Multiple Registration Protocol (MRP), which replaced Generic Attribute Registration Protocol (GARP), is a generic registration framework defined by the IEEE 802.1ak amendment to the IEEE 802.1Q standard. MRP allows bridges, switches or other similar devices to register and de-register attribute values, such as VLAN identifiers and multicast group membership across a large local area network. MRP operates at the data link layer.
GARP was defined by the IEEE 802.1 working group to provide a generic framework allowing bridges (or other devices like switches) to register and de-register attribute values such as VLAN identifiers and multicast group membership. GARP defines the architecture, rules of operation, state machines and variables for the registration and de-registration of attribute values. GARP was used by two applications: GARP VLAN Registration Protocol (GVRP) for registering VLAN trunking between multilayer switches, and by the GARP Multicast Registration Protocol (GMRP). The latter two were both mostly enhancements for VLAN-aware switches per definition in IEEE 802.1Q.
Multiple Registration Protocol (MRP) was introduced in order to replace GARP, with the IEEE 802.1ak amendment in 2007. The two GARP applications were also modified in order to use MRP. GMRP was replaced by Multiple MAC Registration Protocol (MMRP) and GVRP was replaced by Multiple VLAN Registration Protocol (MVRP). This change essentially moved the definitions of GARP, GVRP, and GMRP into an 802.1Q-based environment, implying they were already VLAN aware. This also allowed for significant streamlining of the underlying protocol without much change to the interface of the applications themselves. [1]
The new protocol and applications fixed a problem with the old GARP-based GVRP-based system, where a simple registration or a failover could take an extremely long time to converge on a large network, [2] incurring a significant bandwidth degradation.
It is expected GARP will be removed from IEEE 802.1D at some point in the future. [3]
Multiple MAC Registration Protocol is a data link layer (layer 2) protocol to register group MAC addresses (i.e. multicast) on multiple switches. It is an MRP application, originally defined in IEEE 802.1ak-2007 and subsequently included in 802.1Q. It replaced the 802.1D-based GMRP. The purpose of MMRP is to allow multicast traffic in bridged LANs to be confined to areas of the network where it is required.
MVRP, which replaced GVRP, is a standards-based Layer 2 network protocol, for automatic configuration of VLAN information on switches. It was defined in the 802.1ak amendment to 802.1Q-2005.
Within a layer 2 network, MVRP provides a method to dynamically share VLAN information and configure the needed VLANs. For example, in order to add a switch port to a VLAN, only the end port, or the VLAN-supporting network device connected to the switch port need be reconfigured, and all necessary VLAN trunks are dynamically created on the other MVRP-enabled switches. Without using MVRP, either a manual configuration of VLAN trunks or use of a manufacturer's proprietary method is necessary.
It is through MVRP that dynamic VLAN entries will be updated in the filtering database. In short, MVRP helps to maintain VLAN configuration dynamically based on current network configurations.
802.1Q allows for:
MVRP defines a MRP application that provides the VLAN registration service. MVRP makes use of MRP Attribute Declaration (MAD) and MRP Attribute Propagation (MAP), which provide the common state machine descriptions and the common information propagation mechanisms defined for use in MRP-based applications. MVRP provides a mechanism for dynamic maintenance of the contents of dynamic VLAN registration entries for each VLAN, and for propagating the information they contain to other bridges. This information allows MVRP-aware devices to establish and update dynamically their knowledge of the set of VLANs that currently have active members, and through which ports those members can be reached. The main purpose of MVRP is to allow switches to automatically discover some of the VLAN information that would otherwise need to be manually configured.
The replaced GVRP was essentially the same thing, but it used the services of the 802.1D-based GARP application. GVRP made use of GARP Information Declaration (GID) and GARP Information Propagation (GIP), which correspond to the MAP and MAD in MRP. It was defined in the original release of 802.1D-1998 until it was replaced by MVRP.
It was replaced because the non-VLAN-aware GARP had serious deficiencies when operating in large VLAN networks. [2]
This section needs expansion. You can help by adding to it. (August 2019) |
MSRP is the base for the Stream Reservation Protocol first defined in Audio Video Bridging specifications.
The Spanning Tree Protocol (STP) is a network protocol that builds a loop-free logical topology for Ethernet networks. The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. Spanning tree also allows a network design to include backup links providing fault tolerance if an active link fails.
A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. Basically, a VLAN behaves like a virtual switch or network link that can share the same physical structure with other VLANs while staying logically separate from them. Between network devices, VLANs work by applying tags to network frames and handling these tags in networking systems –creating the appearance and functionality of network traffic that is physically on a single network but acts as if it were split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.
A multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers. The MLS was invented by engineers at Digital Equipment Corporation.
Cisco Discovery Protocol (CDP) is a proprietary data link layer protocol developed by Cisco Systems in 1994 by Keith McCloghrie and Dino Farinacci. It is used to share information about other directly connected Cisco equipment, such as the operating system version and IP address. CDP can also be used for On-Demand Routing, which is a method of including routing information in CDP announcements so that dynamic routing protocols do not need to be used in simple networks.
IEEE 802.1Q, often referred to as Dot1q, is the networking standard that supports virtual local area networking (VLANs) on an IEEE 802.3 Ethernet network. The standard defines a system of VLAN tagging for Ethernet frames and the accompanying procedures to be used by bridges and switches in handling such frames. The standard also contains provisions for a quality-of-service prioritization scheme commonly known as IEEE 802.1p and defines the Generic Attribute Registration Protocol.
