Fuzzy set

Last updated

In mathematics, fuzzy sets (also known as uncertain sets) are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. [1] [2] At the same time, Salii (1965) defined a more general kind of structure called an "L-relation", which he studied in an abstract algebraic context; fuzzy relations are special cases of L-relations when L is the unit interval [0,1]. They are now used throughout fuzzy mathematics, having applications in areas such as linguistics ( De Cock, Bodenhofer & Kerre 2000 ), decision-making ( Kuzmin 1982 ), and clustering ( Bezdek 1978 ).

Contents

In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition—an element either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of elements in a set; this is described with the aid of a membership function valued in the real unit interval [0,1]. Fuzzy sets generalize classical sets, since the indicator functions (aka characteristic functions) of classical sets are special cases of the membership functions of fuzzy sets, if the latter only takes values 0 or 1. [3] In fuzzy set theory, classical bivalent sets are usually called crisp sets. The fuzzy set theory can be used in a wide range of domains in which information is incomplete or imprecise, such as bioinformatics. [4]

Definition

A fuzzy set is a pair where is a set (often required to be non-empty) and a membership function. The reference set (sometimes denoted by or ) is called universe of discourse, and for each the value is called the grade of membership of in . The function is called the membership function of the fuzzy set .

For a finite set the fuzzy set is often denoted by

Let . Then is called

The (crisp) set of all fuzzy sets on a universe is denoted with (or sometimes just ). [6]

For any fuzzy set and the following crisp sets are defined:

Note that some authors understand "kernel" in a different way; see below.

Other definitions

is called a crossover point.
where denotes the supremum, which exists because is non-empty and bounded above by 1. If U is finite, we can simply replace the supremum by the maximum.
In the finite case, where the supremum is a maximum, this means that at least one element of the fuzzy set has full membership. A non-empty fuzzy set may be normalized with result by dividing the membership function of the fuzzy set by its height:
Besides similarities this differs from the usual normalization in that the normalizing constant is not a sum.
In the case when is a finite set, or more generally a closed set, the width is just
In the n-dimensional case the above can be replaced by the n-dimensional volume of .
In general, this can be defined given any measure on U, for instance by integration (e.g. Lebesgue integration) of .
.
Without loss of generality, we may take xy, which gives the equivalent formulation
.
This definition can be extended to one for a general topological space U: we say the fuzzy set is convex when, for any subset Z of U, the condition
holds, where denotes the boundary of Z and denotes the image of a set X (here ) under a function f (here ).

Fuzzy set operations

Although the complement of a fuzzy set has a single most common definition, the other main operations, union and intersection, do have some ambiguity.

.
,
and their union is defined by:
.

By the definition of the t-norm, we see that the union and intersection are commutative, monotonic, associative, and have both a null and an identity element. For the intersection, these are ∅ and U, respectively, while for the union, these are reversed. However, the union of a fuzzy set and its complement may not result in the full universe U, and the intersection of them may not give the empty set ∅. Since the intersection and union are associative, it is natural to define the intersection and union of a finite family of fuzzy sets recursively. It is noteworthy that the generally accepted standard operators for the union and intersection of fuzzy sets are the max and min operators:

Examples for fuzzy intersection/union pairs with standard negator can be derived from samples provided in the article about t-norms.
The fuzzy intersection is not idempotent in general, because the standard t-norm min is the only one which has this property. Indeed, if the arithmetic multiplication is used as the t-norm, the resulting fuzzy intersection operation is not idempotent. That is, iteratively taking the intersection of a fuzzy set with itself is not trivial. It instead defines the m-th power of a fuzzy set, which can be canonically generalized for non-integer exponents in the following way:

The case of exponent two is special enough to be given a name.

Taking , we have and

which means , e. g.:
[8]
Another proposal for a set difference could be:
[8]
or by using a combination of just max, min, and standard negation, giving
[8]
Axioms for definition of generalized symmetric differences analogous to those for t-norms, t-conorms, and negators have been proposed by Vemur et al. (2014) with predecessors by Alsina et al. (2005) and Bedregal et al. (2009). [8]

Disjoint fuzzy sets

In contrast to the general ambiguity of intersection and union operations, there is clearness for disjoint fuzzy sets: Two fuzzy sets are disjoint iff

which is equivalent to

and also equivalent to

We keep in mind that min/max is a t/s-norm pair, and any other will work here as well.

