IEEE 802.11n-2009

Last updated
GenerationIEEE
standard
AdoptedMaximum
link rate
(Mb/s)
Radio
frequency
(GHz)
(Wi-Fi 0*) 802.11 19971–22.4
(Wi-Fi 1*) 802.11b 19991–112.4
(Wi-Fi 2*) 802.11a 19996–545
(Wi-Fi 3*) 802.11g 20032.4
Wi-Fi 4 802.11n 20096.5–6002.4, 5
Wi-Fi 5 802.11ac 20136.5–69335 [lower-alpha 1]
Wi-Fi 6 802.11ax 20210.4–9608 [1] 2.4, 5
Wi-Fi 6E 2.4, 5, 6 [lower-alpha 2]
Wi-Fi 7 802.11be expected 20240.4–23,0592.4, 5, 6 [2]
Wi-Fi 8 802.11bn expected 2028 [3] 100,000 [4] 2.4, 5, 6 [5]
*Wi‑Fi 0, 1, 2, and 3 are named by retroactive inference.
They do not exist in the official nomenclature. [6] [7] [8]

IEEE 802.11n-2009, or 802.11n, is a wireless-networking standard that uses multiple antennas to increase data rates. The Wi-Fi Alliance has also retroactively labelled the technology for the standard as Wi-Fi 4. [9] [10] It standardized support for multiple-input multiple-output (MIMO), frame aggregation, and security improvements, among other features, and can be used in the 2.4 GHz or 5 GHz frequency bands.

Contents

Being the first Wi-Fi standard to introduce MIMO support, devices and systems which supported the 802.11n standard (or draft versions thereof) were sometimes referred to as MIMO Wi-Fi products, especially prior to the introduction of the next generation standard. [11] The use of MIMO-OFDM (orthogonal frequency division multiplexing) to increase the data rate while maintaining the same spectrum as 802.11a was first demonstrated by Airgo Networks. [12]

The purpose of the standard is to improve network throughput over the two previous standards—802.11a and 802.11g—with a significant increase in the maximum net data rate from 54 Mbit/s to 72 Mbit/s with a single spatial stream in a 20 MHz channel, and 600 Mbit/s (slightly higher gross bit rate including for example error-correction codes, and slightly lower maximum throughput) with the use of four spatial streams at a channel width of 40 MHz. [13] [14]

IEEE 802.11n-2009 is an amendment to the IEEE 802.11-2007 wireless-networking standard. 802.11 is a set of IEEE standards that govern wireless networking transmission methods. They are commonly used today in their 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax versions to provide wireless connectivity in homes and businesses. Development of 802.11n began in 2002, seven years before publication. The 802.11n protocol is now Clause 20 of the published IEEE 802.11-2012 standard and subsequently renamed to clause 19 of the published IEEE 802.11-2020 standard.

Description

IEEE 802.11n is an amendment to IEEE 802.11-2007 as amended by IEEE 802.11k-2008, IEEE 802.11r-2008, IEEE 802.11y-2008, and IEEE 802.11w-2009, and builds on previous 802.11 standards by adding a multiple-input multiple-output (MIMO) system and 40 MHz channels to the PHY (physical layer) and frame aggregation to the MAC layer. There were older proprietary implementations of MIMO and 40MHz channels such as Xpress, Super G and Nitro which were based upon 802.11g and 802.11a technology, but this was the first time it was standardized across all radio manufacturers.

MIMO is a technology that uses multiple antennas to coherently resolve more information than possible using a single antenna. One way it provides this is through spatial division multiplexing (SDM), which spatially multiplexes multiple independent data streams, transferred simultaneously within one spectral channel of bandwidth. MIMO SDM can significantly increase data throughput as the number of resolved spatial data streams is increased. Each spatial stream requires a discrete antenna at both the transmitter and the receiver. In addition, MIMO technology requires a separate radio-frequency chain and analog-to-digital converter for each antenna, making it more expensive to implement than non-MIMO systems.

Channels operating with a width of 40 MHz are another feature incorporated into 802.11n; this doubles the channel width from 20 MHz in previous 802.11 PHYs to transmit data, and provides twice the PHY data rate available over a single 20 MHz channel. It can be enabled in the 5 GHz mode, or within the 2.4 GHz mode if there is knowledge that it will not interfere with any other 802.11 or non-802.11 (such as Bluetooth) system using the same frequencies. [15] The MIMO architecture, together with the wider channels, offers increased physical transfer rate over standard 802.11a (5 GHz) and 802.11g (2.4 GHz). [16]

Data encoding

The transmitter and receiver use precoding and postcoding techniques, respectively, to achieve the capacity of a MIMO link. Precoding includes spatial beamforming and spatial coding, where spatial beamforming improves the received signal quality at the decoding stage. Spatial coding can increase data throughput via spatial multiplexing and increase range by exploiting the spatial diversity, through techniques such as Alamouti coding.

Numbers of antennas and data streams

The number of simultaneous data streams is limited by the minimum number of antennas in use on both sides of the link. However, the individual radios often further limit the number of spatial streams that may carry unique data. The a × b : c notation helps identify what a given radio is capable of. The first number (a) is the maximum number of transmit antennas or transmitting TF chains that can be used by the radio. The second number (b) is the maximum number of receive antennas or receiving RF chains that can be used by the radio. The third number (c) is the maximum number of data spatial streams the radio can use. For example, a radio that can transmit on two antennas and receive on three, but can only send or receive two data streams, would be 2 × 3 : 2.

