Axiom of dependent choice

Last updated

In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop much of real analysis. It was introduced by Paul Bernays in a 1942 article in reverse mathematics that explores which set-theoretic axioms are needed to develop analysis. [lower-alpha 1]

Contents

Formal statement

A homogeneous relation on is called a total relation if for every there exists some such that is true.

The axiom of dependent choice can be stated as follows: For every nonempty set and every total relation on there exists a sequence in such that

for all

In fact, x0 may be taken to be any desired element of X. (To see this, apply the axiom as stated above to the set of finite sequences that start with x0 and in which subsequent terms are in relation , together with the total relation on this set of the second sequence being obtained from the first by appending a single term.)

If the set above is restricted to be the set of all real numbers, then the resulting axiom is denoted by

Use

Even without such an axiom, for any , one can use ordinary mathematical induction to form the first terms of such a sequence. The axiom of dependent choice says that we can form a whole (countably infinite) sequence this way.

The axiom is the fragment of that is required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step and if some of those choices cannot be made independently of previous choices.

Equivalent statements

Over (Zermelo–Fraenkel set theory without the axiom of choice), is equivalent to the Baire category theorem for complete metric spaces. [1]

It is also equivalent over to the downward Löwenheim–Skolem theorem. [lower-alpha 2] [2]

is also equivalent over to the statement that every pruned tree with levels has a branch (proof below).

Furthermore, is equivalent to a weakened form of Zorn's lemma; specifically is equivalent to the statement that any partial order such that every well-ordered chain is finite and bounded, must have a maximal element. [3]

Relation with other axioms

Unlike full , is insufficient to prove (given ) that there is a non-measurable set of real numbers, or that there is a set of real numbers without the property of Baire or without the perfect set property. This follows because the Solovay model satisfies , and every set of real numbers in this model is Lebesgue measurable, has the Baire property and has the perfect set property.

The axiom of dependent choice implies the axiom of countable choice and is strictly stronger. [4] [5]

It is possible to generalize the axiom to produce transfinite sequences. If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice.

Notes

  1. "The foundation of analysis does not require the full generality of set theory but can be accomplished within a more restricted frame." Bernays, Paul (1942). "Part III. Infinity and enumerability. Analysis" (PDF). Journal of Symbolic Logic . A system of axiomatic set theory. 7 (2): 65–89. doi:10.2307/2266303. JSTOR   2266303. MR   0006333. S2CID   250344853. The axiom of dependent choice is stated on p. 86.
  2. Moore states that "Principle of Dependent Choices Löwenheim–Skolem theorem" — that is, implies the Löwenheim–Skolem theorem. See table Moore, Gregory H. (1982). Zermelo's Axiom of Choice: Its origins, development, and influence. Springer. p. 325. ISBN   0-387-90670-3.

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.

The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space. It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.

Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones.

In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem.

<span class="mw-page-title-main">Axiom of countable choice</span>

The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function with domain such that is a non-empty set for every , there exists a function with domain such that for every .

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The mathematical existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist.

In mathematical logic and philosophy, Skolem's paradox is a seeming contradiction that arises from the downward Löwenheim–Skolem theorem. Thoralf Skolem (1922) was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the relativity of set-theoretic notions now known as non-absoluteness. Although it is not an actual antinomy like Russell's paradox, the result is typically called a paradox and was described as a "paradoxical state of affairs" by Skolem.

In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

This is a glossary of set theory.

References

  1. "The Baire category theorem implies the principle of dependent choices." Blair, Charles E. (1977). "The Baire category theorem implies the principle of dependent choices". Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 25 (10): 933–934.
  2. The converse is proved in Boolos, George S.; Jeffrey, Richard C. (1989). Computability and Logic (3rd ed.). Cambridge University Press. pp.  155–156. ISBN   0-521-38026-X.
  3. Wolk, Elliot S. (1983), "On the principle of dependent choices and some forms of Zorn's lemma", Canadian Mathematical Bulletin , 26 (3): 365–367, doi: 10.4153/CMB-1983-062-5
  4. Bernays proved that the axiom of dependent choice implies the axiom of countable choice See esp. p. 86 in Bernays, Paul (1942). "Part III. Infinity and enumerability. Analysis" (PDF). Journal of Symbolic Logic. A system of axiomatic set theory. 7 (2): 65–89. doi:10.2307/2266303. JSTOR   2266303. MR   0006333. S2CID   250344853.
  5. For a proof that the Axiom of Countable Choice does not imply the Axiom of Dependent Choice see Jech, Thomas (1973), The Axiom of Choice, North Holland, pp. 130–131, ISBN   978-0-486-46624-8