Last updated

Paradigm Structured
First appeared1984 (1984)
Stable release
IEEE 1364-2005 / 9 November 2005;13 years ago (2005-11-09)
Typing discipline Static, weak
Filename extensions .v, .vh
Influenced by
C, Fortran

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model electronic systems. It is most commonly used in the design and verification of digital circuits at the register-transfer level of abstraction. It is also used in the verification of analog circuits and mixed-signal circuits, as well as in the design of genetic circuits. [1] In 2009, the Verilog standard (IEEE 1364-2005) was merged into the SystemVerilog standard, creating IEEE Standard 1800-2009. Since then, Verilog is officially part of the SystemVerilog language. The current version is IEEE standard 1800-2017. [2]

In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits.

Digital electronics Electronic circuits that utilize digital signals

Digital electronics, digital technology or digital (electronic) circuits are electronics that operate on digital signals. In contrast, analog circuits manipulate analog signals whose performance is more subject to manufacturing tolerance, signal attenuation and noise. Digital techniques are helpful because it is a lot easier to get an electronic device to switch into one of a number of known states than to accurately reproduce a continuous range of values.

In digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals.



Hardware description languages such as Verilog are similar to software programming languages because they include ways of describing the propagation time and signal strengths (sensitivity). There are two types of assignment operators; a blocking assignment (=), and a non-blocking (<=) assignment. The non-blocking assignment allows designers to describe a state-machine update without needing to declare and use temporary storage variables. Since these concepts are part of Verilog's language semantics, designers could quickly write descriptions of large circuits in a relatively compact and concise form. At the time of Verilog's introduction (1984), Verilog represented a tremendous productivity improvement for circuit designers who were already using graphical schematic capture software and specially written software programs to document and simulate electronic circuits.

Software Non-tangible executable component of a computer

Computer software, or simply software, is a collection of data or computer instructions that tell the computer how to work. This is in contrast to physical hardware, from which the system is built and actually performs the work. In computer science and software engineering, computer software is all information processed by computer systems, programs and data. Computer software includes computer programs, libraries and related non-executable data, such as online documentation or digital media. Computer hardware and software require each other and neither can be realistically used on its own.

Programming language Language designed to communicate instructions to a machine

A programming language is a formal language, which comprises a set of instructions that produce various kinds of output. Programming languages are used in computer programming to implement algorithms.

Schematic capture stage of electronic circuit design

Schematic capture or schematic entry is a step in the design cycle of electronic design automation (EDA) at which the electronic diagram, or electronic schematic of the designed electronic circuit is created by a designer. This is done interactively with the help of a schematic capture tool also known as schematic editor.

The designers of Verilog wanted a language with syntax similar to the C programming language, which was already widely used in engineering software development. Like C, Verilog is case-sensitive and has a basic preprocessor (though less sophisticated than that of ANSI C/C++). Its control flow keywords (if/else, for, while, case, etc.) are equivalent, and its operator precedence is compatible with C. Syntactic differences include: required bit-widths for variable declarations, demarcation of procedural blocks (Verilog uses begin/end instead of curly braces {}), and many other minor differences. Verilog requires that variables be given a definite size. In C these sizes are assumed from the 'type' of the variable (for instance an integer type may be 8 bits).

C (programming language) general-purpose programming language

C is a general-purpose, procedural computer programming language supporting structured programming, lexical variable scope, and recursion, while a static type system prevents unintended operations. By design, C provides constructs that map efficiently to typical machine instructions and has found lasting use in applications previously coded in assembly language. Such applications include operating systems and various application software for computers, from supercomputers to embedded systems.

Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development is a process of writing and maintaining the source code, but in a broader sense, it includes all that is involved between the conception of the desired software through to the final manifestation of the software, sometimes in a planned and structured process. Therefore, software development may include research, new development, prototyping, modification, reuse, re-engineering, maintenance, or any other activities that result in software products.