The 802.11n draft allows up to 4 × 4 : 4. Common configurations of 11n devices are 2 × 2 : 2, 2 × 3 : 2, and 3 × 2 : 2. All three configurations have the same maximum throughputs and features, and differ only in the amount of diversity the antenna systems provide. In addition, a fourth configuration, 3 × 3 : 3 is becoming common, which has a higher throughput, due to the additional data stream. [17]

Data rates

Assuming equal operating parameters to an 802.11g network achieving 54 megabits per second (on a single 20 MHz channel with one antenna), an 802.11n network can achieve 72 megabits per second (on a single 20 MHz channel with one antenna and 400 ns guard interval); 802.11n's speed may go up to 150 megabits per second if there are not other Bluetooth, microwave or Wi-Fi emissions in the neighborhood by using two 20 MHz channels in 40 MHz mode. If more antennas are used, then 802.11n can go up to 288 megabits per second in 20 MHz mode with four antennas, or 600 megabits per second in 40 MHz mode with four antennas and 400 ns guard interval. Because the 2.4 GHz band is seriously congested in most urban areas, 802.11n networks usually have more success in increasing data rate by utilizing more antennas in 20 MHz mode rather than by operating in the 40 MHz mode, as the 40 MHz mode requires a relatively free radio spectrum which is only available in rural areas away from cities. Thus, network engineers installing an 802.11n network should strive to select routers and wireless clients with the most antennas possible (one, two, three or four as specified by the 802.11n standard) and try to make sure that the network's bandwidth will be satisfactory even on the 20 MHz mode.

Data rates up to 600 Mbit/s are achieved only with the maximum of four spatial streams using one 40 MHz-wide channel. Various modulation schemes and coding rates are defined by the standard, which also assigns an arbitrary number to each; this number is the modulation and coding scheme index, or MCS index. The table below shows the relationships between the variables that allow for the maximum data rate. GI (Guard Interval): Timing between symbols. [18]

20 MHz channel uses an FFT of 64, of which: 56 OFDM subcarriers, 52 are for data and 4 are pilot tones with a carrier separation of 0.3125 MHz (20 MHz/64) (3.2 μs). Each of these subcarriers can be a BPSK, QPSK, 16-QAM or 64-QAM. The total bandwidth is 20 MHz with an occupied bandwidth of 17.8 MHz. Total symbol duration is 3.6 or 4 microseconds, which includes a guard interval of 0.4 (also known as short guard interval (SGI)) or 0.8 microseconds.

Modulation and coding schemes
MCS
index
Spatial
streams
Modulation
type
Coding
rate
Data rate (Mbit/s) [lower-alpha 3]
20 MHz channel40 MHz channel
800 ns GI 400 ns GI800 ns GI400 ns GI
01 BPSK 1/26.57.213.515
11 QPSK 1/21314.42730
21QPSK3/419.521.740.545
3116-QAM 1/22628.95460
4116-QAM3/43943.38190
5164-QAM2/35257.8108120
6164-QAM3/458.565121.5135
7164-QAM5/66572.2135150
82BPSK1/21314.42730
92QPSK1/22628.95460
102QPSK3/43943.38190
11216-QAM1/25257.8108120
12216-QAM3/47886.7162180
13264-QAM2/3104115.6216240
14264-QAM3/4117130243270
15264-QAM5/6130144.4270300
163BPSK1/219.521.740.545
173QPSK1/23943.38190
183QPSK3/458.565121.5135
19316-QAM1/27886.7162180
20316-QAM3/4117130243270
21364-QAM2/3156173.3324360
22364-QAM3/4175.5195364.5405
23364-QAM5/6195216.7405450
244BPSK1/22628.85460
254QPSK1/25257.6108120
264QPSK3/47886.8162180
27416-QAM1/2104115.6216240
28416-QAM3/4156173.2324360
29464-QAM2/3208231.2432480
30464-QAM3/4234260486540
31464-QAM5/6260288.8540600
321BPSK1/46.06.7
33 – 382Asymmetric mod.DependsDependsDependsDepends
39 – 523Asymmetric mod.DependsDependsDependsDepends
53 – 764Asymmetric mod.DependsDependsDependsDepends
77 – 127Reserved

Frame aggregation

PHY level data rate does not match user level throughput because of 802.11 protocol overheads, like the contention process, interframe spacing, PHY level headers (Preamble + PLCP) and acknowledgment frames. The main media access control (MAC) feature that provides a performance improvement is aggregation. Two types of aggregation are defined:

  1. Aggregation of MAC service data units (MSDUs) at the top of the MAC (referred to as MSDU aggregation or A-MSDU)
  2. Aggregation of MAC protocol data units (MPDUs) at the bottom of the MAC (referred to as MPDU aggregation or A-MPDU)

Frame aggregation is a process of packing multiple MSDUs or MPDUs together to reduce the overheads and average them over multiple frames, thereby increasing the user level data rate. A-MPDU aggregation requires the use of block acknowledgement or BlockAck, which was introduced in 802.11e and has been optimized in 802.11n.

