IEEE P1906.1

Last updated

The IEEE P1906.1 - Recommended Practice for Nanoscale and Molecular Communication Framework [1] is a standards working group sponsored by the IEEE Communications Society Standards Development Board whose goal is to develop a common framework for nanoscale and molecular communication. [2] Because this is an emerging technology, the standard is designed to encourage innovation by reaching consensus on a common definition, terminology, framework, goals, metrics, and use-cases that encourage innovation and enable the technology to advance at a faster rate. The draft passed an initial sponsor balloting with comments on January 2, 2015. The comments were addressed by the working group and the resulting draft ballot passed again on August 17, 2015. Finally, additional material regarding SBML was contributed and the final draft passed again on October 15, 2015. The draft standard was approved by IEEE RevCom in the final quarter of 2015.

Contents

Membership

Working group membership includes experts in industry and academia with strong backgrounds in mathematical modeling, engineering, physics, economics and biological sciences. [3]

Content

Electronic components such as transistors, or electrical/electromagnetic message carriers whose operation is similar at the macroscale and nanoscale are excluded from the definition. A human-engineered, synthetic component must form part of the system because it is important to avoid standardizing nature or physical processes. The definition of communication, particularly in the area of cell-surface interactions as viewed by biologists versus non-biologists has been a topic of debate. The interface is viewed as a communication channel, whereas the 'receptor-signaling-gene expression' events are the network.

The draft currently comprises: definition, terminology, framework, metrics, use-cases, and reference code (ns-3). [4]

The standard provides a very broad foundation and encompasses all approaches to nanoscale communication. While there have been many superficial academic attempts to classify nanoscale communication approaches, the standard considers two fundamental approaches: waves and particles. This includes any hybrid of the two as well as quasiparticles.

A unique contribution of the standard is an ns-3 reference model that enables users to build upon the standard components.

Definition

Terminology

Framework

Metrics

Use-Cases

Reference model

Applications

Applications are numerous, however, there appears to be strong emphasis on medical and biological use-cases in nanomedicine.

Simulation software

The IEEE P1906.1 working group is developing ns-3 nanoscale simulation software that implements the IEEE 1906.1 standard and serves as a reference model and base for development of a wide-variety of interoperable small-scale communication physical layer models. [9]

Literature review

The Best Readings on nanoscale communication networks provides good background information related to the standard. [10] The Topics section breaks down the information using the standard approach. [11]

Building on IEEE 1906.1

IEEE 1906.1 is the foundation for nanoscale communication. Additional standards are expected to build upon it.

IEEE 1906.1.1 Standard Data Model for Nanoscale Communication Systems The Standard Data Model for Nanoscale Communication Systems defines a network management and configuration data model for nanoscale communication. [12] This data model has several goals:

The data model is written in YANG and will enable remote configuration and operation of nanoscale communication over the Internet using NETCONF.

Notes

  1. IEEE Recommended Practice for Nanoscale and Molecular Communication Framework. 2016-01-01. pp. 1–64. doi:10.1109/IEEESTD.2016.7378262. ISBN   978-1-5044-0101-2.
  2. IEEE P1906.1 - Recommended Practice for Nanoscale and Molecular Communication Framework
  3. IEEE COM/Nanoscale and Molecular Communications Working Group
  4. Bush, S.; Paluh, J.; Piro, G.; Rao, V.; Prasad, V.; Eckford, A., "Defining Communication at the Bottom," in Molecular, Biological and Multi-Scale Communications, IEEE Transactions on, vol.PP, no.99, pp.1-1.
  5. Bush, S.F.; Goel, S., "Persistence Length as a Metric for Modeling and Simulation of Nanoscale Communication Networks," Selected Areas in Communications, IEEE Journal on, vol.31, no.12, pp.815-824, December 2013 doi: 10.1109/JSAC.2013.SUP2.12130014.
  6. 1906 NS-3 Electromagnetic Model
  7. 1906 NS-3 Diffusion Model
  8. 1906 NS-3 Molecular Motor Model
  9. 1906 NS-3 Electromagnetic Model
  10. DISCOVER THE BEST READINGS IN NANOSCALE COMMUNICATION NETWORKS
  11. BEST READINGS TOPICS ON NANOSCALE COMMUNICATION NETWORKS
  12. IEEE 1906.1.1 - Standard Data Model for Nanoscale Communication Systems

Related Research Articles

IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies Wireless Specialty Networks (WSN) standards. The working group was formerly known as Working Group for Wireless Personal Area Networks.

<span class="mw-page-title-main">OSI model</span> Model of communication of seven abstraction layers

The Open Systems Interconnection model is a conceptual model from the International Organization for Standardization (ISO) that "provides a common basis for the coordination of standards development for the purpose of systems interconnection." In the OSI reference model, the communications between a computing system are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

<span class="mw-page-title-main">IDEF</span> Family of modeling languages

IDEF, initially an abbreviation of ICAM Definition and renamed in 1999 as Integration Definition, is a family of modeling languages in the field of systems and software engineering. They cover a wide range of uses from functional modeling to data, simulation, object-oriented analysis and design, and knowledge acquisition. These definition languages were developed under funding from U.S. Air Force and, although still most commonly used by them and other military and United States Department of Defense (DoD) agencies, are in the public domain.

The High Level Architecture (HLA) is a standard for distributed simulation, used when building a simulation for a larger purpose by combining (federating) several simulations. The standard was developed in the 1990s under the leadership of the US Department of Defense and was later transitioned to become an open international IEEE standard. It is a recommended standard within NATO through STANAG 4603. Today the HLA is used in a number of domains including defense and security and civilian applications.