In computer science, a preprocessor is a program that processes its input data to produce output that is used as input to another program. The output is said to be a preprocessed form of the input data, which is often used by some subsequent programs like compilers. The amount and kind of processing done depends on the nature of the preprocessor; some preprocessors are only capable of performing relatively simple textual substitutions and macro expansions, while others have the power of full-fledged programming languages.

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy, and communicate with other modules through a set of declared input, output, and bidirectional ports. Internally, a module can contain any combination of the following: net/variable declarations (wire, reg, integer, etc.), concurrent and sequential statement blocks, and instances of other modules (sub-hierarchies). Sequential statements are placed inside a begin/end block and executed in sequential order within the block. However, the blocks themselves are executed concurrently, making Verilog a dataflow language.

Concurrency (computer science)

In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the final outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability property of a program, algorithm, or problem into order-independent or partially-ordered components or units.

Verilog's concept of 'wire' consists of both signal values (4-state: "1, 0, floating, undefined") and signal strengths (strong, weak, etc.). This system allows abstract modeling of shared signal lines, where multiple sources drive a common net. When a wire has multiple drivers, the wire's (readable) value is resolved by a function of the source drivers and their strengths.

A subset of statements in the Verilog language are synthesizable. Verilog modules that conform to a synthesizable coding style, known as RTL (register-transfer level), can be physically realized by synthesis software. Synthesis software algorithmically transforms the (abstract) Verilog source into a netlist, a logically equivalent description consisting only of elementary logic primitives (AND, OR, NOT, flip-flops, etc.) that are available in a specific FPGA or VLSI technology. Further manipulations to the netlist ultimately lead to a circuit fabrication blueprint (such as a photo mask set for an ASIC or a bitstream file for an FPGA).

In electronics, logic synthesis is a process by which an abstract specification of desired circuit behavior, typically at register transfer level (RTL), is turned into a design implementation in terms of logic gates, typically by a computer program called a synthesis tool. Common examples of this process include synthesis of designs specified in hardware description languages, including VHDL and Verilog. Some synthesis tools generate bitstreams for programmable logic devices such as PALs or FPGAs, while others target the creation of ASICs. Logic synthesis is one aspect of electronic design automation.

In electronic design, a netlist is a description of the connectivity of an electronic circuit. In its simplest form, a netlist consists of a list of the electronic components in a circuit and a list of the nodes they are connected to. A network (net) is a collection of two or more interconnected components.

A mask set or a photomask set is a series of electronic data that define geometry for the photolithography steps of semiconductor fabrication. Each of the physical masks generated from this data is called a photomask.



Verilog was one of the first popular[ clarification needed ] hardware description languages to be invented. [ citation needed ] It was created by Prabhu Goel, Phil Moorby and Chi-Lai Huang and Douglas Warmke between late 1983 and early 1984. [3] Chi-Lai Huang had earlier worked on a hardware description LALSD, a language developed by Professor S.Y.H. Su, for his PhD work. [4] The wording for this process was "Automated Integrated Design Systems" (later renamed to Gateway Design Automation in 1985) as a hardware modeling language. Gateway Design Automation was purchased by Cadence Design Systems in 1990. Cadence now has full proprietary rights to Gateway's Verilog and the Verilog-XL, the HDL-simulator that would become the de facto standard (of Verilog logic simulators) for the next decade. Originally, Verilog was only intended to describe and allow simulation, the automated synthesis of subsets of the language to physically realizable structures (gates etc.) was developed after the language had achieved widespread usage.

Prabhu Goel is an Indian-American researcher, entrepreneur and businessman, known for having developed the PODEM Automatic test pattern generation and Verilog hardware description language.

Verilog is a portmanteau of the words "verification" and "logic". [5]


With the increasing success of VHDL at the time, Cadence decided to make the language available for open standardization. Cadence transferred Verilog into the public domain under the Open Verilog International (OVI) (now known as Accellera) organization. Verilog was later submitted to IEEE and became IEEE Standard 1364-1995, commonly referred to as Verilog-95.

