integer n. Therefore, we can represent pitch classes in this system using ratios p/q where neither p nor q is divisible by 2, that is, as ratios of odd integers. Alternatively, we can represent just intonation pitch classes by reducing to the octave, 1  p/q < 2.

It is also very common to label pitch classes with reference to some scale. For example, one can label the pitch classes of n-tone equal temperament using the integers 0 to n  1. In much the same way, one could label the pitch classes of the C major scale, C–D–E–F–G–A–B, using the numbers from 0 to 6. This system has two advantages over the continuous labeling system described above. First, it eliminates any suggestion that there is something natural about a twelvefold division of the octave. Second, it avoids pitch-class universes with unwieldy decimal expansions when considered relative to 12; for example, in the continuous system, the pitch-classes of 19 equal temperament are labeled 0.63158..., 1.26316..., etc. Labeling these pitch classes {0, 1, 2, 3 ..., 18} simplifies the arithmetic used in pitch-class set manipulations.

The disadvantage of the scale-based system is that it assigns an infinite number of different names to chords that sound identical. For example, in twelve-tone equal-temperament the C major triad is notated {0, 4, 7}. In twenty-four-tone equal-temperament, this same triad is labeled {0, 8, 14}. Moreover, the scale-based system appears to suggest that different tuning systems use steps of the same size ("1") but have octaves of differing size ("12" in 12-tone equal-temperament, "19" in 19-tone equal temperament, and so on), whereas in fact the opposite is true: different tuning systems divide the same octave into different-sized steps.

In general, it is often more useful to use the traditional integer system when one is working within a single temperament; when one is comparing chords in different temperaments, the continuous system can be more useful.

See also

Related Research Articles

<span class="mw-page-title-main">Just intonation</span> Musical tuning based on pure intervals

In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals consist of tones from a single harmonic series of an implied fundamental. For example, in the diagram, if the notes G3 and C4 are tuned as members of the harmonic series of the lowest C, their frequencies will be 3 and 4 times the fundamental frequency. The interval ratio between C4 and G3 is therefore 4:3, a just fourth.

In music, notes are distinct and isolatable sounds that act as the most basic building blocks for nearly all of music. This discretization facilitates performance, comprehension, and analysis. Notes may be visually communicated by writing them in musical notation.

In music, an octave or perfect octave is a series of eight notes occupying the interval between two notes, one having twice the frequency of vibration of the other. The octave relationship is a natural phenomenon that has been referred to as the "basic miracle of music", the use of which is "common in most musical systems". The interval between the first and second harmonics of the harmonic series is an octave. In Western music notation, notes separated by an octave have the same name and are of the same pitch class.

In music theory, a scale is any set of musical notes ordered by fundamental frequency or pitch. A scale ordered by increasing pitch is an ascending scale, and a scale ordered by decreasing pitch is a descending scale.

In musical notation, an accidental is a symbol that indicates an alteration of a given pitch. Accidentals alter the pitch of individual notes, while Sharps or flats used in a key signature are not considered accidentals. The most common accidentals are the flat and the sharp which represent alterations of a semitone, and the natural which indicates no alteration, usually used to explicitly cancel a previous accidental.

<span class="mw-page-title-main">Pythagorean tuning</span> Method of tuning a musical instrument

Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2. This ratio, also known as the "pure" perfect fifth, is chosen because it is one of the most consonant and easiest to tune by ear and because of importance attributed to the integer 3. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈ 702 cents wide.

In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.

C or Do is the first note of the C major scale, the third note of the A minor scale, and the fourth note of the Guidonian hand, commonly pitched around 261.63 Hz. The actual frequency has depended on historical pitch standards, and for transposing instruments a distinction is made between written and sounding or concert pitch. It has enharmonic equivalents of B and D.

<span class="mw-page-title-main">Chromatic scale</span> Musical scale set of twelve pitches

The chromatic scale is a set of twelve pitches used in tonal music, with notes separated by the interval of a semitone. Chromatic instruments, such as the piano, are made to produce the chromatic scale, while other instruments capable of continuously variable pitch, such as the trombone and violin, can also produce microtones, or notes between those available on a piano.

