Applications of nanotechnology

Last updated

The applications of nanotechnology, commonly incorporate industrial, medicinal, and energy uses. These include more durable construction materials, therapeutic drug delivery, and higher density hydrogen fuel cells that are environmentally friendly. Being that nanoparticles and nanodevices are highly versatile through modification of their physiochemical properties, they have found uses in nanoscale electronics, cancer treatments, vaccines, hydrogen fuel cells, and nanographene batteries. [1]

Contents

Nanotechnology's use of smaller sized materials allows for adjustment of molecules and substances at the nanoscale level, which can further enhance the mechanical properties of materials or grant access to less physically accessible areas of the body. [1] [2] [3]

Industrial applications

Potential applications of carbon nanotubes

Nanotubes can help with cancer treatment. They have been shown to be effective tumor killers in those with kidney or breast cancer. [4] [5] Multi-walled nanotubes are injected into a tumor and treated with a special type of laser that generates near-infrared radiation for around half a minute. These nanotubes vibrate in response to the laser, and heat is generated. When the tumor has been heated enough, the tumor cells begin to die. Processes like this one have been able to shrink kidney tumors by up to four-fifths. [4]

Ultrablack materials, made up of “forests” of carbon nanotubes, are important in space, where there is more light than is convenient to work with. Ultrablack material can be applied to camera and telescope systems to decrease the amount of light and allow for more detailed images to be captured. [6]

Nanotubes show promise in treating cardiovascular disease. They could play an important role in blood vessel cleanup. Theoretically, nanotubes with SHP1i molecules attached to them would signal macrophages to clean up plaque in blood vessels without destroying any healthy tissue. Researchers have tested this type of modified nanotube in mice with high amounts of plaque buildup; the mice that received the nanotube treatment showed statistically significant reductions in plaque buildup compared to the mice in the placebo group. [7] Further research is needed for this treatment to be given to humans.

Nanotubes may be used in body armor for future soldiers. This type of armor would be very strong and highly effective at shielding soldiers’ bodies from projectiles and electromagnetic radiation. It is also possible that the nanotubes in the armor could play a role in keeping an eye on soldiers’ conditions. [8]

Construction

Nanotechnology's ability to observe and control the material world at a nanoscopic level can offer great potential for construction development. Nanotechnology can help improve the strength and durability of construction materials, including cement, steel, wood, and glass. [9]

By applying nanotechnology, materials can gain a range of new properties. The discovery of a highly ordered crystal nanostructure of amorphous C-S-H gel and the application of photocatalyst and coating technology result in a new generation of materials with properties like water resistance, self-cleaning property, wear resistance, and corrosion protection. [10] Among the new nanoengineered polymers, there are highly efficient superplasticizers for concrete and high-strength fibers with exceptional energy absorbing capacity. [10]

Experts believe that nanotechnology remains in its exploration stage and has potential in improving conventional materials such as steel. [10] Understanding the composite nanostructures of such materials and exploring nanomaterials' different applications may lead to the development of new materials with expanded properties, such as electrical conductivity as well as temperature-, moisture- and stress-sensing abilities. [10]

Due to the complexity of the equipment, nanomaterials have high cost compared to conventional materials, meaning they are not likely to feature high-volume building materials. [11] In special cases, nanotechnology can help reduce costs for complicated problems. But in most cases, the traditional method for construction remains more cost-efficient. [11] With the improvement of manufacturing technologies, the costs of applying nanotechnology into construction have been decreasing over time and are expected to decrease more. [11]

Nanoelectronics

Nanoelectronics refers to the application of nanotechnology on electronic components. Nanoelectronics aims to improve the performance of electronic devices on displays and power consumption while shrinking them. [3] Therefore, nanoelectronics can help reach the goal set up in Moore's law, which predicts the continued trend of scaling down in the size of integrated circuits.

Nanoelectronics is a multidisciplinary area composed of quantum physics, device analysis, system integration, and circuit analysis. [12] Since de Broglie wavelength in the semiconductors may be on the order of 100 nm, the quantum effect at this length scale becomes essential. [12] The different device physics and novel quantum effects of electrons can lead to exciting applications. [12]

Health applications

Nanobiotechnology

The terms nanobiotechnology and bionanotechnology refer to the combination of ideas, techniques, and sciences of biology and nanotechnology. More specifically, nanobiotechnology refers to the application of nanoscale objects for biotechnology while bionanotechnology refers to the use of biological components in nanotechnology. [1]

The most prominent intersection of nanotechnology and biology is in the field of nanomedicine , where the use of nanoparticles and nanodevices has many clinical applications in delivering therapeutic drugs, monitoring health conditions, and diagnosing diseases. [13] Being that much of the biological processes in the human body occur at the cellular level, the small size of nanomaterials allows for them to be used as tools that can easily circulate within the body and directly interact with intercellular and even intracellular environments. In addition, nanomaterials can have physiochemical properties that differ from their bulk form due to their size, [14] allowing for varying chemical reactivities and diffusion effects that can be studied and changed for diversified applications.