In the same time frame Cadence initiated the creation of Verilog-A to put standards support behind its analog simulator Spectre. Verilog-A was never intended to be a standalone language and is a subset of Verilog-AMS which encompassed Verilog-95.

Verilog 2001

Extensions to Verilog-95 were submitted back to IEEE to cover the deficiencies that users had found in the original Verilog standard. These extensions became IEEE Standard 1364-2001 known as Verilog-2001.

Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's complement) signed nets and variables. Previously, code authors had to perform signed operations using awkward bit-level manipulations (for example, the carry-out bit of a simple 8-bit addition required an explicit description of the Boolean algebra to determine its correct value). The same function under Verilog-2001 can be more succinctly described by one of the built-in operators: +, -, /, *, >>>. A generate/endgenerate construct (similar to VHDL's generate/endgenerate) allows Verilog-2001 to control instance and statement instantiation through normal decision operators (case/if/else). Using generate/endgenerate, Verilog-2001 can instantiate an array of instances, with control over the connectivity of the individual instances. File I/O has been improved by several new system tasks. And finally, a few syntax additions were introduced to improve code readability (e.g. always, @*, named parameter override, C-style function/task/module header declaration).

Verilog-2001 is the version of Verilog supported by the majority of commercial EDA software packages.

Verilog 2005

Not to be confused with SystemVerilog, Verilog 2005 (IEEE Standard 1364-2005) consists of minor corrections, spec clarifications, and a few new language features (such as the uwire keyword).

A separate part of the Verilog standard, Verilog-AMS, attempts to integrate analog and mixed signal modeling with traditional Verilog.


The advent of hardware verification languages such as OpenVera, and Verisity's e language encouraged the development of Superlog by Co-Design Automation Inc (acquired by Synopsys). The foundations of Superlog and Vera were donated to Accellera, which later became the IEEE standard P1800-2005: SystemVerilog.

SystemVerilog is a superset of Verilog-2005, with many new features and capabilities to aid design verification and design modeling. As of 2009, the SystemVerilog and Verilog language standards were merged into SystemVerilog 2009 (IEEE Standard 1800-2009). The current version is IEEE standard 1800-2017. [6]


A simple example of two flip-flops follows:


The "<=" operator in Verilog is another aspect of its being a hardware description language as opposed to a normal procedural language. This is known as a "non-blocking" assignment. Its action does not register until after the always block has executed. This means that the order of the assignments is irrelevant and will produce the same result: flop1 and flop2 will swap values every clock.

The other assignment operator, "=", is referred to as a blocking assignment. When "=" assignment is used, for the purposes of logic, the target variable is updated immediately. In the above example, had the statements used the "=" blocking operator instead of "<=", flop1 and flop2 would not have been swapped. Instead, as in traditional programming, the compiler would understand to simply set flop1 equal to flop2 (and subsequently ignore the redundant logic to set flop2 equal to flop1).

An example counter circuit follows:

moduleDiv20x(rst,clk,cet,cep,count,tc);// TITLE 'Divide-by-20 Counter with enables'// enable CEP is a clock enable only// enable CET is a clock enable and// enables the TC output// a counter using the Verilog languageparametersize=5;parameterlength=20;inputrst;// These inputs/outputs representinputclk;// connections to the module.inputcet;inputcep;output[size-1:0]count;outputtc;reg[size-1:0]count;// Signals assigned// within an always// (or initial)block// must be of type regwiretc;// Other signals are of type wire// The always statement below is a parallel// execution statement that// executes any time the signals// rst or clk transition from low to highalways@(posedgeclkorposedgerst)if(rst)// This causes reset of the cntrcount<={size{1'b0}};elseif(cet&&cep)// Enables both  truebeginif(count==length-1)count<={size{1'b0}};elsecount<=count+1'b1;end// the value of tc is continuously assigned// the value of the expressionassigntc=(cet&&(count==length-1));endmodule

An example of delays:


The always clause above illustrates the other type of method of use, i.e. it executes whenever any of the entities in the list (the b or e) changes. When one of these changes, a is immediately assigned a new value, and due to the blocking assignment, b is assigned a new value afterward (taking into account the new value of a). After a delay of 5 time units, c is assigned the value of b and the value of c ^ e is tucked away in an invisible store. Then after 6 more time units, d is assigned the value that was tucked away.