Distributed Interactive Simulation (DIS) is an IEEE standard for conducting real-time platform-level wargaming across multiple host computers and is used worldwide, especially by military organizations but also by other agencies such as those involved in space exploration and medicine.

<span class="mw-page-title-main">DNP3</span> Computer network protocol

Distributed Network Protocol 3 (DNP3) is a set of communications protocols used between components in process automation systems. Its main use is in utilities such as electric and water companies. Usage in other industries is not common. It was developed for communications between various types of data acquisition and control equipment. It plays a crucial role in SCADA systems, where it is used by SCADA Master Stations, Remote Terminal Units (RTUs), and Intelligent Electronic Devices (IEDs). It is primarily used for communications between a master station and RTUs or IEDs. ICCP, the Inter-Control Center Communications Protocol, is used for inter-master station communications. Competing standards include the older Modbus protocol and the newer IEC 61850 protocol.

Active networking is a communication pattern that allows packets flowing through a telecommunications network to dynamically modify the operation of the network.

<span class="mw-page-title-main">Enterprise architecture framework</span> Frame in which the architecture of a company is defined

An enterprise architecture framework defines how to create and use an enterprise architecture. An architecture framework provides principles and practices for creating and using the architecture description of a system. It structures architects' thinking by dividing the architecture description into domains, layers, or views, and offers models - typically matrices and diagrams - for documenting each view. This allows for making systemic design decisions on all the components of the system and making long-term decisions around new design requirements, sustainability, and support.

IEEE 1471 is a superseded IEEE standard for describing the architecture of a "software-intensive system", also known as software architecture.

Integrated Computational Materials Engineering (ICME) is an approach to design products, the materials that comprise them, and their associated materials processing methods by linking materials models at multiple length scales. Key words are "Integrated", involving integrating models at multiple length scales, and "Engineering", signifying industrial utility. The focus is on the materials, i.e. understanding how processes produce material structures, how those structures give rise to material properties, and how to select materials for a given application. The key links are process-structures-properties-performance. The National Academies report describes the need for using multiscale materials modeling to capture the process-structures-properties-performance of a material.

<span class="mw-page-title-main">Ian F. Akyildiz</span> President and CTO of the Truva Inc

Ian F. Akyildiz received his BS, MS, and PhD degrees in Electrical and Computer Engineering from the University of Erlangen-Nürnberg, Germany, in 1978, 1981 and 1984, respectively. Currently, he is the President and CTO of the Truva Inc. since March 1989. He retired from the School of Electrical and Computer Engineering (ECE) at Georgia Tech in 2021 after almost 35 years service as Ken Byers Chair Professor in Telecommunications and Chair of the Telecom group.

<span class="mw-page-title-main">View model</span>

A view model or viewpoints framework in systems engineering, software engineering, and enterprise engineering is a framework which defines a coherent set of views to be used in the construction of a system architecture, software architecture, or enterprise architecture. A view is a representation of the whole system from the perspective of a related set of concerns.

The Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC), formerly Standards Coordinating Committee 41 (SCC41), and even earlier the IEEE P1900 Standards Committee, is sponsored by the Institute of Electrical and Electronics Engineers (IEEE). The group develops standards for radio and spectrum management. Its working groups and resulting standards, numbered in the 1900 range, are sometimes referred to as IEEE 1900.X.

Live, Virtual, & Constructive (LVC) Simulation is a broadly used taxonomy for classifying Modeling and Simulation (M&S). However, categorizing a simulation as a live, virtual, or constructive environment is problematic since there is no clear division among these categories. The degree of human participation in a simulation is infinitely variable, as is the degree of equipment realism. The categorization of simulations also lacks a category for simulated people working real equipment.

<span class="mw-page-title-main">Nanonetwork</span> A computing network of nanomachines, at nanoscale

A nanonetwork or nanoscale network is a set of interconnected nanomachines, which are able to perform only very simple tasks such as computing, data storing, sensing and actuation. Nanonetworks are expected to expand the capabilities of single nanomachines both in terms of complexity and range of operation by allowing them to coordinate, share and fuse information. Nanonetworks enable new applications of nanotechnology in the biomedical field, environmental research, military technology and industrial and consumer goods applications. Nanoscale communication is defined in IEEE P1906.1.

A communication protocol is a system of rules that allows two or more entities of a communications system to transmit information via any variation of a physical quantity. The protocol defines the rules, syntax, semantics, and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination.

The following outline is provided as an overview of and topical guide to project management:

IEEE 1905.1 is an IEEE standard which defines a network enabler for home networking supporting both wireless and wireline technologies: IEEE 802.11, IEEE 1901 power-line networking, IEEE 802.3 Ethernet and Multimedia over Coax (MoCA).

ISO/IEEE 11073 Personal Health Device (PHD) standards are a group of standards addressing the interoperability of personal health devices (PHDs) such as weighing scales, blood pressure monitors, blood glucose monitors and the like. The standards draw upon earlier IEEE11073 standards work, but differ from this earlier work due to an emphasis on devices for personal use and a simpler communications model.

A nanonet is a net with fibers on the scale of nanometers. The net can be composed of carbon, metals, silicon, or peptides, such as nanonets composed of the defensin HD6. The word nanonet is also used in reference to a nanoscale communication network, which also uses key components on the scale of a hundred nanometers as officially defined in IEEE P1906.1.

References