IEEE 802.22

Last updated

IEEE 802.22, is a standard for wireless regional area network (WRAN) using white spaces in the television (TV) frequency spectrum. [1] The development of the IEEE 802.22 WRAN standard is aimed at using cognitive radio (CR) techniques to allow sharing of geographically unused spectrum allocated to the television broadcast service, on a non-interfering basis, to bring broadband access to hard-to-reach, low population density areas, typical of rural environments, and is therefore timely and has the potential for a wide applicability worldwide. It is the first worldwide effort to define a standardized air interface based on CR techniques for the opportunistic use of TV bands on a non-interfering basis.

International standards are technical standards developed by international organizations, such as Codex Alimentarius in food, the World Health Organization Guidelines in health, or ITU Recommendations in ICT and being publicly funded, are freely available for consideration and use worldwide.

Television Telecommunication medium for transmitting and receiving moving images

Television (TV), sometimes shortened to tele or telly, is a telecommunication medium used for transmitting moving images in monochrome, or in colour, and in two or three dimensions and sound. The term can refer to a television set, a television program, or the medium of television transmission. Television is a mass medium for advertising, entertainment and news.

A cognitive radio (CR) is a radio that can be programmed and configured dynamically to use the best wireless channels in its vicinity to avoid user interference and congestion. Such a radio automatically detects available channels in wireless spectrum, then accordingly changes its transmission or reception parameters to allow more concurrent wireless communications in a given spectrum band at one location. This process is a form of dynamic spectrum management.

Contents

IEEE 802.22 WRANs are designed to operate in the TV broadcast bands while assuring that no harmful interference is caused to the incumbent operation: digital TV and analog TV broadcasting, and low power licensed devices such as wireless microphones. [2] The standard was expected to be finalized in Q1 2010, but was finally published in July 2011.

IEEE P802.22.1 is a related standard being developed to enhance harmful interference protection for low power licensed devices operating in TV Broadcast Bands. IEEE P802.22.2 is a recommended practice for the installation and deployment of IEEE 802.22 Systems. [1] IEEE 802.22 WG is a working group of IEEE 802 LAN/MAN standards committee which was chartered to write the 802.22 standard. The two 802.22 task groups (TG1 and TG2) are writing 802.22.1 and 802.22.2 respectively.

Working group interdisciplinary collaboration of researchers

A working group or working party is a group of experts working together to achieve specified goals. The groups are domain-specific and focus on discussion or activity around a specific subject area. The term can sometimes refer to an interdisciplinary collaboration of researchers working on new activities that would be difficult to sustain under traditional funding mechanisms.

Technology

In response to a notice of proposed rulemaking (NPRM) issued by the U.S. Federal Communications Commission (FCC) in May 2004, the IEEE 802.22 working group on Wireless Regional Area Networks was formed in October 2004. [3] Its project, formally called as Standard for Wireless Regional Area Networks (WRAN) - Specific requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and procedures for operation in the TV Bands focused on constructing a consistent, national fixed point-to-multipoint WRAN that will use UHF/VHF TV bands between 54 and 862 MHz. Specific TV channels as well as the guard bands of these channels are planned to be used for communication in IEEE 802.22.

A notice of proposed rulemaking (NPRM) is a public notice issued by law when one of the independent agencies of the United States government wishes to add, remove, or change a rule or regulation as part of the rulemaking process. It is an important part of United States administrative law which facilitates government by typically creating a process of taking of public comment. This nomenclature is also utilized at the state level.

Federal Communications Commission Independent agency of the U.S. Government

The Federal Communications Commission (FCC) is an independent agency of the United States government created by statute to regulate interstate communications by radio, television, wire, satellite, and cable. The FCC maintains jurisdiction over the areas of broadband access, fair competition, radio frequency use, media responsibility, public safety, and homeland security.

The Institute of Electrical and Electronics Engineers (IEEE), together with the FCC, pursued a centralized approach for available spectrum discovery. Specifically each base station (BS) would be armed with a GPS receiver which would allow its position to be reported. This information would be sent back to centralized servers (in the USA these would be managed by the FCC), which would respond with the information about available free TV channels and guard bands in the area of the BS. Other proposals would allow local spectrum sensing only, where the BS would decide by itself which channels are available for communication. A combination of these two approaches is also envisioned. Devices which would operate in the TV white space band (TVWS) would be mainly of two types: Fixed and Personal/Portable. Fixed devices would have geolocation capability with an embedded GPS device. Fixed devices also communicate with the central database to identify other transmitters in the area operating in TVWS. Other measures suggested by the FCC and IEEE to avoid interference include dynamic spectrum sensing and dynamic power control.