Fuzzy sets are disjoint if and only if their supports are disjoint according to the standard definition for crisp sets.

For disjoint fuzzy sets any intersection will give ∅, and any union will give the same result, which is denoted as

with its membership function given by

Note that only one of both summands is greater than zero.

For disjoint fuzzy sets the following holds true:

This can be generalized to finite families of fuzzy sets as follows: Given a family of fuzzy sets with index set I (e.g. I = {1,2,3,...,n}). This family is (pairwise) disjoint iff

A family of fuzzy sets is disjoint, iff the family of underlying supports is disjoint in the standard sense for families of crisp sets.

Independent of the t/s-norm pair, intersection of a disjoint family of fuzzy sets will give ∅ again, while the union has no ambiguity:

with its membership function given by

Again only one of the summands is greater than zero.

For disjoint families of fuzzy sets the following holds true:

Scalar cardinality

For a fuzzy set with finite support (i.e. a "finite fuzzy set"), its cardinality (aka scalar cardinality or sigma-count) is given by

.

In the case that U itself is a finite set, the relative cardinality is given by

.

This can be generalized for the divisor to be a non-empty fuzzy set: For fuzzy sets with G ≠ ∅, we can define the relative cardinality by:

,

which looks very similar to the expression for conditional probability. Note:

Distance and similarity

For any fuzzy set the membership function can be regarded as a family . The latter is a metric space with several metrics known. A metric can be derived from a norm (vector norm) via

.

For instance, if is finite, i.e. , such a metric may be defined by:

where and are sequences of real numbers between 0 and 1.

For infinite , the maximum can be replaced by a supremum. Because fuzzy sets are unambiguously defined by their membership function, this metric can be used to measure distances between fuzzy sets on the same universe:

,

which becomes in the above sample:

.

Again for infinite the maximum must be replaced by a supremum. Other distances (like the canonical 2-norm) may diverge, if infinite fuzzy sets are too different, e.g., and .

Similarity measures (here denoted by ) may then be derived from the distance, e.g. after a proposal by Koczy:

if is finite, else,

or after Williams and Steele:

if is finite, else

where is a steepness parameter and . [6]

Another definition for interval valued (rather 'fuzzy') similarity measures is provided by Beg and Ashraf as well. [6]

L-fuzzy sets

Sometimes, more general variants of the notion of fuzzy set are used, with membership functions taking values in a (fixed or variable) algebra or structure of a given kind; usually it is required that be at least a poset or lattice. These are usually called L-fuzzy sets, to distinguish them from those valued over the unit interval. The usual membership functions with values in [0,1] are then called [0,1]-valued membership functions. These kinds of generalizations were first considered in 1967 by Joseph Goguen, who was a student of Zadeh. [9] A classical corollary may be indicating truth and membership values by {f,t} instead of {0,1}.

An extension of fuzzy sets has been provided by Atanassov. An intuitionistic fuzzy set (IFS) is characterized by two functions:

1. – degree of membership of x
2. – degree of non-membership of x

with functions with .

This resembles a situation like some person denoted by voting

After all, we have a percentage of approvals, a percentage of denials, and a percentage of abstentions.

For this situation, special "intuitive fuzzy" negators, t- and s-norms can be defined. With and by combining both functions to this situation resembles a special kind of L-fuzzy sets.

Once more, this has been expanded by defining picture fuzzy sets (PFS) as follows: A PFS A is characterized by three functions mapping U to [0,1]: , "degree of positive membership", "degree of neutral membership", and "degree of negative membership" respectively and additional condition This expands the voting sample above by an additional possibility of "refusal of voting".

With and special "picture fuzzy" negators, t- and s-norms this resembles just another type of L-fuzzy sets. [10] [11]

Neutrosophic fuzzy sets

Some Key Developments in the Introduction of Fuzzy Set Concepts. FuzzyLogic development.png
Some Key Developments in the Introduction of Fuzzy Set Concepts.