Backward compatibility

When 802.11g was released to share the band with existing 802.11b devices, it provided ways of ensuring backward compatibility between legacy and successor devices. 802.11n extends the coexistence management to protect its transmissions from legacy devices, which include 802.11g, 802.11b and 802.11a. There are MAC and PHY level protection mechanisms as listed below:

  1. PHY level protection: Mixed Mode Format protection (also known as L-SIG TXOP Protection): In mixed mode, each 802.11n transmission is always embedded in an 802.11a or 802.11g transmission. For 20 MHz transmissions, this embedding takes care of the protection with 802.11a and 802.11g. However, 802.11b devices still need CTS protection.[ citation needed ]
  2. PHY level protection: Transmissions using a 40 MHz channel in the presence of 802.11a or 802.11g clients require using CTS protection on both 20 MHz halves of the 40 MHz channel, to prevent interference with legacy devices.[ citation needed ]
  3. MAC level protection: An RTS/CTS frame exchange or CTS frame transmission at legacy rates can be used to protect subsequent 11n transmission.[ citation needed ]

Deployment strategies

To achieve maximum output, a pure 802.11n 5 GHz network is recommended. The 5 GHz band has substantial capacity due to many non-overlapping radio channels and less radio interference as compared to the 2.4 GHz band. [19] An 802.11n-only network may be impractical for many users because they need to support legacy equipment that still is 802.11b/g only. In a mixed-mode system, an optimal solution would be to use a dual-radio access point and place the 802.11b/g traffic on the 2.4 GHz radio and the 802.11n traffic on the 5 GHz radio. [20] This setup assumes that all the 802.11n clients are 5 GHz capable, which is not a requirement of the standard. 5 GHz is optional on Wi-Fi 4; quite some Wi-Fi 4 capable devices only support 2.4 GHz and there is no practical way to upgrade them to support 5 GHz. Some enterprise-grade APs use band steering to send 802.11n clients to the 5 GHz band, leaving the 2.4 GHz band for legacy clients. Band steering works by responding only to 5 GHz association requests and not the 2.4 GHz requests from dual-band clients. [21]

40 MHz channels in 2.4 GHz

The 2.4 GHz  ISM band is fairly congested. With 802.11n, there is the option to double the bandwidth per channel to 40 MHz (fat channel) which results in slightly more than double the data rate. However, in North America, when in 2.4 GHz, enabling this option takes up to 82% of the unlicensed band. For example, channel 3 SCA (secondary channel above), also known as 3+7, reserves the first 9 out of the 11 channels available. In Europe and other places where channels 1–13 are available, allocating 1+5 uses slightly more than 50% of the channels, but the overlap with 9+13 is not usually significant as it lies at the edges of the bands, and so two 40 MHz bands typically work unless the transmitters are physically very closely spaced.[ original research? ]

The specification calls for requiring one primary 20 MHz channel as well as a secondary adjacent channel spaced ±20 MHz away. The primary channel is used for communications with clients incapable of 40 MHz mode. When in 40 MHz mode, the center frequency is actually the mean of the primary and secondary channels.

Primary
channel
20 MHz40 MHz above40 MHz below
Blocks2nd ch.CenterBlocks2nd ch.CenterBlocks
11–3531–7
21–4641–8
31–5751–9
42–6862–10
53–7973–11131–7
64–81084–12241–8
75–91195–13351–9
86–1012106–13462–10
97–1113117–13573–11
108–12684–12
119–13795–13
1210–138106–13
1311–139117–13

Local regulations may restrict certain channels from operation. For example, Channels 12 and 13 are normally unavailable for use as either a primary or secondary channel in North America. For further information, see List of WLAN channels.

Wi-Fi Alliance certification program

The Wi-Fi Alliance has upgraded its suite of compatibility tests for some enhancements that were finalized after a 2.0. Furthermore, it has affirmed that all draft-n certified products remain compatible with the products conforming to the final standards. [22]

draft-n

After the first draft of the IEEE 802.11n standard was published in 2006, many manufacturers began producing so-called "draft-n" products that claimed to comply with the standard draft, even before standard finalization which mean they might not be inter-operational with products produced according to IEEE 802.11 standard after the standard publication, nor even among themselves. [23] The Wi-Fi Alliance began certifying products based on IEEE 802.11n draft 2.0 mid-2007. [24] [25] This certification program established a set of features and a level of interoperability across vendors supporting those features, thus providing one definition of "draft n" to ensure compatibility and interoperability. The baseline certification covers both 20 MHz and 40 MHz wide channels, and up to two spatial streams, for maximum throughputs of 144.4 Mbit/s for 20 MHz and 300 Mbit/s for 40 MHz (with short guard interval). A number of vendors in both the consumer and enterprise spaces have built products that have achieved this certification. [26]

Timeline

The following are milestones in the development of 802.11n: [27]

