Tonality diamond

Last updated
The Quadrangularis Reversum, an instrument constructed by Harry Partch based on the 11-limit tonality diamond Harry Partch Institute-3.jpg
The Quadrangularis Reversum, an instrument constructed by Harry Partch based on the 11-limit tonality diamond

In music theory and tuning, a tonality diamond is a two-dimensional diagram of ratios in which one dimension is the Otonality and one the Utonality. [1] Thus the n-limit tonality diamond ("limit" here is in the sense of odd limit, not prime limit) is an arrangement in diamond-shape of the set of rational numbers r, , such that the odd part of both the numerator and the denominator of r, when reduced to lowest terms, is less than or equal to the fixed odd number n. Equivalently, the diamond may be considered as a set of pitch classes, where a pitch class is an equivalence class of pitches under octave equivalence. The tonality diamond is often regarded as comprising the set of consonances of the n-limit. Although originally invented by Max Friedrich Meyer, [2] the tonality diamond is now most associated with Harry Partch ("Many theorists of just intonation consider the tonality diamond Partch's greatest contribution to microtonal theory." [3] ).

Contents

The diamond arrangement

Partch arranged the elements of the tonality diamond in the shape of a rhombus, and subdivided into (n+1)2/4 smaller rhombuses. Along the upper left side of the rhombus are placed the odd numbers from 1 to n, each reduced to the octave (divided by the minimum power of 2 such that ). These intervals are then arranged in ascending order. Along the lower left side are placed the corresponding reciprocals, 1 to 1/n, also reduced to the octave (here, multiplied by the minimum power of 2 such that ). These are placed in descending order. At all other locations are placed the product of the diagonally upper- and lower-left intervals, reduced to the octave. This gives all the elements of the tonality diamond, with some repetition. Diagonals sloping in one direction form Otonalities and the diagonals in the other direction form Utonalities. One of Partch's instruments, the diamond marimba, is arranged according to the tonality diamond.

Numerary nexus

A numerary nexus is an identity shared by two or more interval ratios in their numerator or denominator, with different identities in the other. [1] For example, in the Otonality the denominator is always 1, thus 1 is the numerary nexus:

In the Utonality the numerator is always 1 and the numerary nexus is thus also 1:

For example, in a tonality diamond, such as Harry Partch's 11-limit diamond, each ratio of a right slanting row shares a numerator and each ratio of a left slanting row shares an denominator. Each ratio of the upper left row has 7 as a denominator, while each ratio of the upper right row has 7 (or 14) as a numerator.

5-limit

32
54 65
11 1111
85 53
43
32
54 65
11 1111
85 53
43

This diamond contains three identities (1, 3, 5).

7-limit

74
32 75
54 65 76
11 111111
85 53 127
43 107
87

This diamond contains four identities (1, 3, 5, 7).

11-limit

Tonal basis of Harry Partch's tuning system: 11-limit tonality diamond Partchdiamond.svg
Tonal basis of Harry Partch's tuning system: 11-limit tonality diamond

This diamond contains six identities (1, 3, 5, 7, 9, 11). Harry Partch used the 11-limit tonality diamond, but flipped it 90 degrees.

15-limit

158
7453
13814932
32139751511
118431310141154
54119651311761513
9810911101211131214131514
1111111111111111
16995201111624131372815
8518115322131272615
161132201311785
4318131072215
16139743
8765
1615

This diamond contains eight identities (1, 3, 5, 7, 9, 11, 13, 15).

A lattice showing a mapping of the 15 limit diamond. 15limitdiamond1.jpg
A lattice showing a mapping of the 15 limit diamond.