The concept of IFS has been extended into two major models. The two extensions of IFS are neutrosophic fuzzy sets and Pythagorean fuzzy sets. [12]

Neutrosophic fuzzy sets were introduced by Smarandache in 1998. [13] Like IFS, neutrosophic fuzzy sets have the previous two functions: one for membership and another for non-membership . The major difference is that neutrosophic fuzzy sets have one more function: for indeterminate . This value indicates that the degree of undecidedness that the entity x belongs to the set. This concept of having indeterminate value can be particularly useful when one cannot be very confident on the membership or non-membership values for item x. [14] In summary, neutrosophic fuzzy sets are associated with the following functions:

1. —degree of membership of x
2. —degree of non-membership of x
3. —degree of indeterminate value of x

Pythagorean fuzzy sets

The other extension of IFS is what is known as Pythagorean fuzzy sets. Pythagorean fuzzy sets are more flexible than IFSs. IFSs are based on the constraint , which can be considered as too restrictive in some occasions. This is why Yager proposed the concept of Pythagorean fuzzy sets. Such sets satisfy the constraint , which is reminiscent of the Pythagorean theorem. [15] [16] [17] Pythagorean fuzzy sets can be applicable to real life applications in which the previous condition of is not valid. However, the less restrictive condition of may be suitable in more domains. [12] [14]

Fuzzy logic

As an extension of the case of multi-valued logic, valuations () of propositional variables () into a set of membership degrees () can be thought of as membership functions mapping predicates into fuzzy sets (or more formally, into an ordered set of fuzzy pairs, called a fuzzy relation). With these valuations, many-valued logic can be extended to allow for fuzzy premises from which graded conclusions may be drawn. [18]

This extension is sometimes called "fuzzy logic in the narrow sense" as opposed to "fuzzy logic in the wider sense," which originated in the engineering fields of automated control and knowledge engineering, and which encompasses many topics involving fuzzy sets and "approximated reasoning." [19]

Industrial applications of fuzzy sets in the context of "fuzzy logic in the wider sense" can be found at fuzzy logic.

Fuzzy number

A fuzzy number [20] is a fuzzy set that satisfies all the following conditions:

If these conditions are not satisfied, then A is not a fuzzy number. The core of this fuzzy number is a singleton; its location is:

Fuzzy numbers can be likened to the funfair game "guess your weight," where someone guesses the contestant's weight, with closer guesses being more correct, and where the guesser "wins" if he or she guesses near enough to the contestant's weight, with the actual weight being completely correct (mapping to 1 by the membership function).

The kernel of a fuzzy interval is defined as the 'inner' part, without the 'outbound' parts where the membership value is constant ad infinitum. In other words, the smallest subset of where is constant outside of it, is defined as the kernel.

However, there are other concepts of fuzzy numbers and intervals as some authors do not insist on convexity.

Fuzzy categories

The use of set membership as a key component of category theory can be generalized to fuzzy sets. This approach, which began in 1968 shortly after the introduction of fuzzy set theory, [21] led to the development of Goguen categories in the 21st century. [22] [23] In these categories, rather than using two valued set membership, more general intervals are used, and may be lattices as in L-fuzzy sets. [23] [24]

Fuzzy relation equation

The fuzzy relation equation is an equation of the form A · R = B, where A and B are fuzzy sets, R is a fuzzy relation, and A · R stands for the composition of A with R[ citation needed ].

Entropy

A measure d of fuzziness for fuzzy sets of universe should fulfill the following conditions for all :

  1. if is a crisp set:
  2. has a unique maximum iff
which means that B is "crisper" than A.

In this case is called the entropy of the fuzzy set A.

For finite the entropy of a fuzzy set is given by

,

or just

where is Shannon's function (natural entropy function)

and is a constant depending on the measure unit and the logarithm base used (here we have used the natural base e). The physical interpretation of k is the Boltzmann constant kB.

Let be a fuzzy set with a continuous membership function (fuzzy variable). Then

and its entropy is

[25] [26]

Extensions

There are many mathematical constructions similar to or more general than fuzzy sets. Since fuzzy sets were introduced in 1965, many new mathematical constructions and theories treating imprecision, inexactness, ambiguity, and uncertainty have been developed. Some of these constructions and theories are extensions of fuzzy set theory, while others try to mathematically model imprecision and uncertainty in a different way. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

<span class="mw-page-title-main">Student's t-distribution</span> Probability distribution

In probability and statistics, Student's t distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.