September 11, 2002
The first meeting of the High-Throughput Study Group (HTSG) was held. Earlier in the year, in the Wireless Next Generation standing committee (WNG SC), presentations were heard on why they need change and what the target throughput would be required to justify the amendments. Compromise was reached in May 2002 to delay the start of the Study Group until September to allow 11g to complete major work during the July 2002 session.
September 11, 2003
The IEEE-SA New Standards Committee (NesCom) approved the Project Authorization Request (PAR) for the purpose of amending the 802.11-2007 standard. The new 802.11 Task Group (TGn) is to develop a new amendment. The TGn amendment is based on IEEE Std 802.11-2007, as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008 and IEEE P802.11w. TGn will be the 5th amendment to the 802.11-2007 standard. The scope of this project is to define an amendment that shall define standardized modifications to both the 802.11 physical layers (PHY) and the 802.11 Medium Access Control Layer (MAC) so that modes of operation can be enabled that are capable of much higher throughputs, with a maximum throughput of at least 100 Mbit/s, as measured at the MAC data service access point (SAP).
September 15, 2003
The first meeting of the new 802.11 Task Group (TGn).
May 17, 2004
Call for Proposals was issued.
September 13, 2004
32 first round of proposals were heard.
March 2005
Proposals were downselected to a single proposal, but there is not a 75% consensus on the one proposal. Further efforts were expended over the next 3 sessions without being able to agree on one proposal.
July 2005
Previous competitors TGn Sync, WWiSE, and a third group, MITMOT, said that they would merge their respective proposals as a draft. The standardization process was expected to be completed by the second quarter of 2009. [28]
January 19, 2006
The IEEE 802.11n Task Group approved the Joint Proposal's specification, enhanced by EWC's draft specification. [28]
March 2006
IEEE 802.11 Working Group sent the 802.11n draft to its first letter ballot, allowing the 500+ 802.11 voters to review the document and suggest bug fixes, changes, and improvements.
May 2, 2006
The IEEE 802.11 Working Group voted not to forward draft 1.0 of the proposed 802.11n standard. Only 46.6% voted to approve the ballot. To proceed to the next step in the IEEE standards process, a majority vote of 75% is required. This letter ballot also generated approximately 12,000 comments—many more than anticipated.
November 2006
TGn voted to accept draft version 1.06, incorporating all accepted technical and editorial comment resolutions prior to this meeting. An additional 800 comment resolutions were approved during the November session which will be incorporated into the next revision of the draft. As of this meeting, three of the 18 comment topic ad hoc groups chartered in May had completed their work, and 88% of the technical comments had been resolved, with approximately 370 remaining.
January 19, 2007
The IEEE 802.11 Working Group unanimously (100 yes, 0 no, 5 abstaining) approved a request by the 802.11n Task Group to issue a new draft 2.0 of the proposed standard. Draft 2.0 was based on the Task Group's working draft version 1.10. Draft 2.0 was at this point in time the cumulative result of thousands of changes to the 11n document as based on all previous comments.
February 7, 2007
The results of Letter Ballot 95, a 15-day Procedural vote, passed with 97.99% approval and 2.01% disapproval. On the same day, 802.11 Working Group announced the opening of Letter Ballot 97. It invited detailed technical comments to closed on 9 March 2007.
March 9, 2007
Letter Ballot 97, the 30-day Technical vote to approve draft 2.0, closed. They were announced by IEEE 802 leadership during the Orlando Plenary on 12 March 2007. The ballot passed with an 83.4% approval, above the 75% minimum approval threshold. There were still approximately 3,076 unique comments, which were to be individually examined for incorporation into the next revision of draft 2.
June 25, 2007
The Wi-Fi Alliance announced its official certification program for devices based on draft 2.0.
September 7, 2007
Task Group agreed on all outstanding issues for draft 2.07. Draft 3.0 is authorized, with the expectation that it go to a sponsor ballot in November 2007.
November 2007
Draft 3.0 approved (240 voted affirmative, 43 negative, and 27 abstained). The editor was authorized to produce draft 3.01.
January 2008
Draft 3.02 approved. This version incorporates previously approved technical and editorial comments. There remain 127 unresolved technical comments. It was expected that all remaining comments will be resolved and that TGn and WG11 would subsequently release draft 4.0 for working group recirculation ballot following the March meeting.
May 2008
Draft 4.0 approved.
July 2008
Draft 5.0 approved and anticipated publication timeline modified.
September 2008
Draft 6.0 approved.
November 2008
Draft 7.0 approved.
January 2009
Draft 7.0 forwarded to sponsor ballot; the sponsor ballot was approved (158 for, 45 against, 21 abstaining); 241 comments were received.
March 2009
Draft 8.0 proceeded to sponsor ballot recirculation; the ballot passed by an 80.1% majority (75% required) (228 votes received, 169 approve, 42 not approve); 277 members are in the sponsor ballot pool; The comment resolution committee resolved the 77 comments received, and authorized the editor to create a draft 9.0 for further balloting.
April 4, 2009
Draft 9.0 passed sponsor ballot recirculation; the ballot passed by an 80.7% majority (75% required) (233 votes received, 171 approve, 41 not approve); 277 members are in the sponsor ballot pool; The comment resolution committee is resolving the 23 new comments received, and will authorize the editor to create a new draft for further balloting.
May 15, 2009
Draft 10.0 passed sponsor ballot recirculation.
June 23, 2009
Draft 11.0 passed sponsor ballot recirculation.
July 17, 2009
Final WG Approval passed with 53 approve, 1 against, 6 abstain. [29] Unanimous approval to send Final WG draft 11.0 to RevCom. [30]
September 11, 2009
RevCom/Standards Board approval. [31]
October 29, 2009
Published. [14]