Signals that are driven from within a process (an initial or always block) must be of type reg. Signals that are driven from outside a process must be of type wire. The keyword reg does not necessarily imply a hardware register.

Definition of constants

The definition of constants in Verilog supports the addition of a width parameter. The basic syntax is:

<Width in bits>'<base letter><number>


Synthesizeable constructs

There are several statements in Verilog that have no analog in real hardware, e.g. $display. Consequently, much of the language can not be used to describe hardware. The examples presented here are the classic subset of the language that has a direct mapping to real gates.

// Mux examples — Three ways to do the same thing.// The first example uses continuous assignmentwireout;assignout=sel?a:b;// the second example uses a procedure// to accomplish the same thing.regout;always@(aorborsel)begincase(sel)1'b0:out=b;1'b1:out=a;endcaseend// Finally — you can use if/else in a// procedural structure.regout;always@(aorborsel)if(sel)out=a;elseout=b;

The next interesting structure is a transparent latch; it will pass the input to the output when the gate signal is set for "pass-through", and captures the input and stores it upon transition of the gate signal to "hold". The output will remain stable regardless of the input signal while the gate is set to "hold". In the example below the "pass-through" level of the gate would be when the value of the if clause is true, i.e. gate = 1. This is read "if gate is true, the din is fed to latch_out continuously." Once the if clause is false, the last value at latch_out will remain and is independent of the value of din.

// Transparent latch examplereglatch_out;always@(gateordin)if(gate)latch_out=din;// Pass through state// Note that the else isn't required here. The variable// latch_out will follow the value of din while gate is// high. When gate goes low, latch_out will remain constant.

The flip-flop is the next significant template; in Verilog, the D-flop is the simplest, and it can be modeled as:


The significant thing to notice in the example is the use of the non-blocking assignment. A basic rule of thumb is to use <= when there is a posedge or negedge statement within the always clause.

A variant of the D-flop is one with an asynchronous reset; there is a convention that the reset state will be the first if clause within the statement.


The next variant is including both an asynchronous reset and asynchronous set condition; again the convention comes into play, i.e. the reset term is followed by the set term.


Note: If this model is used to model a Set/Reset flip flop then simulation errors can result. Consider the following test sequence of events. 1) reset goes high 2) clk goes high 3) set goes high 4) clk goes high again 5) reset goes low followed by 6) set going low. Assume no setup and hold violations.

In this example the always @ statement would first execute when the rising edge of reset occurs which would place q to a value of 0. The next time the always block executes would be the rising edge of clk which again would keep q at a value of 0. The always block then executes when set goes high which because reset is high forces q to remain at 0. This condition may or may not be correct depending on the actual flip flop. However, this is not the main problem with this model. Notice that when reset goes low, that set is still high. In a real flip flop this will cause the output to go to a 1. However, in this model it will not occur because the always block is triggered by rising edges of set and reset — not levels. A different approach may be necessary for set/reset flip flops.

The final basic variant is one that implements a D-flop with a mux feeding its input. The mux has a d-input and feedback from the flop itself. This allows a gated load function.

// Basic structure with an EXPLICIT feedback pathalways@(posedgeclk)if(gate)q<=d;elseq<=q;// explicit feedback path// The more common structure ASSUMES the feedback is present// This is a safe assumption since this is how the// hardware compiler will interpret it. This structure// looks much like a latch. The differences are the// '''@(posedge clk)''' and the non-blocking '''<='''//always@(posedgeclk)if(gate)q<=d;// the "else" mux is "implied"

Note that there are no "initial" blocks mentioned in this description. There is a split between FPGA and ASIC synthesis tools on this structure. FPGA tools allow initial blocks where reg values are established instead of using a "reset" signal. ASIC synthesis tools don't support such a statement. The reason is that an FPGA's initial state is something that is downloaded into the memory tables of the FPGA. An ASIC is an actual hardware implementation.

