Non-monotonic logic

Last updated

A non-monotonic logic is a formal logic whose conclusion relation is not monotonic. In other words, non-monotonic logics are devised to capture and represent defeasible inferences, i.e., a kind of inference in which reasoners draw tentative conclusions, enabling reasoners to retract their conclusion(s) based on further evidence. [1] Most studied formal logics have a monotonic entailment relation, meaning that adding a formula to the hypotheses never produces a pruning of its set of conclusions. Intuitively, monotonicity indicates that learning a new piece of knowledge cannot reduce the set of what is known. Monotonic logics cannot handle various reasoning tasks such as reasoning by default (conclusions may be derived only because of lack of evidence of the contrary), abductive reasoning (conclusions are only deduced as most likely explanations), some important approaches to reasoning about knowledge (the ignorance of a conclusion must be retracted when the conclusion becomes known), and similarly, belief revision (new knowledge may contradict old beliefs).

Contents

Abductive reasoning

Abductive reasoning is the process of deriving a sufficient explanation of the known facts. An abductive logic should not be monotonic because the likely explanations are not necessarily correct. For example, the likely explanation for seeing wet grass is that it rained; however, this explanation has to be retracted when learning that the real cause of the grass being wet was a sprinkler. Since the old explanation (it rained) is retracted because of the addition of a piece of knowledge (a sprinkler was active), any logic that models explanations is non-monotonic.

Reasoning about knowledge

If a logic includes formulae that mean that something is not known, this logic should not be monotonic. Indeed, learning something that was previously not known leads to the removal of the formula specifying that this piece of knowledge is not known. This second change (a removal caused by an addition) violates the condition of monotonicity. A logic for reasoning about knowledge is the autoepistemic logic.

Belief revision

Belief revision is the process of changing beliefs to accommodate a new belief that might be inconsistent with the old ones. In the assumption that the new belief is correct, some of the old ones have to be retracted in order to maintain consistency. This retraction in response to an addition of a new belief makes any logic for belief revision non-monotonic. The belief revision approach is alternative to paraconsistent logics, which tolerate inconsistency rather than attempting to remove it.

Proof-theoretic versus model-theoretic formalizations of non-monotonic logics

Proof-theoretic formalization of a non-monotonic logic begins with adoption of certain non-monotonic rules of inference, and then prescribes contexts in which these non-monotonic rules may be applied in admissible deductions. This typically is accomplished by means of fixed-point equations that relate the sets of premises and the sets of their non-monotonic conclusions. Default logic and autoepistemic logic are the most common examples of non-monotonic logics that have been formalized that way. [2]

Model-theoretic formalization of a non-monotonic logic begins with restriction of the semantics of a suitable monotonic logic to some special models, for instance, to minimal models, [3] [4] and then derives a set of non-monotonic rules of inference, possibly with some restrictions on which contexts these rules may be applied in, so that the resulting deductive system is sound and complete with respect to the restricted semantics. [5] Unlike some proof-theoretic formalizations that suffered from well-known paradoxes and were often hard to evaluate with respect of their consistency with the intuitions they were supposed to capture, model-theoretic formalizations were paradox-free and left little, if any, room for confusion about what non-monotonic patterns of reasoning they covered. Examples of proof-theoretic formalizations of non-monotonic reasoning, which revealed some undesirable or paradoxical properties or did not capture the desired intuitive comprehensions, that have been successfully (consistent with respective intuitive comprehensions and with no paradoxical properties, that is) formalized by model-theoretic means include first-order circumscription, closed-world assumption, [5] and autoepistemic logic. [2]

See also

Notes

  1. Strasser, Christian; Antonelli, G. Aldo. "Non-Monotonic Logic". plato.stanford.edu/index.html. Stanford Encyclopedia of Philosophy. Retrieved 19 March 2015.
  2. 1 2 Suchenek, Marek A. (2011), "Notes on Nonmonotonic Autoepistemic Propositional Logic" (PDF), Zeszyty Naukowe (6), Warsaw School of Computer Science: 74–93.
  3. Suchenek, Marek A. (1990), "Applications of Lyndon Homomorphism Theorems to the theory of minimal models.", International Journal of Foundations of Computer Science, 01 (1), World Scientific: 49–59, doi:10.1142/S0129054190000059
  4. Gelfond, Michael; Przymusinska, Halina; Przymusinski, Teodor (1990), "On the relationship between CWA, minimal model, and minimal herbrand model semantics", International Journal of Intelligent Systems, 5 (5), Wiley: 549–564, doi: 10.1002/int.4550050507
  5. 1 2 Suchenek, Marek A. (1993), "First-order syntactic characterizations of minimal entailment, domain-minimal entailment, and Herbrand entailment", Journal of Automated Reasoning (10), Kluwer Academic Publishers / Springer: 237–263.