Comparison

Frequency
range,
or type
PHYProtocolRelease
date [32]
Freq­uencyBandwidthStream
data rate [33]
Max.
MIMO streams
ModulationApprox. range
In­doorOut­door
(GHz)(MHz)(Mbit/s)
1–7 GHzDSSS [34] , FHSS [upper-alpha 1] 802.11-1997 June 19972.4221, 2 DSSS, FHSS [upper-alpha 1] 20 m (66 ft)100 m (330 ft)
HR/DSSS [34] 802.11b September 19992.4221, 2, 5.5, 11 CCK, DSSS35 m (115 ft)140 m (460 ft)
OFDM 802.11a September 199955, 10, 206, 9, 12, 18, 24, 36, 48, 54
(for 20 MHz bandwidth,
divide by 2 and 4 for 10 and 5 MHz)
OFDM 35 m (115 ft)120 m (390 ft)
802.11j November 20044.9, 5.0
[upper-alpha 2] [35]
 ? ?
802.11y November 20083.7 [upper-alpha 3]  ?5,000 m (16,000 ft) [upper-alpha 3]
802.11p July 20105.9 200 m 1,000 m (3,300 ft) [36]
802.11bd December 20225.9, 60 500 m 1,000 m (3,300 ft)
ERP-OFDM [37] 802.11g June 20032.438 m (125 ft)140 m (460 ft)
HT-OFDM [38] 802.11n
(Wi-Fi 4)
October 20092.4, 520Up to 288.8 [upper-alpha 4] 4 MIMO-OFDM
(64-QAM)
70 m (230 ft)250 m (820 ft) [39]
40Up to 600 [upper-alpha 4]
VHT-OFDM [38] 802.11ac
(Wi-Fi 5)
December 2013520Up to 693 [upper-alpha 4] 8DL
MU-MIMO OFDM
(256-QAM)
35 m (115 ft) [40]  ?
40Up to 1600 [upper-alpha 4]
80Up to 3467 [upper-alpha 4]
160Up to 6933 [upper-alpha 4]
HE-OFDMA 802.11ax
(Wi-Fi 6,
Wi-Fi 6E)
May 20212.4, 5, 620Up to 1147 [upper-alpha 5] 8UL/DL
MU-MIMO OFDMA
(1024-QAM)
30 m (98 ft)120 m (390 ft) [upper-alpha 6]
40Up to 2294 [upper-alpha 5]
80Up to 5.5 Gbit/s [upper-alpha 5]
80+80Up to 11.0 Gbit/s [upper-alpha 5]
EHT-OFDMA 802.11be
(Wi-Fi 7)
Sep 2024
(est.)
2.4, 5, 680Up to 11.5 Gbit/s [upper-alpha 5] 16UL/DL
MU-MIMO OFDMA
(4096-QAM)
30 m (98 ft)120 m (390 ft) [upper-alpha 6]
160
(80+80)
Up to 23 Gbit/s [upper-alpha 5]
240
(160+80)
Up to 35 Gbit/s [upper-alpha 5]
320
(160+160)
Up to 46.1 Gbit/s [upper-alpha 5]
UHR 802.11bn
(Wi-Fi 8)
May 2028
(est.)
2.4, 5, 6,
42, 60, 71
320Up to
100000
(100 Gbit/s)
16Multi-link
MU-MIMO OFDM
(8192-QAM)
 ? ?
WUR [upper-alpha 7] 802.11ba October 20212.4, 54, 200.0625, 0.25
(62.5 kbit/s, 250 kbit/s)
OOK (multi-carrier OOK) ? ?
mmWave
(WiGig)
DMG [41] 802.11ad December 2012602160
(2.16 GHz)
Up to 8085 [42]
(8 Gbit/s)
OFDM, [upper-alpha 1] single carrier, low-power single carrier [upper-alpha 1] 3.3 m (11 ft) [43]  ?
802.11aj April 201860 [upper-alpha 8] 1080 [44] Up to 3754
(3.75 Gbit/s)
single carrier, low-power single carrier [upper-alpha 1]  ? ?
CMMG 802.11aj April 201845 [upper-alpha 8] 540,
1080
Up to 15015 [45]
(15 Gbit/s)
4 [46] OFDM, single carrier ? ?
EDMG [47] 802.11ay July 202160Up to 8640
(8.64 GHz)
Up to 303336 [48]
(303 Gbit/s)
8 OFDM, single carrier10 m (33 ft)100 m (328 ft)
Sub 1 GHz (IoT)TVHT [49] 802.11af February 2014 0.054–
0.79
6, 7, 8Up to 568.9 [50] 4 MIMO-OFDM  ? ?
S1G [49] 802.11ah May 20170.7, 0.8,
0.9
1–16Up to 8.67 [51]
(@2 MHz)
4 ? ?
Light
(Li-Fi)
LC
(VLC/OWC)
802.11bb December 2023
(est.)
800–1000 nm20Up to 9.6 Gbit/sO-OFDM  ? ?
IR [upper-alpha 1]
(IrDA)
802.11-1997 June 1997850–900 nm ?1, 2 PPM [upper-alpha 1]  ? ?
802.11 Standard rollups
 802.11-2007 (802.11ma)March 20072.4, 5Up to 54 DSSS, OFDM
802.11-2012 (802.11mb)March 20122.4, 5Up to 150 [upper-alpha 4] DSSS, OFDM
802.11-2016 (802.11mc)December 20162.4, 5, 60Up to 866.7 or 6757 [upper-alpha 4] DSSS, OFDM
802.11-2020 (802.11md)December 20202.4, 5, 60Up to 866.7 or 6757 [upper-alpha 4] DSSS, OFDM
802.11meSeptember 2024
(est.)
2.4, 5, 6, 60Up to 9608 or 303336 DSSS, OFDM
  1. 1 2 3 4 5 6 7 This is obsolete, and support for this might be subject to removal in a future revision of the standard
  2. For Japanese regulation.
  3. 1 2 IEEE 802.11y-2008 extended operation of 802.11a to the licensed 3.7 GHz band. Increased power limits allow a range up to 5,000 m. As of 2009, it is only being licensed in the United States by the FCC.
  4. 1 2 3 4 5 6 7 8 9 Based on short guard interval; standard guard interval is ~10% slower. Rates vary widely based on distance, obstructions, and interference.
  5. 1 2 3 4 5 6 7 8 For single-user cases only, based on default guard interval which is 0.8 microseconds. Since multi-user via OFDMA has become available for 802.11ax, these may decrease. Also, these theoretical values depend on the link distance, whether the link is line-of-sight or not, interferences and the multi-path components in the environment.
  6. 1 2 The default guard interval is 0.8 microseconds. However, 802.11ax extended the maximum available guard interval to 3.2 microseconds, in order to support Outdoor communications, where the maximum possible propagation delay is larger compared to Indoor environments.
  7. Wake-up Radio (WUR) Operation.
  8. 1 2 For Chinese regulation.