Institute of Electrical and Electronics Engineers scholarly society, publisher and standards organization, headquartered in US

The Institute of Electrical and Electronics Engineers (IEEE) is a professional association for electronic engineering and electrical engineering with its corporate office in New York City and its operations center in Piscataway, New Jersey. It was formed in 1963 from the amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers.

Base station

Base station is – according to the International Telecommunication Union's (ITU) Radio Regulations (RR) – a "land station in the land mobile service."

TV White Space database, also commonly referred to as geolocation database, is an entity that controls the TV spectrum utilization by unlicensed white spaces devices within a determined geographical area. Its sole objective is to enable unlicensed access to white space spectrum while protecting incumbent broadcasting services. TV White Space database was first brought as a way to overcome the technical hurdles faced by spectrum sensing techniques to precisely detect very weak primary signals.

Overview of the WRAN topology

The initial drafts of the 802.22 standard specify that the network should operate in a point to multipoint basis (P2MP). The system will be formed by base stations (BS) and customer-premises equipment (CPE). The CPEs will be attached to a BS via a wireless link. The BSs will control the medium access for all the CPEs attached to it.

In telecommunications, a customer-premises equipment or customer-provided equipment (CPE) is any terminal and associated equipment located at a subscriber's premises and connected with a carrier's telecommunication circuit at the demarcation point ("demarc"). The demarc is a point established in a building or complex to separate customer equipment from the equipment located in either the distribution infrastructure or central office of the communications service provider.

One key feature of the WRAN Base Stations is that they will be capable of performing a cognitive sensing. This is that the CPEs will be sensing the spectrum and will be sending periodic reports to the BS informing it about what they sense. The BS, with the information gathered, will evaluate whether a change is necessary in the channel used, or on the contrary, if it should stay transmitting and receiving in the same one.

An approach to the PHY layer

The PHY layer must be able to adapt to different conditions and also needs to be flexible for jumping from channel to channel without errors in transmission or losing clients (CPEs). This flexibility is also required for being able to dynamically adjust the bandwidth, modulation and coding schemes. OFDMA will be the modulation scheme for transmission in up and downlinks. With OFDMA it will be possible to achieve this fast adaptation needed for the BS's and CPEs. By using just one TV channel (a TV channel has a bandwidth of 6 MHz; in some countries they can be of 7 or 8 MHz) the approximate maximum bit rate is 19 Mbit/s at a 30 km distance. The speed and distance achieved is not enough to fulfill the requirements of the standard. The feature Channel Bonding deals with this problem. Channel Bonding consists in using more than one channel for Tx / Rx. This allows the system to have higher bandwidth which will be reflected in a better system performance.

An approach to the MAC layer

This layer will be based on cognitive radio technology. It also needs to be able to adapt dynamically to changes in the environment by sensing the spectrum. The MAC layer will consist of two structures: Frame and Superframe. A superframe will be formed by many frames. The superframe will have a superframe control header (SCH) and a preamble. These will be sent by the BS in every channel that it's possible to transmit and not cause interference. When a CPE is turned on, it will sense the spectrum, find out which channels are available and will receive all the needed information to attach to the BS.

Two different types of spectrum measurement will be done by the CPE: in-band and out-of-band. The in-band measurement consists in sensing the actual channel that is being used by the BS and CPE. The out-of-band measurement will consist in sensing the rest of the channels. The MAC layer will perform two different types of sensing in either in-band or out-of-band measurements: fast sensing and fine sensing. Fast sensing will consist in sensing at speeds of under 1ms per channel. This sensing is performed by the CPE and the BS and the BS's will gather all the information and will decide if there is something new to be done. The fine sensing takes more time (approximately 25 ms per channel or more) and it is used based on the outcome of the previous fast sensing mechanism.

These sensing mechanisms are primarily used to identify if there is an incumbent transmitting, and if there is a need to avoid interfering with it.

To perform reliable sensing, in the basic operation mode on a single frequency band as described above (the "listen-before-talk" mode) one has to allocate quiet times, in which no data transmission is permitted. Such periodic interruption of data transmission could impair the QoS of cognitive radio systems. This issue is addressed by an alternative operation mode proposed in IEEE 802.22 called Dynamic frequency hopping (DFH) [4] where data transmission of the WRAN systems are performed in parallel with spectrum sensing without any interruption.

