Pitch interval

Last updated
Augmented second on pitch C4 The ordered pitch interval is +3. The unordered pitch interval is simply '3'. Note that the same number of semitones describes a minor third. Play Augmented second on C.png
Augmented second on pitch C4 The ordered pitch interval is +3. The unordered pitch interval is simply '3'. Note that the same number of semitones describes a minor third. Play

In musical set theory, there are four kinds of interval: [1]

Contents

Pitch Intervals

Ordered Pitch Interval

The ordered pitch interval. is the number of semitones that separates one pitch from another, upward or downward. [2] It is thus more specific than the unordered pitch interval in that it represents the directionality of the interval. An ordered pitch interval always includes a plus or minus sign. Thus this interval type can describe a melodic as well as a harmonic interval.

Unordered Pitch Interval

The unordered pitch interval does not include directionality information and is thus less specific than the ordered pitch interval. It is still the distance between two pitches measured in semitones, but that distance is not qualified by a positive (+) or negative symbol. (-). An unordered pitch interval can describe a harmonic interval but not a melodic interval.

Both types of pitch intervals describe octave information in that they do not treat all octaves as being equivalent. Pitch intervals, both ordered and unordered, may therefore be larger than 12.

Comparison to Pitch-Class Intervals

By treating all octaves as being equivalent, pitch-classes contain less information (ex 'C') than pitches (ex: C3). Pitch-class intervals (below) are therefore never larger than 12 semitones.

Pitch-Class Intervals

Octave and augmented second on pitch class C. The ordered pitch class interval is 3. The unordered pitch class interval is 'interval class 3' which is also used to describe major 6th. Play. Octave and augmented second on C.png
Octave and augmented second on pitch class C. The ordered pitch class interval is 3. The unordered pitch class interval is 'interval class 3' which is also used to describe major 6th. Play .

In musical set theory, pitch-class intervals do not distinguish between octaves since pitch-classes themselves treat all octaves as being equivalent.

There are two kinds of pitch-class intervals:

Ordered pitch-class intervals ('pitch interval class; PIC')

The ordered pitch-class interval describes the number of ascending semitones from one pitch-class to the next, ordered from lowest to highest.

Since pitch-classes have octave equivalence, the ordered pitch -class interval can be computed mathematically as "the absolute value of the difference between the two pitch-classes modulo 12". See Equations, below. A more visual way to do this calculation is to place the pitch-classes on a clockface and measure the difference, always going clockwise (i.e. always ascending).

Unordered pitch-class intervals ('interval class; IC')

Unlike the ordered, the unordered pitch-class interval (often called the 'Interval class') does not require the two pitch-classes to be ordered from lowest to highest. Rather, this type of interval measures in semitones whichever interval is smallest.

Because of symmetry, the smallest semitone interval between any two pitch-classes can only be an integer between 0 and 6. (hence the seven 'interval classes') The tonal interval names 'minor 2nd' and 'major 7th' both correspond to "interval class 1" for example, this is because both are composed of one semitone and directional order is unimportant when the criteria become to select the smallest interval.

Similarly, the 'augmented fourth' and the 'diminished fifth' both correspond to 'interval class 6'. There is no 'interval class 7' therefore, since counting down five semitones can describe the perfect fifth more parsimoniously that counting up seven semitones can.

A visual way to do determine an unordered pitch-class interval is to place the pitch-classes on a clockface and measure clockwise or counter-clockwise, whichever distance is smaller.

Equations

Using integer notation and modulo 12, ordered pitch interval, ip, may be defined, for any two pitches x and y, as:

and:

the other way. [3]

One can also measure the distance between two pitches without taking into account direction with the unordered pitch interval, similar to the interval of tonal theory. This may be defined as:

The interval between pitch-classes may be measured with ordered and unordered pitch-class intervals. The ordered one, also called directed interval, may be considered the measure upwards, which, since we are dealing with pitch classes, depends on whichever pitch is chosen as 0. Thus, the ordered pitch-class interval, ix, y, may be defined as:

Ascending intervals are indicated by a positive value, and descending intervals by a negative one. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Equal temperament</span> Musical tuning system with constant ratios between notes

An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.

<span class="mw-page-title-main">Inner product space</span> Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment.