See also

Standard

Notes

  1. 802.11ac only specifies operation in the 5 GHz band. Operation in the 2.4 GHz band is specified by 802.11n.
  2. Wi-Fi 6E is the industry name that identifies Wi-Fi devices that operate in 6 GHz. Wi-Fi 6E offers the features and capabilities of Wi-Fi 6 extended into the 6 GHz band.
  3. Per spatial stream.

Related Research Articles

IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies Wireless Specialty Networks (WSN) standards. The working group was formerly known as Working Group for Wireless Personal Area Networks.

<span class="mw-page-title-main">IEEE 802.11</span> Wireless network standard

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

<span class="mw-page-title-main">Wi-Fi</span> Wireless local area network

Wi-Fi is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks, used globally in home and small office networks to link devices and to provide Internet access with wireless routers and wireless access points in public places such as coffee shops, hotels, libraries, and airports.

<span class="mw-page-title-main">IEEE 802.16</span> Series of wireless broadband standards

IEEE 802.16 is a series of wireless broadband standards written by the Institute of Electrical and Electronics Engineers (IEEE). The IEEE Standards Board established a working group in 1999 to develop standards for broadband for wireless metropolitan area networks. The Workgroup is a unit of the IEEE 802 local area network and metropolitan area network standards committee.

802.11j-2004 or 802.11j is an amendment to the IEEE 802.11 standard designed specially for Japanese market. It allows wireless LAN operation in the 4.9–5.0 GHz band to conform to the Japanese rules for radio operation for indoor, outdoor and mobile applications. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

IEEE 802.11p is an approved amendment to the IEEE 802.11 standard to add wireless access in vehicular environments (WAVE), a vehicular communication system. It defines enhancements to 802.11 required to support intelligent transportation systems (ITS) applications. This includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure, so called vehicle-to-everything (V2X) communication, in the licensed ITS band of 5.9 GHz (5.85–5.925 GHz). IEEE 1609 is a higher layer standard based on the IEEE 802.11p. It is also the basis of a European standard for vehicular communication known as ETSI ITS-G5.

<span class="mw-page-title-main">High-speed multimedia radio</span>

High-speed multimedia radio (HSMM) is the implementation of high-speed wireless TCP/IP data networks over amateur radio frequency allocations using commercial off-the-shelf (COTS) hardware such as 802.11 Wi-Fi access points. This is possible because the 802.11 unlicensed frequency bands partially overlap with amateur radio bands and ISM bands in many countries. Only licensed amateur radio operators may legally use amplifiers and high-gain antennas within amateur radio frequencies to increase the power and coverage of an 802.11 signal.

IEEE 802.11y-2008 is an amendment to the IEEE 802.11-2007 standard that enables data transfer equipment to operate using the 802.11a protocol on a co-primary basis in the 3650 to 3700 MHz band except when near a grandfathered satellite earth station. IEEE 802.11y is only being allowed as a licensed band. It was approved for publication by the IEEE on September 26, 2008.

Long-range Wi-Fi is used for low-cost, unregulated point-to-point computer network connections, as an alternative to other fixed wireless, cellular networks or satellite Internet access.

<span class="mw-page-title-main">802.11 non-standard equipment</span> Equipment extending the Wi-Fi standards with priority technology

802.11 non-standard equipment is equipment that seeks to extend the Wi-Fi standard 802.11, by implementing proprietary features.

IEEE 802.11a-1999 or 802.11a was an amendment to the IEEE 802.11 wireless local network specifications that defined requirements for an orthogonal frequency-division multiplexing (OFDM) communication system. It was originally designed to support wireless communication in the unlicensed national information infrastructure (U-NII) bands as regulated in the United States by the Code of Federal Regulations, Title 47, Section 15.407.