Geometry of the tonality diamond

The five- and seven-limit tonality diamonds exhibit a highly regular geometry within the modulatory space, meaning all non-unison elements of the diamond are only one unit from the unison. The five-limit diamond then becomes a regular hexagon surrounding the unison, and the seven-limit diamond a cuboctahedron surrounding the unison.[ citation needed ]. Further examples of lattices of diamonds ranging from the triadic to the ogdoadic diamond have been realised by Erv Wilson where each interval is given its own unique direction. [4]

Properties of the tonality diamond

Three properties of the tonality diamond and the ratios contained:

  1. All ratios between neighboring ratios are superparticular ratios, those with a difference of 1 between numerator and denominator. [5]
  2. Ratios with relatively lower numbers have more space between them than ratios with higher numbers. [5]
  3. The system, including the ratios between ratios, is symmetrical within the octave when measured in cents not in ratios. [5]

For example:

5-limit tonality diamond, ordered least to greatest
Ratio1165544332855321
Cents0315.64386.31498.04701.96813.69884.361200
Width315.6470.67111.73203.91111.7370.67315.64
  1. The ratio between 65 and 54 (and 85 and 53) is 2524.
  2. The ratios with relatively low numbers 43 and 32 are 203.91 cents apart, while the ratios with relatively high numbers 65 and 54 are 70.67 cents apart.
  3. The ratio between the lowest and 2nd lowest and the highest and 2nd highest ratios are the same, and so on.

Size of the tonality diamond

If φ(n) is Euler's totient function, which gives the number of positive integers less than n and relatively prime to n, that is, it counts the integers less than n which share no common factor with n, and if d(n) denotes the size of the n-limit tonality diamond, we have the formula

From this we can conclude that the rate of growth of the tonality diamond is asymptotically equal to . The first few values are the important ones, and the fact that the size of the diamond grows as the square of the size of the odd limit tells us that it becomes large fairly quickly. There are seven members to the 5-limit diamond, 13 to the 7-limit diamond, 19 to the 9-limit diamond, 29 to the 11-limit diamond, 41 to the 13-limit diamond, and 49 to the 15-limit diamond; these suffice for most purposes.

Translation to string length ratios

Yuri Landman published an otonality and utonality diagram that clarifies the relationship of Partch's tonality diamonds to the harmonic series and string lengths (as Partch also used in his Kitharas) and Landmans Moodswinger instrument. [6]

In Partch's ratios, the over number corresponds to the amount of equal divisions of a vibrating string and the under number corresponds to the which division the string length is shortened to. 54 for example is derived from dividing the string to 5 equal parts and shortening the length to the 4th part from the bottom. In Landmans diagram these numbers is inverted, changing the frequency ratios into string length ratios.

See also

Related Research Articles

<span class="mw-page-title-main">Equal temperament</span> Musical tuning system with constant ratios between notes

An equal temperament is a musical temperament or tuning system that approximates just intervals but instead divides an octave into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.

In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction, the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers are called the coefficients or terms of the continued fraction.

The Jacobi symbol is a generalization of the Legendre symbol. Introduced by Jacobi in 1837, it is of theoretical interest in modular arithmetic and other branches of number theory, but its main use is in computational number theory, especially primality testing and integer factorization; these in turn are important in cryptography.

<span class="mw-page-title-main">Limit (music)</span>

In music theory, limit or harmonic limit is a way of characterizing the harmony found in a piece or genre of music, or the harmonies that can be made using a particular scale. The term limit was introduced by Harry Partch, who used it to give an upper bound on the complexity of harmony; hence the name.

<span class="mw-page-title-main">Semitone</span> Musical interval

A semitone, also called a half step or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale. For example, C is adjacent to C; the interval between them is a semitone.

<span class="mw-page-title-main">Superparticular ratio</span> Ratio of two consecutive integers

In mathematics, a superparticular ratio, also called a superparticular number or epimoric ratio, is the ratio of two consecutive integer numbers.

In Western music, the adjectives major and minor may describe an interval, chord, scale, or key. A composition, movement, section, or phrase may also be referred to by its key, including whether that key is major or minor.

<span class="mw-page-title-main">Pell number</span> Natural number used to approximate √2

In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.

<span class="mw-page-title-main">Fraction</span> Ratio of two numbers

A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator, displayed above a line, and a non-zero integer denominator, displayed below that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.

<span class="mw-page-title-main">Harry Partch's 43-tone scale</span> Musical scale created by Harry Partch

The 43-tone scale is a just intonation scale with 43 pitches in each octave. It is based on an eleven-limit tonality diamond, similar to the seven-limit diamond previously devised by Max Friedrich Meyer and refined by Harry Partch.