VLAN Trunking Protocol (VTP) is a Cisco proprietary protocol that propagates the definition of Virtual Local Area Networks (VLAN) on the whole local area network. To do this, VTP carries VLAN information to all the switches in a VTP domain. VTP advertisements can be sent over 802.1Q, and ISL trunks. VTP is available on most of the Cisco Catalyst Family products. Using VTP, each Catalyst Family Switch advertises the following on its trunk ports:
EtherChannel is a port link aggregation technology or port-channel architecture used primarily on Cisco switches. It allows grouping of several physical Ethernet links to create one logical Ethernet link for the purpose of providing fault-tolerance and high-speed links between switches, routers and servers. An EtherChannel can be created from between two and eight active Fast, Gigabit or 10-Gigabit Ethernet ports, with an additional one to eight inactive (failover) ports which become active as the other active ports fail. EtherChannel is primarily used in the backbone network, but can also be used to connect end user machines.
Cisco Inter-Switch Link (ISL) is a Cisco proprietary link layer protocol that maintains VLAN information in Ethernet frames as traffic flows between switches and routers, or switches and switches. ISL is Cisco's VLAN encapsulation protocol and is supported only on some Cisco equipment over the Fast and Gigabit Ethernet links. It is offered as an alternative to the IEEE 802.1Q standard, a widely used VLAN tagging protocol, although the use of ISL for new sites is deprecated by Cisco.
The Multiple Spanning Tree Protocol (MSTP) and algorithm, provides both simple and full connectivity assigned to any given virtual LAN (VLAN) throughout a bridged local area network. MSTP uses bridge protocol data unit (BPDUs) to exchange information between spanning-tree compatible devices, to prevent loops in each Multiple Spanning Tree instance (MSTI) and in the common and internal spanning tree (CIST), by selecting active and blocked paths. This is done as well as in Spanning Tree Protocol (STP) without the need of manually enabling backup links and getting rid of switching loop danger.
The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol used by network devices for advertising their identity, capabilities, and neighbors on a local area network based on IEEE 802 technology, principally wired Ethernet. The protocol is formally referred to by the IEEE as Station and Media Access Control Connectivity Discovery specified in IEEE 802.1AB with additional support in IEEE 802.3 section 6 clause 79.
IEEE P802.1p was a task group active from 1995 to 1998, responsible for adding traffic class expediting and dynamic multicast filtering to the IEEE 802.1D standard. The task group developed a mechanism for implementing quality of service (QoS) at the media access control (MAC) level. Although this technique is commonly referred to as IEEE 802.1p, the group's work with the new priority classes and Generic Attribute Registration Protocol (GARP) was not published separately but was incorporated into a major revision of the standard, IEEE 802.1D-1998, which subsequently was incorporated into IEEE 802.1Q-2014 standard. The work also required a short amendment extending the frame size of the Ethernet standard by four bytes which was published as IEEE 802.3ac in 1998.
Provider Backbone Bridge Traffic Engineering (PBB-TE) is a computer networking technology specified in IEEE 802.1Qay, an amendment to the IEEE 802.1Q standard. PBB-TE adapts Ethernet to carrier class transport networks. It is based on the layered VLAN tags and MAC-in-MAC encapsulation defined in IEEE 802.1ah, but it differs from PBB in eliminating flooding, dynamically created forwarding tables, and spanning tree protocols. Compared to PBB and its predecessors, PBB-TE behaves more predictably and its behavior can be more easily controlled by the network operator, at the expense of requiring up-front connection configuration at each bridge along a forwarding path. PBB-TE Operations, Administration, and Management (OAM) is usually based on IEEE 802.1ag. It was initially based on Nortel's Provider Backbone Transport (PBT).
IEEE 802.1ah is an amendment to the IEEE 802.1Q networking standard which adds support for Provider Backbone Bridges. It includes an architecture and a set of protocols for routing over a provider's network, allowing interconnection of multiple provider bridge networks without losing each customer's individually defined VLANs. It was initially created by Nortel before being submitted to the IEEE 802.1 committee for standardization. The final version was approved by the IEEE in June 2008 and has been integrated into IEEE 802.1Q-2011.
The Dynamic Trunking Protocol (DTP) is a proprietary link layer protocol developed by Cisco Systems for the purpose of negotiating trunking on a link between two VLAN-aware switches, and for negotiating the type of trunking encapsulation to be used. VLAN trunks formed using DTP may utilize either IEEE 802.1Q or Cisco ISL trunking protocols.
In network routing, the control plane is the part of the router architecture that is concerned with establishing the network topology, or the information in a routing table that defines what to do with incoming packets. Control plane functions, such as participating in routing protocols, run in the architectural control element. In most cases, the routing table contains a list of destination addresses and the outgoing interface(s) associated with each. Control plane logic also can identify certain packets to be discarded, as well as preferential treatment of certain packets for which a high quality of service is defined by such mechanisms as differentiated services.
Stream Reservation Protocol (SRP) is an enhancement to Ethernet that implements admission control. In September 2010 SRP was standardized as IEEE 802.1Qat which has subsequently been incorporated into IEEE 802.1Q-2011. SRP defines the concept of streams at layer 2 of the OSI model. Also provided is a mechanism for end-to-end management of the streams' resources, to guarantee quality of service (QoS).
VLAN hopping is a computer security exploit, a method of attacking networked resources on a virtual LAN (VLAN). The basic concept behind all VLAN hopping attacks is for an attacking host on a VLAN to gain access to traffic on other VLANs that would normally not be accessible. There are two primary methods of VLAN hopping: switch spoofing and double tagging. Both attack vectors can be mitigated with proper switch port configuration.
IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.
IEEE 802.1ad is an amendment to the IEEE 802.1Q-1998 networking standard which adds support for provider bridges. It was incorporated into the base 802.1Q standard in 2011. The technique specified by the standard is known informally as stacked VLANs or QinQ.
Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.