IEEE 802.11b-1999 or 802.11b is an amendment to the IEEE 802.11 wireless networking specification that extends throughout up to 11 Mbit/s using the same 2.4 GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended link rate to up to 54 Mbit/s using the same 20 MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification, under the marketing name of Wi‑Fi, has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

<span class="mw-page-title-main">WiGig</span> Type of wireless local area network based on IEEE 802.11

WiGig, alternatively known as 60 GHz Wi-Fi, refers to a set of 60 GHz wireless network protocols. It includes the current IEEE 802.11ad standard and also the IEEE 802.11ay standard.

IEEE 802.11ac-2013 or 802.11ac is a wireless networking standard in the IEEE 802.11 set of protocols, providing high-throughput wireless local area networks (WLANs) on the 5 GHz band. The standard has been retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.

IEEE 802.11ah is a wireless networking protocol published in 2017 called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license-exempt bands to provide extended-range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz, 5 GHz and 6 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of things (IoT). The protocol's low power consumption competes with Bluetooth, LoRa, and Zigbee, and has the added benefit of higher data rates and wider coverage range.

<span class="mw-page-title-main">Wi-Fi 6</span> Wireless networking standard

Wi-Fi 6, or IEEE 802.11ax, is an IEEE standard from the Wi-Fi Alliance, for wireless networks (WLANs). It operates in the 2.4 GHz and 5 GHz bands, with an extended version, Wi-Fi 6E, that adds the 6 GHz band. It is an upgrade from Wi-Fi 5 (802.11ac), with improvements for better performance in crowded places. Wi-Fi 6 covers frequencies in license-exempt bands between 1 and 7.125 GHz, including the commonly used 2.4 GHz and 5 GHz, as well as the broader 6 GHz band.

IEEE 802.11ay, Enhanced Throughput for Operation in License-exempt Bands above 45 GHz, is a follow-up to IEEE 802.11ad WiGig standard which quadruples the bandwidth and adds MIMO up to 8 streams. Development started in 2015 and the final standard IEEE 802.11ay-2021 was approved in March 2021.

<span class="mw-page-title-main">Wi-Fi 7</span> Wireless networking standard in development

IEEE 802.11be, dubbed Extremely High Throughput (EHT), is a wireless networking standard in the IEEE 802.11 set of protocols, which is designated Wi-Fi 7 by Wi-Fi Alliance. It has built upon 802.11ax, focusing on WLAN indoor and outdoor operation with stationary and pedestrian speeds in the 2.4, 5, and 6 GHz frequency bands.