Initial and always

There are two separate ways of declaring a Verilog process. These are the always and the initial keywords. The always keyword indicates a free-running process. The initial keyword indicates a process executes exactly once. Both constructs begin execution at simulator time 0, and both execute until the end of the block. Once an always block has reached its end, it is rescheduled (again). It is a common misconception to believe that an initial block will execute before an always block. In fact, it is better to think of the initial-block as a special-case of the always-block, one which terminates after it completes for the first time.

//Examples:initialbegina=1;// Assign a value to reg a at time 0#1;// Wait 1 time unitb=a;// Assign the value of reg a to reg bendalways@(aorb)// Any time a or b CHANGE, run the processbeginif(a)c=b;elsed=~b;end// Done with this block, now return to the top (i.e. the @ event-control)always@(posedgea)// Run whenever reg a has a low to high changea<=b;

These are the classic uses for these two keywords, but there are two significant additional uses. The most common of these is an always keyword without the @(...) sensitivity list. It is possible to use always as shown below:

alwaysbegin// Always begins executing at time 0 and NEVER stopsclk=0;// Set clk to 0#1;// Wait for 1 time unitclk=1;// Set clk to 1#1;// Wait 1 time unitend// Keeps executing — so continue back at the top of the begin

The always keyword acts similar to the C language construct while(1) {..} in the sense that it will execute forever.

The other interesting exception is the use of the initial keyword with the addition of the forever keyword.

The example below is functionally identical to the always example above.

initialforever// Start at time 0 and repeat the begin/end foreverbeginclk=0;// Set clk to 0#1;// Wait for 1 time unitclk=1;// Set clk to 1#1;// Wait 1 time unitend


The fork/join pair are used by Verilog to create parallel processes. All statements (or blocks) between a fork/join pair begin execution simultaneously upon execution flow hitting the fork. Execution continues after the join upon completion of the longest running statement or block between the fork and join.

initialfork$write("A");// Print Char A$write("B");// Print Char Bbegin#1;// Wait 1 time unit$write("C");// Print Char Cendjoin

The way the above is written, it is possible to have either the sequences "ABC" or "BAC" print out. The order of simulation between the first $write and the second $write depends on the simulator implementation, and may purposefully be randomized by the simulator. This allows the simulation to contain both accidental race conditions as well as intentional non-deterministic behavior.

Notice that VHDL cannot dynamically spawn multiple processes like Verilog. [7]

Race conditions

The order of execution isn't always guaranteed within Verilog. This can best be illustrated by a classic example. Consider the code snippet below:

initiala=0;initialb=a;initialbegin#1;$display("Value a=%d Value of b=%d",a,b);end

What will be printed out for the values of a and b? Depending on the order of execution of the initial blocks, it could be zero and zero, or alternately zero and some other arbitrary uninitialized value. The $display statement will always execute after both assignment blocks have completed, due to the #1 delay.


Note: These operators are not shown in order of precedence.

Operator typeOperator symbolsOperation performed
Bitwise~Bitwise NOT (1's complement)
&Bitwise AND
|Bitwise OR
^Bitwise XOR
~^ or ^~Bitwise XNOR
Reduction&Reduction AND
~&Reduction NAND
|Reduction OR
~|Reduction NOR
^Reduction XOR
~^ or ^~Reduction XNOR
-2's complement
**Exponentiation (*Verilog-2001)
Relational>Greater than
<Less than
>=Greater than or equal to
<=Less than or equal to
==Logical equality (bit-value 1'bX is removed from comparison)
!=Logical inequality (bit-value 1'bX is removed from comparison)
===4-state logical equality (bit-value 1'bX is taken as literal)
!==4-state logical inequality (bit-value 1'bX is taken as literal)
Shift>> Logical right shift
<< Logical left shift
>>> Arithmetic right shift (*Verilog-2001)
<<< Arithmetic left shift (*Verilog-2001)
Concatenation{, }Concatenation
Replication{n{m}}Replicate value m for n times
Conditional? :Conditional