In mathematics, specifically ring theory, a principal ideal is an ideal in a ring that is generated by a single element of through multiplication by every element of The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset generated by a single element which is to say the set of all elements less than or equal to in

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In music, a pitch class (p.c. or pc) is a set of all pitches that are a whole number of octaves apart; for example, the pitch class C consists of the Cs in all octaves. "The pitch class C stands for all possible Cs, in whatever octave position." Important to musical set theory, a pitch class is "all pitches related to each other by octave, enharmonic equivalence, or both." Thus, using scientific pitch notation, the pitch class "C" is the set

<span class="mw-page-title-main">Set theory (music)</span> Branch of music theory

Musical set theory provides concepts for categorizing musical objects and describing their relationships. Howard Hanson first elaborated many of the concepts for analyzing tonal music. Other theorists, such as Allen Forte, further developed the theory for analyzing atonal music, drawing on the twelve-tone theory of Milton Babbitt. The concepts of musical set theory are very general and can be applied to tonal and atonal styles in any equal temperament tuning system, and to some extent more generally than that.

<span class="mw-page-title-main">Interval class</span> Distance between unordered pitch classes

In musical set theory, an interval class, also known as unordered pitch-class interval, interval distance, undirected interval, or "(even completely incorrectly) as 'interval mod 6'", is the shortest distance in pitch class space between two unordered pitch classes. For example, the interval class between pitch classes 4 and 9 is 5 because 9 − 4 = 5 is less than 4 − 9 = −5 ≡ 7 (mod 12). See modular arithmetic for more on modulo 12. The largest interval class is 6 since any greater interval n may be reduced to 12 − n.

In music, transposition refers to the process or operation of moving a collection of notes up or down in pitch by a constant interval.

The shifting of a melody, a harmonic progression or an entire musical piece to another key, while maintaining the same tone structure, i.e. the same succession of whole tones and semitones and remaining melodic intervals.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether.

<span class="mw-page-title-main">Chromatic circle</span> Clock diagram for displaying relationships among pitch classes

The chromatic circle is a clock diagram for displaying relationships among the equal-tempered pitch classes making up a given equal temperament tuning's chromatic scale on a circle.

<span class="mw-page-title-main">Set (music)</span>

A set in music theory, as in mathematics and general parlance, is a collection of objects. In musical contexts the term is traditionally applied most often to collections of pitches or pitch-classes, but theorists have extended its use to other types of musical entities, so that one may speak of sets of durations or timbres, for example.

<span class="mw-page-title-main">Interval vector</span>

In musical set theory, an interval vector is an array of natural numbers which summarize the intervals present in a set of pitch classes. Other names include: ic vector, PIC vector and APIC vector

In probability theory, the Wick product is a particular way of defining an adjusted product of a set of random variables. In the lowest order product the adjustment corresponds to subtracting off the mean value, to leave a result whose mean is zero. For the higher order products the adjustment involves subtracting off lower order (ordinary) products of the random variables, in a symmetric way, again leaving a result whose mean is zero. The Wick product is a polynomial function of the random variables, their expected values, and expected values of their products.

In probability theory and directional statistics, a wrapped Lévy distribution is a wrapped probability distribution that results from the "wrapping" of the Lévy distribution around the unit circle.

<span class="mw-page-title-main">Forte number</span> Classification of pitch class sets

In musical set theory, a Forte number is the pair of numbers Allen Forte assigned to the prime form of each pitch class set of three or more members in The Structure of Atonal Music. The first number indicates the number of pitch classes in the pitch class set and the second number indicates the set's sequence in Forte's ordering of all pitch class sets containing that number of pitches.

<span class="mw-page-title-main">Wrapped exponential distribution</span> Probability distribution

In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.

References

  1. "Intervals in Integer Notation". viva.pressbooks.pub. Retrieved 2024-02-08.
  2. Schuijer, Michiel (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts, Eastman Studies in Music 60 (Rochester, NY: University of Rochester Press, 2008), p. 35. ISBN   978-1-58046-270-9.
  3. 1 2 John Rahn, Basic Atonal Theory (New York: Longman, 1980), 21. ISBN   9780028731605.
  4. John Rahn, Basic Atonal Theory (New York: Longman, 1980), 22.