References

  1. "MCS table (updated with 80211ax data rates)". semfionetworks.com.
  2. "Understanding Wi-Fi 4/5/6/6E/7". wiisfi.com.
  3. Reshef, Ehud; Cordeiro, Carlos (2023). "Future Directions for Wi-Fi 8 and Beyond". IEEE Communications Magazine . 60 (10). IEEE. doi:10.1109/MCOM.003.2200037 . Retrieved 2024-05-21.
  4. "What is Wi-Fi 8?". everythingrf.com. March 25, 2023. Retrieved January 21, 2024.
  5. Giordano, Lorenzo; Geraci, Giovanni; Carrascosa, Marc; Bellalta, Boris (November 21, 2023). "What Will Wi-Fi 8 Be? A Primer on IEEE 802.11bn Ultra High Reliability". arXiv: 2303.10442 .
  6. Kastrenakes, Jacob (2018-10-03). "Wi-Fi Now Has Version Numbers, and Wi-Fi 6 Comes Out Next Year". The Verge. Retrieved 2019-05-02.
  7. Phillips, Gavin (18 January 2021). "The Most Common Wi-Fi Standards and Types, Explained". MUO - Make Use Of. Archived from the original on 11 November 2021. Retrieved 9 November 2021.
  8. "Wi-Fi Generation Numbering". ElectronicsNotes. Archived from the original on 11 November 2021. Retrieved 10 November 2021.
  9. "Wi-Fi Alliance introduces Wi-Fi 6".
  10. "Here come Wi-Fi 4, 5 and 6 in plan to simplify 802.11 networking names". CNET.
  11. 張俊傑 (2008). 數位家庭無「線」蔓延 802.11n傳輸率大幅提升 MIMO測試不可或缺. 每月焦點. 新通訊元件雜誌 (in Traditional Chinese). Vol. 2008 年 7 月號, no. 89 期. 城邦文化事業股份有限公司. Archived from the original on 2018-12-05. Retrieved 2018-11-29. Alt URL
  12. Van Nee, Richard (March 2004). "MIMO-OFDM Multiple Antenna Technology". Communications Design Conference. San Francisco.
  13. Stanford, Michael (September 7, 2007). "How does 802.11n get to 600Mbps?". Wirevolution.com. Archived from the original on November 9, 2007.
  14. 1 2 IEEE 802.11n-2009—Amendment 5: Enhancements for Higher Throughput. IEEE-SA. 29 October 2009. doi:10.1109/IEEESTD.2009.5307322. ISBN   978-0-7381-6046-7.
  15. Vlantis, George (2009-05-11). "TGn SB2: Presentation for 40MHz Coexistence CIDs". Archived from the original on 2011-07-17. Retrieved 2009-08-11.
  16. "Wireless Without Compromise: Delivering the promise of IEEE 802.11n" (PDF). Archived from the original (PDF) on 2009-01-06.
  17. "Intel Ultimate N Wi-Fi Link 5300 Product Brief" (PDF). Download.Intel.com. Intel. 2008. Archived from the original (PDF) on 2009-01-26. Retrieved 2015-12-16.
  18. "802.11n Primer" (PDF). www.airmagnet.com. August 5, 2008. Archived from the original (PDF) on 17 February 2013. Retrieved 3 May 2018.
  19. Geier, Jim. "How to: Minimize 802.11 Interference Issues". Wireless-Nets, Ltd. Archived from the original on 2008-08-12. Retrieved 2008-07-30.
  20. Geier, Jim. "How to: Migrate to 802.11n in the Enterprise". Wireless-Nets, Ltd. Archived from the original on 2008-09-21. Retrieved 2008-07-30.
  21. Jackman, Shawn M.; Swartz, Matt; Burton, Marcus; Head, Thomas W. (2011). Certified Wireless Design Professional Official Study Guide. John Wiley & Sons. pp. 519–521. ISBN   978-0470769041.
  22. "Wi-Fi Alliance Launches Updated Wi-Fi Certified n Program" (Press release). Wi-Fi Alliance. September 30, 2009. Archived from the original on October 4, 2009.
  23. Shaw, Keith (2006-08-07). "The draft-n controversy". Network World. Archived from the original on April 8, 2015.
  24. "Wi-Fi Alliance Begins Testing of Next-Generation Wi-Fi Gear" (Press release). Wi-Fi Alliance. June 25, 2007. Archived from the original on 2008-04-11.
  25. "Wi-Fi Alliance Reveals New Logo and Announces First Wi-Fi Certified 802.11n Draft 2.0 Products and Test Suite". wi-fi.org. May 16, 2007. Archived from the original on 2008-12-22.
  26. "Wi-Fi Certified 802.11n draft 2.0 products". Archived from the original on 2007-08-11. Retrieved 2008-07-18.(registration required)
  27. "IEEE 802.11n Report (Status of Project)". March 16, 2009. Archived from the original on June 10, 2011.
  28. 1 2 "Gartner: don't rush on 802.11n" . Retrieved 2024-04-23.
  29. Rosdahl, Jon. "July 2009 Plenary Presentation from WG11 to 802 EC". p. 10. Retrieved July 13, 2018.
  30. "July 2009 meeting minutes" (PDF). IEEE 802 LMSC Executive Committee (unconfirmed ed.). 17 July 2009. Archived (PDF) from the original on 6 June 2011. Retrieved 10 August 2009.
  31. "IEEE-SA - News & Events". IEEE-SA. Archived from the original on 2010-07-26.
  32. "Official IEEE 802.11 working group project timelines". January 26, 2017. Retrieved 2017-02-12.
  33. "Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi Networks" (PDF). Wi-Fi Alliance . September 2009.
  34. 1 2 Banerji, Sourangsu; Chowdhury, Rahul Singha. "On IEEE 802.11: Wireless LAN Technology". arXiv: 1307.2661 .
  35. "The complete family of wireless LAN standards: 802.11 a, b, g, j, n" (PDF).
  36. The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges (PDF). World Congress on Engineering and Computer Science. 2014.
  37. IEEE Standard for Information Technology- Telecommunications and Information Exchange Between Systems- Local and Metropolitan Area Networks- Specific Requirements Part Ii: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (n.d.). doi:10.1109/ieeestd.2003.94282
  38. 1 2 "Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice" (PDF).
  39. Belanger, Phil; Biba, Ken (2007-05-31). "802.11n Delivers Better Range". Wi-Fi Planet. Archived from the original on 2008-11-24.
  40. "IEEE 802.11ac: What Does it Mean for Test?" (PDF). LitePoint. October 2013. Archived from the original (PDF) on 2014-08-16.
  41. "IEEE Standard for Information Technology" . IEEE Std 802.11aj-2018. April 2018. doi:10.1109/IEEESTD.2018.8345727.
  42. "802.11ad - WLAN at 60 GHz: A Technology Introduction" (PDF). Rohde & Schwarz GmbH. November 21, 2013. p. 14.
  43. "Connect802 - 802.11ac Discussion". www.connect802.com.
  44. "Understanding IEEE 802.11ad Physical Layer and Measurement Challenges" (PDF).
  45. "802.11aj Press Release".
  46. "An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System". IEICE Transactions on Communications. E101.B (2): 262–276. 2018. doi: 10.1587/transcom.2017ISI0004 .
  47. "IEEE 802.11ay: 1st real standard for Broadband Wireless Access (BWA) via mmWave – Technology Blog". techblog.comsoc.org.
  48. "P802.11 Wireless LANs". IEEE. pp. 2, 3. Archived from the original on 2017-12-06. Retrieved Dec 6, 2017.
  49. 1 2 "802.11 Alternate PHYs A whitepaper by Ayman Mukaddam" (PDF).
  50. "TGaf PHY proposal". IEEE P802.11. 2012-07-10. Retrieved 2013-12-29.
  51. "IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz" (PDF). Journal of ICT Standardization. 1 (1): 83–108. July 2013. doi:10.13052/jicts2245-800X.115.

Further reading