Encryption, authentication, and authorization

Only the AES-GCM authenticated encryption cipher algorithm is supported. [5]

EAP-TLS or EAP-TTLS must be used for authentication and encryption key derivation. [6] [7] IEEE 802.22 defines a X.509v3 certificate profile which uses extensions for authenticating and authorization of devices based on information such as device manufacturer, MAC address, and FCC ID (the Manufacturer/ServiceProvider certificate, the CPE certificate, and the BS certificate, respectively). [8]

This could allow for a type of customer lock-in where the network providers refuse network access to devices that have not been vetted by manufacturers of the network providers' choice (i.e. the device must possess a private key of a X.509 certificate with a chain of trust to a manufacturer certificate authority (CA) that the network provider will accept), not unlike the SIM lock in modern cellular networks and DOCSIS "certification testers" in cable networks.

Comparison with 802.11af

In addition to 802.22, the IEEE has standardized another white space cognitive radio standard, 802.11af. [9] While 802.22 is a wireless regional area network (WRAN) standard, for ranges up to 100 km, [9] [10] 802.11af is a wireless LAN standard designed for ranges up to 1 km. Coexistence between 802.22 and 802.11af standards can be implemented either in centralized or distributed manners [11] and based on various coexistence techniques. [12]

See also

Related Research Articles

IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies wireless personal area network (WPAN) standards. There are 10 major areas of development, not all of which are active.

IEEE 802.11 set of media access control (MAC) and physical layer (PHY) specifications

IEEE 802.11 is part of the IEEE 802 set of LAN protocols, and specifies the set of media access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) Wi-Fi computer communication in various frequencies, including but not limited to 2.4, 5, and 60 GHz frequency bands.

IEEE 802.15.4 is a technical standard which defines the operation of low-rate wireless personal area networks (LR-WPANs). It specifies the physical layer and media access control for LR-WPANs, and is maintained by the IEEE 802.15 working group, which defined the standard in 2003. It is the basis for the Zigbee, ISA100.11a, WirelessHART, MiWi, 6LoWPAN, Thread and SNAP specifications, each of which further extends the standard by developing the upper layers which are not defined in IEEE 802.15.4. In particular, 6LoWPAN defines a binding for the IPv6 version of the Internet Protocol (IP) over WPANs, and is itself used by upper layers like Thread.

WiMAX wireless broadband standard

WiMAX is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide multiple physical layer (PHY) and Media Access Control (MAC) options.

Orthogonal frequency-division multiple access multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

IEEE 802.11h-2003, or just 802.11h, refers to the amendment added to the IEEE 802.11 standard for Spectrum and Transmit Power Management Extensions. It solves problems like interference with satellites and radar using the same 5 GHz frequency band. It was originally designed to address European regulations but is now applicable in many other countries. The standard provides Dynamic Frequency Selection (DFS) and Transmit Power Control (TPC) to the 802.11a PHY. It has been integrated into the full IEEE 802.11-2007 standard.

802.11j-2004 or 802.11j is an amendment to the IEEE 802.11 standard designed specially for Japanese market. It allows Wireless LAN operation in the 4.9 to 5 GHz band to conform to the Japanese rules for radio operation for indoor, outdoor and mobile applications. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

IEEE 802.11n-2009, commonly shortened to 802.11n, is a wireless-networking standard that uses multiple antennas to increase data rates. The Wi-Fi Alliance has also retroactively labelled the technology for the standard as Wi-Fi 4. It standardized support for multiple-input multiple-output, frame aggregation, and security improvements, among other features, and can be used in the 2.4 GHz or 5 GHz frequency bands.

IEEE 802.11y-2008 is an amendment to the IEEE 802.11-2007 standard that enables data transfer equipment to operate using the 802.11a protocol on a co-primary basis in the 3650 to 3700 MHz band except when near a grandfathered satellite earth station. IEEE 802.11y is only being allowed as a licensed band. It was approved for publication by the IEEE on September 26, 2008.

In telecommunications, white spaces refer to frequencies allocated to a broadcasting service but not used locally.

IEEE 802.11b-1999 or 802.11b, is an amendment to the IEEE 802.11 wireless networking specification that extends throughput up to 11 Mbit/s using the same 2.4GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.

IEEE 802.19 is the Wireless Coexistence Technical Advisory Group (TAG) within the IEEE 802 LAN/MAN Standards Committee. The TAG deals with coexistence between unlicensed wireless networks. Many of the IEEE 802 wireless standards use unlicensed spectrum and hence need to address the issue of coexistence. These unlicensed wireless devices may operate in the same unlicensed frequency band in the same location. This can lead to interference between these two wireless networks.

