In mathematics, when the elements of some set have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements and belong to the same equivalence class if, and only if, they are equivalent.
Formally, given a set and an equivalence relation on the equivalence class of an element in is denoted or, equivalently, to emphasize its equivalence relation The definition of equivalence relations implies that the equivalence classes form a partition of meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of by and is denoted by
When the set has some structure (such as a group operation or a topology) and the equivalence relation is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Examples include quotient spaces in linear algebra, quotient spaces in topology, quotient groups, homogeneous spaces, quotient rings, quotient monoids, and quotient categories.
An equivalence relation on a set is a binary relation on satisfying the three properties: [1]
The equivalence class of an element is defined as [2]
The word "class" in the term "equivalence class" may generally be considered as a synonym of "set", although some equivalence classes are not sets but proper classes. For example, "being isomorphic" is an equivalence relation on groups, and the equivalence classes, called isomorphism classes, are not sets.
The set of all equivalence classes in with respect to an equivalence relation is denoted as and is called modulo (or the quotient set of by ). [3] The surjective map from onto which maps each element to its equivalence class, is called the canonical surjection, or the canonical projection.
Every element of an equivalence class characterizes the class, and may be used to represent it. When such an element is chosen, it is called a representative of the class. The choice of a representative in each class defines an injection from to X. Since its composition with the canonical surjection is the identity of such an injection is called a section, when using the terminology of category theory.
Sometimes, there is a section that is more "natural" than the other ones. In this case, the representatives are called canonical representatives. For example, in modular arithmetic, for every integer m greater than 1, the congruence modulo m is an equivalence relation on the integers, for which two integers a and b are equivalent—in this case, one says congruent—if m divides this is denoted Each class contains a unique non-negative integer smaller than and these integers are the canonical representatives.
The use of representatives for representing classes allows avoiding to consider explicitly classes as sets. In this case, the canonical surjection that maps an element to its class is replaced by the function that maps an element to the representative of its class. In the preceding example, this function is denoted and produces the remainder of the Euclidean division of a by m.
Every element of is a member of the equivalence class Every two equivalence classes and are either equal or disjoint. Therefore, the set of all equivalence classes of forms a partition of : every element of belongs to one and only one equivalence class. [4] Conversely, every partition of comes from an equivalence relation in this way, according to which if and only if and belong to the same set of the partition. [5]
It follows from the properties in the previous section that if is an equivalence relation on a set and and are two elements of the following statements are equivalent:
An undirected graph may be associated to any symmetric relation on a set where the vertices are the elements of and two vertices and are joined if and only if Among these graphs are the graphs of equivalence relations. These graphs, called cluster graphs, are characterized as the graphs such that the connected components are cliques. [2]
If is an equivalence relation on and is a property of elements of such that whenever is true if is true, then the property is said to be an invariant of or well-defined under the relation
A frequent particular case occurs when is a function from to another set ; if whenever then is said to be class invariant under or simply invariant under This occurs, for example, in the character theory of finite groups. Some authors use "compatible with " or just "respects " instead of "invariant under ".
Any function is class invariant under according to which if and only if The equivalence class of is the set of all elements in which get mapped to that is, the class is the inverse image of This equivalence relation is known as the kernel of
More generally, a function may map equivalent arguments (under an equivalence relation on ) to equivalent values (under an equivalence relation on ). Such a function is a morphism of sets equipped with an equivalence relation.
In topology, a quotient space is a topological space formed on the set of equivalence classes of an equivalence relation on a topological space, using the original space's topology to create the topology on the set of equivalence classes.
In abstract algebra, congruence relations on the underlying set of an algebra allow the algebra to induce an algebra on the equivalence classes of the relation, called a quotient algebra. In linear algebra, a quotient space is a vector space formed by taking a quotient group, where the quotient homomorphism is a linear map. By extension, in abstract algebra, the term quotient space may be used for quotient modules, quotient rings, quotient groups, or any quotient algebra. However, the use of the term for the more general cases can as often be by analogy with the orbits of a group action.
The orbits of a group action on a set may be called the quotient space of the action on the set, particularly when the orbits of the group action are the right cosets of a subgroup of a group, which arise from the action of the subgroup on the group by left translations, or respectively the left cosets as orbits under right translation.
A normal subgroup of a topological group, acting on the group by translation action, is a quotient space in the senses of topology, abstract algebra, and group actions simultaneously.
Although the term can be used for any equivalence relation's set of equivalence classes, possibly with further structure, the intent of using the term is generally to compare that type of equivalence relation on a set either to an equivalence relation that induces some structure on the set of equivalence classes from a structure of the same kind on or to the orbits of a group action. Both the sense of a structure preserved by an equivalence relation, and the study of invariants under group actions, lead to the definition of invariants of equivalence relations given above.
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive). If , then (symmetric). If and , then (transitive).
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. The name preorder is meant to suggest that preorders are almost partial orders, but not quite, as they are not necessarily antisymmetric.
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
In abstract algebra, a congruence relation is an equivalence relation on an algebraic structure that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes for the relation.
In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map. In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.
In set theory, the kernel of a function may be taken to be either
In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.
A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.
In category theory, a branch of mathematics, a pushout is the colimit of a diagram consisting of two morphisms f : Z → X and g : Z → Y with a common domain. The pushout consists of an object P along with two morphisms X → P and Y → P that complete a commutative square with the two given morphisms f and g. In fact, the defining universal property of the pushout essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are and .
In linear algebra, the quotient of a vector space by a subspace is a vector space obtained by "collapsing" to zero. The space obtained is called a quotient space and is denoted .
In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer. The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold
In the field of type theory in computer science, a quotient type is a data type which respects a user-defined equality relation. A quotient type defines an equivalence relation on elements of the type - for example, we might say that two values of the type Person
are equivalent if they have the same name; formally p1 == p2
if p1.name == p2.name
. In type theories which allow quotient types, an additional requirement is made that all operations must respect the equivalence between elements. For example, if f
is a function on values of type Person
, it must be the case that for two Person
s p1
and p2
, if p1 == p2
then f(p1) == f(p2)
.
This is a glossary of properties and concepts in algebraic topology in mathematics.
In descriptive set theory, specifically invariant descriptive set theory, countable Borel relations are a class of relations between standard Borel space which are particularly well behaved. This concept encapsulates various more specific concepts, such as that of a hyperfinite equivalence relation, but is of interest in and of itself.