In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

Financial models with long-tailed distributions and volatility clustering have been introduced to overcome problems with the realism of classical financial models. These classical models of financial time series typically assume homoskedasticity and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the stable distribution to model the empirical distributions which have the skewness and heavy-tail property. Since -stable distributions have infinite -th moments for all , the tempered stable processes have been proposed for overcoming this limitation of the stable distribution.

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

Type-1 OWA operators are a set of aggregation operators that generalise the Yager's OWA operators) in the interest of aggregating fuzzy sets rather than crisp values in soft decision making and data mining.

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jäger and Schütte.

In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.

References

  1. L. A. Zadeh (1965) "Fuzzy sets" Archived 2015-08-13 at the Wayback Machine . Information and Control 8 (3) 338–353.
  2. Klaua, D. (1965) Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 7, 859–876. A recent in-depth analysis of this paper has been provided by Gottwald, S. (2010). "An early approach toward graded identity and graded membership in set theory". Fuzzy Sets and Systems. 161 (18): 2369–2379. doi:10.1016/j.fss.2009.12.005.
  3. D. Dubois and H. Prade (1988) Fuzzy Sets and Systems. Academic Press, New York.
  4. Liang, Lily R.; Lu, Shiyong; Wang, Xuena; Lu, Yi; Mandal, Vinay; Patacsil, Dorrelyn; Kumar, Deepak (2006). "FM-test: A fuzzy-set-theory-based approach to differential gene expression data analysis". BMC Bioinformatics. 7 (Suppl 4): S7. doi: 10.1186/1471-2105-7-S4-S7 . PMC   1780132 . PMID   17217525.
  5. "AAAI". Archived from the original on August 5, 2008.
  6. 1 2 3 Ismat Beg, Samina Ashraf: Similarity measures for fuzzy sets, at: Applied and Computational Mathematics, March 2009, available on Research Gate since November 23rd, 2016
  7. Bellman, Richard; Giertz, Magnus (1973). "On the analytic formalism of the theory of fuzzy sets". Information Sciences. 5: 149–156. doi:10.1016/0020-0255(73)90009-1.
  8. 1 2 3 4 N.R. Vemuri, A.S. Hareesh, M.S. Srinath: Set Difference and Symmetric Difference of Fuzzy Sets, in: Fuzzy Sets Theory and Applications 2014, Liptovský Ján, Slovak Republic
  9. Goguen, Joseph A., 196, "L-fuzzy sets". Journal of Mathematical Analysis and Applications18: 145–174
  10. Bui Cong Cuong, Vladik Kreinovich, Roan Thi Ngan: A classification of representable t-norm operators for picture fuzzy sets, in: Departmental Technical Reports (CS). Paper 1047, 2016
  11. Tridiv Jyoti Neog, Dusmanta Kumar Sut: Complement of an Extended Fuzzy Set, in: International Journal of Computer Applications (097 5–8887), Volume 29 No.3, September 2011
  12. 1 2 3 Yanase J, Triantaphyllou E (2019). "A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments". Expert Systems with Applications. 138: 112821. doi:10.1016/j.eswa.2019.112821. S2CID   199019309.
  13. Smarandache, Florentin (1998). Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis. American Research Press. ISBN   978-1879585638.
  14. 1 2 Yanase J, Triantaphyllou E (2019). "The Seven Key Challenges for the Future of Computer-Aided Diagnosis in Medicine". International Journal of Medical Informatics. 129: 413–422. doi:10.1016/j.ijmedinf.2019.06.017. PMID   31445285. S2CID   198287435.
  15. Yager, Ronald R. (June 2013). "Pythagorean fuzzy subsets". 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). pp. 57–61. doi:10.1109/IFSA-NAFIPS.2013.6608375. ISBN   978-1-4799-0348-1. S2CID   36286152.{{cite book}}: |journal= ignored (help)
  16. Yager, Ronald R (2013). "Pythagorean membership grades in multicriteria decision making". IEEE Transactions on Fuzzy Systems. 22 (4): 958–965. doi:10.1109/TFUZZ.2013.2278989. S2CID   37195356.
  17. Yager, Ronald R. (December 2015). Properties and applications of Pythagorean fuzzy sets. Springer, Cham. pp. 119–136. ISBN   978-3-319-26302-1.
  18. Siegfried Gottwald, 2001. A Treatise on Many-Valued Logics. Baldock, Hertfordshire, England: Research Studies Press Ltd., ISBN   978-0-86380-262-1
  19. "The concept of a linguistic variable and its application to approximate reasoning," Information Sciences8: 199–249, 301–357; 9: 43–80.
  20. "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets and Systems
  21. J. A. Goguen "Categories of fuzzy sets: applications of non-Cantorian set theory" PhD Thesis University of California, Berkeley, 1968
  22. Michael Winter "Goguen Categories:A Categorical Approach to L-fuzzy Relations" 2007 Springer ISBN   9781402061639
  23. 1 2 Michael Winter "Representation theory of Goguen categories" Fuzzy Sets and Systems Volume 138, Issue 1, 16 August 2003, Pages 85–126
  24. Goguen, J.A., "L-fuzzy sets". Journal of Mathematical Analysis and Applications 18(1):145–174, 1967
  25. Xuecheng, Liu (1992). "Entropy, distance measure and similarity measure of fuzzy sets and their relations". Fuzzy Sets and Systems. 52 (3): 305–318. doi:10.1016/0165-0114(92)90239-Z.
  26. Li, Xiang (2015). "Fuzzy cross-entropy". Journal of Uncertainty Analysis and Applications. 3. doi: 10.1186/s40467-015-0029-5 .
  27. Burgin & Chunihin 1997; Kerre 2001; Deschrijver & Kerre 2003.