One of the key challenges of the cognitive radio based wireless networks, such as IEEE 802.22 wireless regional area networks (WRAN), is to address two apparently conflicting requirements: assuring Quality of Services (QoS) satisfaction for services provided by the cognitive radio networks, while providing reliable spectrum sensing for guaranteeing licensed user protection. To perform reliable sensing, in the basic operation mode on a single frequency band one has to allocate Quiet Times, in which no data transmission is permitted. Such periodic interruption of data transmission could impair the QoS of cognitive radio systems.

The Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC), formerly Standards Coordinating Committee 41 (SCC41), and even earlier the IEEE P1900 Standards Committee, is sponsored by the Institute of Electrical and Electronics Engineers (IEEE). The group develops standards for radio and spectrum management. Its working groups and resulting standards, numbered in the 1900 range, are sometimes referred to as IEEE 1900.X.

WiGig, alternatively known as 60GHz Wi-Fi, refers to a set of 60 GHz wireless network protocols. It includes the current IEEE 802.11ad standard and also the upcoming IEEE 802.11ay standard.

Super Wi-Fi is a term coined by the United States Federal Communications Commission (FCC) to describe a wireless networking proposal which the FCC plans to use for the creation of longer-distance wireless Internet access. The use of the trademark "Wi-Fi" in the name has been criticized because it is not based on Wi-Fi technology or endorsed by the Wi-Fi Alliance. A trade show has also been called the "Super WiFi Summit" . Various standards such as IEEE 802.22 and IEEE 802.11af have been proposed for this concept.

IEEE 802.11ah is a wireless networking protocol published in 2017 to be called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license exempt bands to provide extended range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz and 5 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of Things (IoT). The protocol's low power consumption competes with Bluetooth and has the added benefit of higher data rates and wider coverage range.

IEEE 802.11af, also referred to as White-Fi and Super Wi-Fi, is a wireless computer networking standard in the 802.11 family, that allows wireless local area network (WLAN) operation in TV white space spectrum in the VHF and UHF bands between 54 and 790 MHz. The standard was approved in February 2014. Cognitive radio technology is used to transmit on unused portions of TV channel band allocations, with the standard taking measures to limit interference for primary users, such as analog TV, digital TV, and wireless microphones.

References

  1. 1 2 "IEEE 802 LAN/MAN Standards Committee 802.22 WG on WRANs (Wireless Regional Area Networks)". IEEE . Retrieved January 18, 2009.
  2. Carl, Stevenson; G. Chouinard; Zhongding Lei; Wendong Hu; S. Shellhammer; W. Caldwell (January 2009). "IEEE 802.22: The First Cognitive Radio Wireless Regional Area Networks (WRANs) Standard". IEEE Communications Magazine . Vol. 47 no. 1. US: IEEE. pp. 130–138. doi:10.1109/MCOM.2009.4752688.
  3. "IEEE Starts Standard to Tap Open Regions in the TV Spectrum for Wireless Broadband Services". News release. IEEE Standards Association. October 12, 2004. Archived from the original on February 7, 2009. Retrieved August 19, 2011.
  4. Wendong Hu; et al. (May 2007). "Dynamic Frequency Hopping Communities for Efficient IEEE 802.22 Operation". IEEE Communications Magazine. 45 (5): 80–87. doi:10.1109/MCOM.2007.358853 . Retrieved May 15, 2007.
  5. IEEE 802.22-2011 § 8.4.1, p. 281
  6. IEEE 802.22-2011 § 8.1.2, p. 252
  7. IEEE 802.22-2011 § 8.5, p. 286
  8. IEEE 802.22-2011 § 8.5, pp. 286-292
  9. 1 2 Lekomtcev, Demain; Maršálek, Roman (June 2012). "Comparison of 802.11af and 802.22 standards – physical layer and cognitive functionality". elektrorevue. Retrieved 2013-12-29.
  10. Thiel, Justin (2006–2007). "Metropolitan and Regional Wireless Networking: 802.16, 802.20 and 802.22" . Retrieved 2013-12-31.
  11. Villardi, Gabriel; Alemseged, Yohannes; Sun, Chen; Sum, Chin-Sean; Nguyen, Tran; Baykas, Tuncer; Harada, Hiroshi (2011). "Enabling Coexistence of Multiple Cognitive Networks in TV White Space". IEEE Wireless Communications. 18 (4): 32–40. doi:10.1109/MWC.2011.5999762.
  12. Villardi, Gabriel; Sum, Chin-Sean; Sun, Chen; Alemseged, Yohannes; Lan, Zhou; Harada, Hiroshi (2012). "Efficiency of Dynamic Frequency Selection Based Coexistence Mechanisms for TV White Space Enabled Cognitive Wireless Access Points". IEEE Wireless Communications. 19 (6): 69–75. doi:10.1109/MWC.2012.6393520.