Four-valued logic

The IEEE 1364 standard defines a four-valued logic with four states: 0, 1, Z (high impedance), and X (unknown logic value). For the competing VHDL, a dedicated standard for multi-valued logic exists as IEEE 1164 with nine levels. [8]

System tasks

System tasks are available to handle simple I/O and various design measurement functions during simulation. All system tasks are prefixed with $ to distinguish them from user tasks and functions. This section presents a short list of the most frequently used tasks. It is by no means a comprehensive list.

Program Language Interface (PLI)

The PLI provides a programmer with a mechanism to transfer control from Verilog to a program function written in C language. It is officially deprecated by IEEE Std 1364-2005 in favor of the newer Verilog Procedural Interface, which completely replaces the PLI.

The PLI (now VPI) enables Verilog to cooperate with other programs written in the C language such as test harnesses, instruction set simulators of a microcontroller, debuggers, and so on. For example, it provides the C functions tf_putlongp() and tf_getlongp() which are used to write and read the argument of the current Verilog task or function, respectively.

Simulation software

For information on Verilog simulators, see the list of Verilog simulators.

See also

Additional material

Similar languages

Related Research Articles

VHDL hardware description language

VHDL (VHSIC-HDL) is a hardware description language used in electronic design automation to describe digital and mixed-signal systems such as field-programmable gate arrays and integrated circuits. VHDL can also be used as a general purpose parallel programming language.

The IEEE 1164 standard is a technical standard published by the IEEE in 1993. It describes the definitions of logic values to be used in electronic design automation, for the VHDL hardware description language. It was sponsored by the Design Automation Standards Committee of the Institute of Electrical and Electronics Engineers (IEEE). The standardization effort was based on the donation of the Synopsys MVL-9 type declaration.

Property Specification Language (PSL) is a temporal logic extending linear temporal logic with a range of operators for both ease of expression and enhancement of expressive power. PSL makes an extensive use of regular expressions and syntactic sugaring. It is widely used in the hardware design and verification industry, where formal verification tools and/or logic simulation tools are used to prove or refute that a given PSL formula holds on a given design.

SystemC is a set of C++ classes and macros which provide an event-driven simulation interface. These facilities enable a designer to simulate concurrent processes, each described using plain C++ syntax. SystemC processes can communicate in a simulated real-time environment, using signals of all the datatypes offered by C++, some additional ones offered by the SystemC library, as well as user defined. In certain respects, SystemC deliberately mimics the hardware description languages VHDL and Verilog, but is more aptly described as a system-level modeling language.

Esterel is a synchronous programming language for the development of complex reactive systems. The imperative programming style of Esterel allows the simple expression of parallelism and preemption. As a consequence, it is well suited for control-dominated model designs.

Boundary scan

Boundary scan is a method for testing interconnects on printed circuit boards or sub-blocks inside an integrated circuit. Boundary scan is also widely used as a debugging method to watch integrated circuit pin states, measure voltage, or analyze sub-blocks inside an integrated circuit.

SystemVerilog hardware description and hardware verification language

SystemVerilog, standardized as IEEE 1800, is a hardware description and hardware verification language used to model, design, simulate, test and implement electronic systems. SystemVerilog is based on Verilog and some extensions, and since 2008 Verilog is now part of the same IEEE standard. It is commonly used in the semiconductor and electronic design industry as an evolution of Verilog.

Altera Hardware Description Language (AHDL) is a proprietary hardware description language (HDL) developed by Altera Corporation. AHDL is used for digital logic design entry for Altera's complex programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs). It is supported by Altera's MAX-PLUS and Quartus series of design software. AHDL has an Ada-like syntax and its feature set is comparable to the synthesizable portions of the Verilog and VHDL hardware description languages. In contrast to HDLs such as Verilog and VHDL, AHDL is a design-entry language only; all of its language constructs are synthesizable. By default, Altera software expects AHDL source files to have a .tdf extension.