Bibliography

  • Alkhazaleh, S. and Salleh, A.R. Fuzzy Soft Multiset Theory, Abstract and Applied Analysis, 2012, article ID 350600, 20 p.
  • Atanassov, K. T. (1983) Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (deposited in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)
  • Atanassov, Krassimir T. (1986). "Intuitionistic fuzzy sets". Fuzzy Sets and Systems. 20: 87–96. doi:10.1016/S0165-0114(86)80034-3.
  • Baruah, Hemanta K. (2011) The Theory of Fuzzy Sets: Beliefs and Realities, International Journal of Energy, Information and Communications, Vol, 2, Issue 2, 1 – 22.
  • Baruah, Hemanta K. (2012) An Introduction to the Theory of Imprecise Sets: the Mathematics of Partial Presence, International Journal of Computational and Mathematical Sciences, Vol. 2, No. 2, 110 – 124.
  • Bezdek, J.C. (1978). "Fuzzy partitions and relations and axiomatic basis for clustering". Fuzzy Sets and Systems. 1 (2): 111–127. doi:10.1016/0165-0114(78)90012-X.
  • Blizard, Wayne D. (1989). "Real-valued multisets and fuzzy sets". Fuzzy Sets and Systems. 33: 77–97. doi:10.1016/0165-0114(89)90218-2.
  • Brown, Joseph G. (1971). "A note on fuzzy sets". Information and Control. 18: 32–39. doi:10.1016/S0019-9958(71)90288-9.
  • Brutoczki Kornelia: Fuzzy Logic (Diploma) – Although this script has a lot of oddities and intracies due to its incompleteness, it may be used a template for exercise in removing these issues.
  • Burgin, M. Theory of Named Sets as a Foundational Basis for Mathematics, in Structures in Mathematical Theories, San Sebastian, 1990, pp.  417–420
  • Burgin, M.; Chunihin, A. (1997). "Named Sets in the Analysis of Uncertainty". Methodological and Theoretical Problems of Mathematics and Information Sciences. Kiev: 72–85.
  • Gianpiero Cattaneo and Davide Ciucci, "Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets" in J.J. Alpigini et al. (Eds.): RSCTC 2002, LNAI 2475, pp. 77–84, 2002. doi:10.1007/3-540-45813-1_10
  • Chamorro-Martínez, J. et al.: A discussion on fuzzy cardinality and quantification. Some applications in image processing, SciVerse ScienceDirect: Fuzzy Sets and Systems 257 (2014) 85–101, 30 May 2013
  • Chapin, E.W. (1974) Set-valued Set Theory, I, Notre Dame J. Formal Logic, v. 15, pp. 619–634
  • Chapin, E.W. (1975) Set-valued Set Theory, II, Notre Dame J. Formal Logic, v. 16, pp. 255–267
  • Cornelis, Chris; De Cock, Martine; Kerre, Etienne E. (2003). "Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge". Expert Systems. 20 (5): 260–270. doi:10.1111/1468-0394.00250. S2CID   15031773.
  • Cornelis, C., Deschrijver, C., and Kerre, E. E. (2004) Implication in intuitionistic and interval-valued fuzzy set theory: construction, classification, application, International Journal of Approximate Reasoning, v. 35, pp. 55–95
  • De Cock, Martine; Bodenhofer, Ulrich; Kerre, Etienne E. (1–4 October 2000). Modelling Linguistic Expressions Using Fuzzy Relations. Proceedings of the 6th International Conference on Soft Computing. Iizuka, Japan. pp. 353–360. CiteSeerX   10.1.1.32.8117 .