Related Research Articles

Logic programming is a programming, database and knowledge representation paradigm based on formal logic. A logic program is a set of sentences in logical form, representing knowledge about some problem domain. Computation is performed by applying logical reasoning to that knowledge, to solve problems in the domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:

<span class="mw-page-title-main">Abductive reasoning</span> Inference seeking the simplest and most likely explanation

Abductive reasoning is a form of logical inference that was described by the philosopher and logician Charles Sanders Peirce in his 1903 lectures on Pragmatism.

Deductive reasoning is the mental process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false.

Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle. Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction from induction.

Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. This article is concerned with the inductive reasoning other than deductive reasoning, where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the conclusion of an inductive argument is at best probable, based upon the evidence given.

<span class="mw-page-title-main">Logical reasoning</span> Process of drawing correct inferences

Logical reasoning is a mental activity that aims to arrive at a conclusion in a rigorous way. It happens in the form of inferences or arguments by starting from a set of premises and reasoning to a conclusion supported by these premises. The premises and the conclusion are propositions, i.e. true or false claims about what is the case. Together, they form an argument. Logical reasoning is norm-governed in the sense that it aims to formulate correct arguments that any rational person would find convincing. The main discipline studying logical reasoning is logic.

Default logic is a non-monotonic logic proposed by Raymond Reiter to formalize reasoning with default assumptions.

Belief revision is the process of changing beliefs to take into account a new piece of information. The logical formalization of belief revision is researched in philosophy, in databases, and in artificial intelligence for the design of rational agents.

Negation as failure is a non-monotonic inference rule in logic programming, used to derive from failure to derive . Note that can be different from the statement of the logical negation of , depending on the completeness of the inference algorithm and thus also on the formal logic system.

The closed-world assumption (CWA), in a formal system of logic used for knowledge representation, is the presumption that a statement that is true is also known to be true. Therefore, conversely, what is not currently known to be true, is false. The same name also refers to a logical formalization of this assumption by Raymond Reiter. The opposite of the closed-world assumption is the open-world assumption (OWA), stating that lack of knowledge does not imply falsity. Decisions on CWA vs. OWA determine the understanding of the actual semantics of a conceptual expression with the same notations of concepts. A successful formalization of natural language semantics usually cannot avoid an explicit revelation of whether the implicit logical backgrounds are based on CWA or OWA.

The autoepistemic logic is a formal logic for the representation and reasoning of knowledge about knowledge. While propositional logic can only express facts, autoepistemic logic can express knowledge and lack of knowledge about facts.

The concept of a stable model, or answer set, is used to define a declarative semantics for logic programs with negation as failure. This is one of several standard approaches to the meaning of negation in logic programming, along with program completion and the well-founded semantics. The stable model semantics is the basis of answer set programming.

The lottery paradox arises from Henry E. Kyburg Jr. considering a fair 1,000-ticket lottery that has exactly one winning ticket. If that much is known about the execution of the lottery, it is then rational to accept that some ticket will win.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

Abductive logic programming (ALP) is a high-level knowledge-representation framework that can be used to solve problems declaratively, based on abductive reasoning. It extends normal logic programming by allowing some predicates to be incompletely defined, declared as abducible predicates. Problem solving is effected by deriving hypotheses on these abducible predicates as solutions of problems to be solved. These problems can be either observations that need to be explained or goals to be achieved. It can be used to solve problems in diagnosis, planning, natural language and machine learning. It has also been used to interpret negation as failure as a form of abductive reasoning.

A probabilistic logic network (PLN) is a conceptual, mathematical and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain logic such ideas as induction, abduction, analogy, fuzziness and speculation, and reasoning about time and causality.

In information technology a reasoning system is a software system that generates conclusions from available knowledge using logical techniques such as deduction and induction. Reasoning systems play an important role in the implementation of artificial intelligence and knowledge-based systems.

<span class="mw-page-title-main">Logic</span> Study of correct reasoning

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.

Probabilistic logic programming is a programming paradigm that combines logic programming with probabilities.

References