Verilog-AMS is a derivative of the Verilog hardware description language that includes analog and mixed-signal extensions (AMS) in order to define the behavior of analog and mixed-signal systems. It extends the event-based simulator loops of Verilog/SystemVerilog/VHDL, by a continuous-time simulator, which solves the differential equations in analog-domain. Both domains are coupled: analog events can trigger digital actions and vice versa.

In digital logic, a don't-care term for a function is an input-sequence for which the function output does not matter. An input that is known never to occur is a can't-happen term. Both these types of conditions are treated the same way in logic design and may be referred to collectively as don't-care conditions for brevity. The designer of a logic circuit to implement the function need not care about such inputs, but can choose the circuit's output arbitrarily, usually such that the simplest circuit results (minimization). Examples of don't-care terms are the binary values 1010 through 1111 for a function that takes a binary-coded decimal (BCD) value, because a BCD value never takes on such values ; in the pictures, the circuit computing the lower left bar of a 7-segment display can be minimized to ab + ac by an appropriate choice of circuit outputs for dcba=1010...1111.

Verilog-A is an industry standard modeling language for analog circuits. It is the continuous-time subset of Verilog-AMS.

e is a hardware verification language (HVL) which is tailored to implementing highly flexible and reusable verification testbenches.

Value Change Dump (VCD) is an ASCII-based format for dumpfiles generated by EDA logic simulation tools. The standard, four-value VCD format was defined along with the Verilog hardware description language by the IEEE Standard 1364-1995 in 1996. An Extended VCD format defined six years later in the IEEE Standard 1364-2001 supports the logging of signal strength and directionality. The simple and yet compact structure of the VCD format has allowed its use to become ubiquitous and to spread into non-Verilog tools such as the VHDL simulator GHDL and various kernel tracers. A limitation of the format is that it is unable to record the values in memories.

The Design Automation Standards Committee (DASC) is a subgroup of interested individuals members of the Institute of Electrical and Electronics Engineers (IEEE) Computer Society and Standards Association. It oversees IEEE Standards that are related to computer-aided design. It is part of the IEEE Computer Society.

VHDL-AMS is a derivative of the hardware description language VHDL. It includes analog and mixed-signal extensions (AMS) in order to define the behavior of analog and mixed-signal systems.

MyHDL is a Python based hardware description language (HDL).

LISA is a language to describe the instruction set architecture of a processor. LISA captures the information required to generate software tools and implementation hardware of a given processor.

Flip-flop (electronics) circuit that has two stable states and can be used to store state information

In electronics, a flip-flop or latch is a circuit that has two stable states and can be used to store state information – a bistable multivibrator. The circuit can be made to change state by signals applied to one or more control inputs and will have one or two outputs. It is the basic storage element in sequential logic. Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems.


  1. Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016). "Genetic circuit design automation". Science. 352 (6281): aac7341. doi:10.1126/science.aac7341. PMID   27034378.
  2. 1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language
  3. "Verilog's inventor nabs EDA's Kaufman award". EE Times. 7 November 2005.
  4. Huang, Chi-Lai; Su, S.Y.H. "Approaches for Computer-Aided Logic System Design Using Hardware Description Language". Proceedings of International Computer Symposium 1980, Taipei, Taiwan, December 1980. pp. 772–79O. OCLC   696254754.
  5. "Oral History of Philip Raymond "Phil" Moorby" (PDF). Computer History Museum. 22 April 2013. pp. 23–25.
  6. 1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language
  7. Cummings, Clifford E. (2003). "SystemVerilog — Is This The Merging of Verilog & VHDL?" (PDF). SNUG Boston 2003.
  8. Miller, D. Michael; Thornton, Mitchell A. (2008). Multiple valued logic: concepts and representations. Synthesis Lectures on Digital Circuits and Systems. 12. Morgan & Claypool. ISBN   978-1-59829-190-2.

Standards development

Language extensions