  • Demirci, Mustafa (1999). "Genuine sets". Fuzzy Sets and Systems. 105 (3): 377–384. doi:10.1016/S0165-0114(97)00235-2.
  • Deschrijver, G.; Kerre, E.E. (2003). "On the relationship between some extensions of fuzzy set theory". Fuzzy Sets and Systems. 133 (2): 227–235. doi:10.1016/S0165-0114(02)00127-6.
  • Didier Dubois, Henri M. Prade, ed. (2000). Fundamentals of fuzzy sets. The Handbooks of Fuzzy Sets Series. Vol. 7. Springer. ISBN   978-0-7923-7732-0.
  • Feng F. Generalized Rough Fuzzy Sets Based on Soft Sets, Soft Computing, July 2010, Volume 14, Issue 9, pp 899–911
  • Gentilhomme, Y. (1968) Les ensembles flous en linguistique, Cahiers Linguistique Theoretique Appliqee, 5, pp. 47–63
  • Gogen, J.A. (1967) L-fuzzy Sets, Journal Math. Analysis Appl., v. 18, pp. 145–174
  • Gottwald, S. (2006). "Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches". Studia Logica. 82 (2): 211–244. doi:10.1007/s11225-006-7197-8. S2CID   11931230.. Gottwald, S. (2006). "Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part II: Category Theoretic Approaches". Studia Logica. 84: 23–50. doi:10.1007/s11225-006-9001-1. S2CID   10453751. preprint..
  • Grattan-Guinness, I. (1975) Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math. 22, pp. 149–160.
  • Grzymala-Busse, J. Learning from examples based on rough multisets, in Proceedings of the 2nd International Symposium on Methodologies for Intelligent Systems, Charlotte, NC, USA, 1987, pp. 325–332
  • Gylys, R. P. (1994) Quantal sets and sheaves over quantales, Liet. Matem. Rink., v. 34, No. 1, pp. 9–31.
  • Ulrich Höhle, Stephen Ernest Rodabaugh, ed. (1999). Mathematics of fuzzy sets: logic, topology, and measure theory. The Handbooks of Fuzzy Sets Series. Vol. 3. Springer. ISBN   978-0-7923-8388-8.
  • Jahn, K.-U. (1975). "Intervall-wertige Mengen". Mathematische Nachrichten. 68: 115–132. doi:10.1002/MANA.19750680109.
  • Kaufmann, Arnold. Introduction to the theory of fuzzy subsets. Vol. 2. Academic Pr, 1975.
  • Kerre, E.E. (2001). "A First View on the Alternatives of Fuzzy Set Theory". In B. Reusch; K-H. Temme (eds.). Computational Intelligence in Theory and Practice. Heidelberg: Physica-Verlag. pp. 55–72. doi:10.1007/978-3-7908-1831-4_4. ISBN   978-3-7908-1357-9.
  • George J. Klir; Bo Yuan (1995). Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall. ISBN   978-0-13-101171-7.
  • Kuzmin, V.B. (1982). "Building Group Decisions in Spaces of Strict and Fuzzy Binary Relations" (in Russian). Nauka, Moscow.
  • Lake, J. (1976) Sets, fuzzy sets, multisets and functions, J. London Math. Soc., II Ser., v. 12, pp. 323–326
  • Meng, D., Zhang, X. and Qin, K. Soft rough fuzzy sets and soft fuzzy rough sets, 'Computers & Mathematics with Applications', v. 62, issue 12, 2011, pp. 4635–4645
  • Miyamoto, Sadaaki (2001). "Fuzzy Multisets and Their Generalizations". Multiset Processing. Lecture Notes in Computer Science. Vol. 2235. pp. 225–235. doi:10.1007/3-540-45523-X_11. ISBN   978-3-540-43063-6.
