Fuzzy set operations

Last updated

Fuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions.

Contents

Standard fuzzy set operations

Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U.

Standard complement

The complement is sometimes denoted by A or A instead of ¬A.

Standard intersection
Standard union

In general, the triple (i,u,n) is called De Morgan Triplet iff

so that for all x,y ∈ [0, 1] the following holds true:

u(x,y) = n( i( n(x), n(y) ) )

(generalized De Morgan relation). [1] This implies the axioms provided below in detail.

Fuzzy complements

μA(x) is defined as the degree to which x belongs to A. Let ∁A denote a fuzzy complement of A of type c. Then μ∁A(x) is the degree to which x belongs to ∁A, and the degree to which x does not belong to A. (μA(x) is therefore the degree to which x does not belong to ∁A.) Let a complement A be defined by a function

c : [0,1] → [0,1]
For all xU: μ∁A(x) = c(μA(x))

Axioms for fuzzy complements

Axiom c1. Boundary condition
c(0) = 1 and c(1) = 0
Axiom c2. Monotonicity
For all a, b ∈ [0, 1], if a < b, then c(a) > c(b)
Axiom c3. Continuity
c is continuous function.
Axiom c4. Involutions
c is an involution, which means that c(c(a)) = a for each a ∈ [0,1]

c is a strong negator (aka fuzzy complement).

A function c satisfying axioms c1 and c3 has at least one fixpoint a* with c(a*) = a*, and if axiom c2 is fulfilled as well there is exactly one such fixpoint. For the standard negator c(x) = 1-x the unique fixpoint is a* = 0.5 . [2]

Fuzzy intersections

The intersection of two fuzzy sets A and B is specified in general by a binary operation on the unit interval, a function of the form

i:[0,1]×[0,1] → [0,1].
For all xU: μAB(x) = i[μA(x), μB(x)].

Axioms for fuzzy intersection

Axiom i1. Boundary condition
i(a, 1) = a
Axiom i2. Monotonicity
bd implies i(a, b) ≤ i(a, d)
Axiom i3. Commutativity
i(a, b) = i(b, a)
Axiom i4. Associativity
i(a, i(b, d)) = i(i(a, b), d)
Axiom i5. Continuity
i is a continuous function
Axiom i6. Subidempotency
i(a, a) < a for all 0 < a < 1
Axiom i7. Strict monotonicity
i (a1, b1) < i (a2, b2) if a1 < a2 and b1 < b2

Axioms i1 up to i4 define a t-norm (aka fuzzy intersection). The standard t-norm min is the only idempotent t-norm (that is, i (a1, a1) = a for all a ∈ [0,1]). [2]

Fuzzy unions

The union of two fuzzy sets A and B is specified in general by a binary operation on the unit interval function of the form

u:[0,1]×[0,1] → [0,1].
For all xU: μAB(x) = u[μA(x), μB(x)].

Axioms for fuzzy union

Axiom u1. Boundary condition
u(a, 0) =u(0 ,a) = a
Axiom u2. Monotonicity
bd implies u(a, b) ≤ u(a, d)
Axiom u3. Commutativity
u(a, b) = u(b, a)
Axiom u4. Associativity
u(a, u(b, d)) = u(u(a, b), d)
Axiom u5. Continuity
u is a continuous function
Axiom u6. Superidempotency
u(a, a) > a for all 0 < a < 1
Axiom u7. Strict monotonicity
a1 < a2 and b1 < b2 implies u(a1, b1) < u(a2, b2)

Axioms u1 up to u4 define a t-conorm (aka s-norm or fuzzy union). The standard t-conorm max is the only idempotent t-conorm (i. e. u (a1, a1) = a for all a ∈ [0,1]). [2]

Aggregation operations

Aggregation operations on fuzzy sets are operations by which several fuzzy sets are combined in a desirable way to produce a single fuzzy set.

Aggregation operation on n fuzzy set (2 ≤ n) is defined by a function

h:[0,1]n → [0,1]

Axioms for aggregation operations fuzzy sets

Axiom h1. Boundary condition
h(0, 0, ..., 0) = 0 and h(1, 1, ..., 1) = one
Axiom h2. Monotonicity
For any pair <a1, a2, ..., an> and <b1, b2, ..., bn> of n-tuples such that ai, bi ∈ [0,1] for all iNn, if aibi for all iNn, then h(a1, a2, ...,an) ≤ h(b1, b2, ..., bn); that is, h is monotonic increasing in all its arguments.
Axiom h3. Continuity
h is a continuous function.

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Cardinal number</span> Size of a possibly infinite set

In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The transfinite cardinal numbers, often denoted using the Hebrew symbol (aleph) followed by a subscript, describe the sizes of infinite sets.

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz. Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines.

In mathematics, fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, Salii (1965) defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in areas such as linguistics, decision-making, and clustering, are special cases of L-relations when L is the unit interval [0, 1].

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following:

In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure. We have the following chains of inclusions for functions over a compact subset of the real line:

<span class="mw-page-title-main">Symmetric difference</span> Elements in exactly one of two sets

In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is .

In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.

In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is

In mathematics, a t-norm is a kind of binary operation used in the framework of probabilistic metric spaces and in multi-valued logic, specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and conjunction in logic. The name triangular norm refers to the fact that in the framework of probabilistic metric spaces t-norms are used to generalize the triangle inequality of ordinary metric spaces.

In mathematics, more precisely in measure theory, an atom is a measurable set which has positive measure and contains no set of smaller positive measure. A measure which has no atoms is called non-atomic or atomless.

In mathematical logic, monoidal t-norm based logic, the logic of left-continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic of commutative bounded integral residuated lattices by the axiom of prelinearity.

In mathematics, the concept of a generalised metric is a generalisation of that of a metric, in which the distance is not a real number but taken from an arbitrary ordered field.

Fuzzy mathematics is the branch of mathematics including fuzzy set theory and fuzzy logic that deals with partial inclusion of elements in a set on a spectrum, as opposed to simple binary "yes" or "no" inclusion. It started in 1965 after the publication of Lotfi Asker Zadeh's seminal work Fuzzy sets. Linguistics is an example of a field that utilizes fuzzy set theory.

In mathematics, the logarithmic norm is a real-valued functional on operators, and is derived from either an inner product, a vector norm, or its induced operator norm. The logarithmic norm was independently introduced by Germund Dahlquist and Sergei Lozinskiĭ in 1958, for square matrices. It has since been extended to nonlinear operators and unbounded operators as well. The logarithmic norm has a wide range of applications, in particular in matrix theory, differential equations and numerical analysis. In the finite-dimensional setting, it is also referred to as the matrix measure or the Lozinskiĭ measure.

In mathematical analysis, and especially in real, harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes the Lp spaces. Like the Lp spaces, they are Banach spaces. The spaces are named for Władysław Orlicz, who was the first to define them in 1932.

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

In the mathematical discipline of ergodic theory, a Sinai–Ruelle–Bowen (SRB) measure is an invariant measure that behaves similarly to, but is not an ergodic measure. In order to be ergodic, the time average would need to be equal the space average for almost all initial states , with being the phase space. For an SRB measure , it suffices that the ergodicity condition be valid for initial states in a set of positive Lebesgue measure.

References

  1. Ismat Beg, Samina Ashraf: Similarity measures for fuzzy sets, at: Applied and Computational Mathematics, March 2009, available on Research Gate since November 23rd, 2016
  2. 1 2 3 Günther Rudolph: Computational Intelligence (PPS), TU Dortmund, Algorithm Engineering LS11, Winter Term 2009/10. Note that this power point sheet may have some problems with special character rendering