<span class="mw-page-title-main">Otonality and utonality</span> Music theory concept

Otonality and utonality are terms introduced by Harry Partch to describe chords whose pitch classes are the harmonics or subharmonics of a given fixed tone (identity), respectively. For example: 1/1, 2/1, 3/1,... or 1/1, 1/2, 1/3,....

An Otonality is that set of pitches generated by the numerical factors (...identities)...over a numerical constant in the denominator. Conversely, a Utonality is the inversion of an Otonality, a set of pitches with a numerical constant in the numerator over the numerical factors...in the denominator.

<span class="mw-page-title-main">53 equal temperament</span> Musical tuning system with 53 pitches equally-spaced on a logarithmic scale

In music, 53 equal temperament, called 53 TET, 53 EDO, or 53 ET, is the tempered scale derived by dividing the octave into 53 equal steps. Each step represents a frequency ratio of 2153, or 22.6415 cents, an interval sometimes called the Holdrian comma.

In music, septimal meantone temperament, also called standard septimal meantone or simply septimal meantone, refers to the tempering of 7-limit musical intervals by a meantone temperament tuning in the range from fifths flattened by the amount of fifths for 12 equal temperament to those as flat as 19 equal temperament, with 31 equal temperament being a more or less optimal tuning for both the 5- and 7-limits. Meantone temperament represents a frequency ratio of approximately 5 by means of four fifths, so that the major third, for instance C–E, is obtained from two tones in succession. Septimal meantone represents the frequency ratio of 56 (7 × 23) by ten fifths, so that the interval 7:4 is reached by five successive tones. Hence C–A, not C–B, represents a 7:4 interval in septimal meantone.

In music, the undertone series or subharmonic series is a sequence of notes that results from inverting the intervals of the overtone series. While overtones naturally occur with the physical production of music on instruments, undertones must be produced in unusual ways. While the overtone series is based upon arithmetic multiplication of frequencies, resulting in a harmonic series, the undertone series is based on arithmetic division.

In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5/6 = 1/2 + 1/3. As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions was described in 1202 in the Liber Abaci of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction.

<i>Genesis of a Music</i>

Genesis of a Music is a book first published in 1949 by microtonal composer Harry Partch (1901–1974).

In elementary algebra, root rationalisation is a process by which radicals in the denominator of an algebraic fraction are eliminated.

<span class="mw-page-title-main">Scale of harmonics</span>

The scale of harmonics is a musical scale based on the noded positions of the natural harmonics existing on a string. This musical scale is present on the guqin, regarded as one of the first string instruments with a musical scale. Most fret positions appearing on Non-Western string instruments (lutes) are equal to positions of this scale. Unexpectedly, these fret positions are actually the corresponding undertones of the overtones from the harmonic series. The distance from the nut to the fret is an integer number lower than the distance from the fret to the bridge.

<span class="mw-page-title-main">Instruments by Harry Partch</span>

The American composer Harry Partch (1901-1974) composed using scales of unequal intervals in just intonation, derived from the natural Harmonic series; these scales allowed for more tones of smaller intervals than in the standard Western tuning, which uses twelve equal intervals. The tonal system Partch used has 43 tones to the octave. To play this music he invented and built many new instruments, with names such as the Chromelodeon, the Quadrangularis Reversum, and the Zymo-Xyl.

References

  1. 1 2 Rasch, Rudolph (2000). "A Word or Two on the Tunings of Harry Partch", Harry Partch: An Anthology of Critical Perspectives, p.28. Dunn, David, ed. ISBN   90-5755-065-2.
  2. Forster, Cristiano (2000). "Musical Mathematics: Meyer's Diamond", Chrysalis-Foundation.org. Accessed: December 09 2016.
  3. Granade, S. Andrew (2014). Harry Partch, Hobo Composer, p.295. Boydell & Brewer. ISBN   9781580464956>
  4. "Diamond Lattices", The Wilson Archives, Anaphoria.com . Accessed: December 09 2016.
  5. 1 2 3 Rasch (2000), p.30.
  6. Comparison of Harmonic Utonal Scales with 12TET and the Harmonic Series in E (Image). Archived from the original on 2018-04-02.