  • Molodtsov, O. (1999) Soft set theory – first results, Computers & Mathematics with Applications, v. 37, No. 4/5, pp. 19–31
  • Moore, R.E. Interval Analysis, New York, Prentice-Hall, 1966
  • Nakamura, A. (1988) Fuzzy rough sets, 'Notes on Multiple-valued Logic in Japan', v. 9, pp. 1–8
  • Narinyani, A.S. Underdetermined Sets – A new datatype for knowledge representation, Preprint 232, Project VOSTOK, issue 4, Novosibirsk, Computing Center, USSR Academy of Sciences, 1980
  • Pedrycz, W. Shadowed sets: representing and processing fuzzy sets, IEEE Transactions on System, Man, and Cybernetics, Part B, 28, 103–109, 1998.
  • Radecki, T. Level Fuzzy Sets, 'Journal of Cybernetics', Volume 7, Issue 3–4, 1977
  • Radzikowska, A.M. and Etienne E. Kerre, E.E. On L-Fuzzy Rough Sets, Artificial Intelligence and Soft Computing – ICAISC 2004, 7th International Conference, Zakopane, Poland, June 7–11, 2004, Proceedings; 01/2004
  • Salii, V.N. (1965). "Binary L-relations" (PDF). Izv. Vysh. Uchebn. Zaved. Matematika (in Russian). 44 (1): 133–145.
  • Ramakrishnan, T.V., and Sabu Sebastian (2010) 'A study on multi-fuzzy sets', Int. J. Appl. Math. 23, 713–721.
  • Sabu Sebastian and Ramakrishnan, T. V.(2010) Multi-fuzzy sets, Int. Math. Forum 50, 2471–2476.
  • Sabu Sebastian and Ramakrishnan, T. V.(2011) Multi-fuzzy sets: an extension of fuzzy sets, Fuzzy Inf.Eng. 1, 35–43.
  • Sabu Sebastian and Ramakrishnan, T. V.(2011) Multi-fuzzy extensions of functions, Advance in Adaptive Data Analysis 3, 339–350.
  • Sabu Sebastian and Ramakrishnan, T. V.(2011) Multi-fuzzy extension of crisp functions using bridge functions, Ann. Fuzzy Math. Inform. 2 (1), 1–8
  • Sambuc, R. Fonctions φ-floues: Application a l'aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis Univ. Marseille, France, 1975.
  • Seising, Rudolf: The Fuzzification of Systems. The Genesis of Fuzzy Set Theory and Its Initial Applications—Developments up to the 1970s (Studies in Fuzziness and Soft Computing, Vol. 216) Berlin, New York, [et al.]: Springer 2007.
  • Smith, N.J.J. (2004) Vagueness and blurry sets, 'J. of Phil. Logic', 33, pp. 165–235
  • Werro, Nicolas: Fuzzy Classification of Online Customers Archived 2017-12-01 at the Wayback Machine , University of Fribourg, Switzerland, 2008, Chapter 2
  • Yager, R. R. (1986) On the Theory of Bags, International Journal of General Systems, v. 13, pp. 23–37
  • Yao, Y.Y., Combination of rough and fuzzy sets based on α-level sets, in: Rough Sets and Data Mining: Analysis for Imprecise Data, Lin, T.Y. and Cercone, N. (Eds.), Kluwer Academic Publishers, Boston, pp. 301–321, 1997.
  • Y. Y. Yao, A comparative study of fuzzy sets and rough sets, Information Sciences, v. 109, Issue 1–4, 1998, pp. 227 – 242
  • Zadeh, L. (1975) The concept of a linguistic variable and its application to approximate reasoning–I, Inform. Sci., v. 8, pp. 199–249
  • Hans-Jürgen Zimmermann (2001). Fuzzy set theory—and its applications (4th ed.). Kluwer. ISBN   978-0-7923-7435-0.