In music theory, the tritone is defined as a musical interval spanning three adjacent whole tones. For instance, the interval from F up to the B above it is a tritone as it can be decomposed into the three adjacent whole tones F–G, G–A, and A–B.

In music, two written notes have enharmonic equivalence if they produce the same pitch but are notated differently. Similarly, written intervals, chords, or key signatures are considered enharmonic if they represent identical pitches that are notated differently. The term derives from Latin enharmonicus, in turn from Late Latin enarmonius, from Ancient Greek ἐναρμόνιος, from ἐν ('in') and ἁρμονία ('harmony').

In music, flat means lower in pitch. It may either be used generically, meaning any lowering of pitch, or refer to a particular size: lowering pitch by a chromatic semitone. A flat is the opposite of a sharp which raises pitch by the same amount that a flat lowers it.

<span class="mw-page-title-main">Circle of fifths</span> Relationship among tones of the chromatic scale

In music theory, the circle of fifths is a way of organizing the 12 chromatic pitches as a sequence of perfect fifths.. If C is chosen as a starting point, the sequence is: C, G, D, A, E, B, F, C, A, E, B, F. Continuing the pattern from F returns the sequence to its starting point of C. This order places the most closely related key signatures adjacent to one another. It is usually illustrated in the form of a circle.

<span class="mw-page-title-main">Set theory (music)</span> Branch of music theory

Musical set theory provides concepts for categorizing musical objects and describing their relationships. Howard Hanson first elaborated many of the concepts for analyzing tonal music. Other theorists, such as Allen Forte, further developed the theory for analyzing atonal music, drawing on the twelve-tone theory of Milton Babbitt. The concepts of musical set theory are very general and can be applied to tonal and atonal styles in any equal temperament tuning system, and to some extent more generally than that.

<span class="mw-page-title-main">Scientific pitch notation</span> Musical notation system to describe pitch and relative frequency

Scientific pitch notation (SPN), also known as American standard pitch notation (ASPN) and international pitch notation (IPN), is a method of specifying musical pitch by combining a musical note name and a number identifying the pitch's octave.

<span class="mw-page-title-main">Comma (music)</span> Very small interval arising from discrepancies in tuning

In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Strictly speaking, there are only two kinds of comma, the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F tuned using the D-based Pythagorean tuning system, and another F tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B and A are both approximated by the same interval although they are a septimal kleisma apart.

In music, 22 equal temperament, called 22-TET, 22-EDO, or 22-ET, is the tempered scale derived by dividing the octave into 22 equal steps. Each step represents a frequency ratio of 222, or 54.55 cents.

In music theory, a theoretical key is a key whose key signature would have at least one double-flat or double-sharp.

<span class="mw-page-title-main">Diatonic and chromatic</span> Terms in music theory to characterize scales

Diatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a pair, especially when applied to contrasting features of the common practice music of the period 1600–1900.

<span class="mw-page-title-main">15 equal temperament</span> Musical tuning system with 15 pitches equally-spaced on a logarithmic scale

In music, 15 equal temperament, called 15-TET, 15-EDO, or 15-ET, is a tempered scale derived by dividing the octave into 15 equal steps. Each step represents a frequency ratio of 152, or 80 cents. Because 15 factors into 3 times 5, it can be seen as being made up of three scales of 5 equal divisions of the octave, each of which resembles the Slendro scale in Indonesian gamelan. 15 equal temperament is not a meantone system.

References

  1. Arnold Whittall, The Cambridge Introduction to Serialism (New York: Cambridge University Press, 2008): 276. ISBN   978-0-521-68200-8 (pbk).
  2. Don Michael Randel, ed. (2003). "Set theory", The Harvard Dictionary of Music, p.776. Harvard. ISBN   9780674011632.
  3. Tymoczko, Dmitri (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice, p.30. Oxford Studies in Music Theory. ISBN   9780199714353.
  4. Müller, Meinard (2007). Information Retrieval for Music and Motion, p.60. ISBN   9783540740483. "A pitch class is defined to be the set of all pitches that share the same chroma."
  5. 1 2 3 Whittall (2008), p.273.
  6. Robert D. Morris, "Generalizing Rotational Arrays", Journal of Music Theory 32, no. 1 (Spring 1988): 75–132, citation on 83.

Further reading