A common application of nanomedicine is in therapeutic drug delivery, where nanoparticles containing drugs for therapeutic treatment of disease are introduced into the body and act as vessels that deliver the drugs to the targeted area. The nanoparticle vessels, which can be made of organic or synthetic components, can further be functionalized by adjusting their size, shape, surface charge, and surface attachments (proteins, coatings, polymers, etc.). [15] The opportunity for functionalizing nanoparticles in such ways is especially beneficial when targeting areas of the body that have certain physiochemical properties that prevent the intended drug from reaching the targeted area alone; for example, some nanoparticles are able to bypass the Blood Brain Barrier to deliver therapeutic drugs to the brain. [16] Nanoparticles have recently been used in cancer therapy treatments and vaccines. [17] [18]

In vivo imaging is also a key part in nanomedicine, as nanoparticles can be used as contrast agents for common imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). [13] The ability for nanoparticles to localize and circulate in specific cells, tissues, or organs through their design can provide high contrast that results in higher sensitivity imaging, and thus can be applicable in studying pharmacokinetics or visual disease diagnosis. [13] [15]

Energy applications

The energy applications of nanotechnology relates to using the small size of nanoparticles to store energy more efficiently. This promotes the use of renewable energy through green nanotechnology by generating, storing, and using energy without emitting harmful greenhouse gases such as carbon dioxide.

Solar Cells

Nanoparticles used in solar cells are increasing the amount of energy absorbed from sunlight. [19] Solar cells are currently created from layers of silicon that absorb sunlight and convert it to usable electricity. [20] Using noble metals such as gold coated on top of silicon, researchers have found that they are able to transform energy more efficiently into electrical current. [20] Much of the energy that is loss during this transformation is due to heat, however by using nanoparticles there is less heat emitted thus producing more electricity. [20]

Hydrogen Fuel Cells

Nanotechnology is enabling the use of hydrogen energy at a much higher capacity. [21] Hydrogen fuel cells, while they are not an energy source themselves, allow for storing energy from sunlight and other renewable sources in an environmentally-friendly fashion without any CO2 emissions. [21]   Some of the main drawbacks of traditional hydrogen fuel cells are that they are expensive and not durable enough for commercial uses. [22] However, by using nanoparticles, both the durability and price over time improve significantly. [22] Furthermore, conventional fuel cells are too large to be stored in volume, but researchers have discovered that nanoblades can store greater volumes of hydrogen that can then be saved inside carbon nanotubes for long-term storage. [22]

Nanographene Batteries

Nanotechnology is giving rise to nanographene batteries that can store energy more efficiently and weigh less. [23] Lithium-ion batteries have been the primary battery technology in electronics for the last decade, but the current limits in the technology make it difficult to densify batteries due to the potential dangers of heat and explosion. [21] Graphene batteries being tested in experimental electric cars have promised capacities 4 times greater than current batteries with the cost being 77% lower. [23] Additionally, graphene batteries provide stable life cycles of up to 250,000 cycles, [24] which would allow electric vehicles and long-term products a reliable energy source for decades.

Related Research Articles

<span class="mw-page-title-main">Nanotechnology</span> Field of applied science involving control of matter on atomic and (supra)molecular scales

Nanotechnology, often shortened to nanotech, is the use of matter on atomic, molecular, and supramolecular scales for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size.

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials.

Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.

<span class="mw-page-title-main">Nanomaterials</span> Materials whose granular size lies between 1 and 100 nm

Nanomaterials describe, in principle, materials of which a single unit is sized between 1 and 100 nm.

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

The impact of nanotechnology extends from its medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

<span class="mw-page-title-main">Nanoscopic scale</span> Structures with a length scale applicable to nanotechnology

The nanoscopic scale usually refers to structures with a length scale applicable to nanotechnology, usually cited as 1–100 nanometers (nm). A nanometer is a billionth of a meter. The nanoscopic scale is a lower bound to the mesoscopic scale for most solids.

Nanotoxicology is the study of the toxicity of nanomaterials. Because of quantum size effects and large surface area to volume ratio, nanomaterials have unique properties compared with their larger counterparts that affect their toxicity. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure are also a concern.

As the world's energy demand continues to grow, the development of more efficient and sustainable technologies for generating and storing energy is becoming increasingly important. According to Dr. Wade Adams from Rice University, energy will be the most pressing problem facing humanity in the next 50 years and nanotechnology has potential to solve this issue. Nanotechnology, a relatively new field of science and engineering, has shown promise to have a significant impact on the energy industry. Nanotechnology is defined as any technology that contains particles with one dimension under 100 nanometers in length. For scale, a single virus particle is about 100 nanometers wide.

Photothermal therapy (PTT) refers to efforts to use electromagnetic radiation for the treatment of various medical conditions, including cancer. This approach is an extension of photodynamic therapy, in which a photosensitizer is excited with specific band light. This activation brings the sensitizer to an excited state where it then releases vibrational energy (heat), which is what kills the targeted cells.

The following outline is provided as an overview of and topical guide to nanotechnology:

Green nanotechnology refers to the use of nanotechnology to enhance the environmental sustainability of processes producing negative externalities. It also refers to the use of the products of nanotechnology to enhance sustainability. It includes making green nano-products and using nano-products in support of sustainability.

Graphene quantum dots (GQDs) are graphene nanoparticles with a size less than 100 nm. Due to their exceptional properties such as low toxicity, stable photoluminescence, chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications.

Niveen M. Khashab is a Lebanese chemist and an associate Professor of chemical Sciences and engineering at King Abdullah University of Science and Technology in Saudi Arabia since 2009. She is a laureate of the 2017 L'Oréal-UNESCO Awards for Women in Science "for her contributions to innovative smart hybrid materials aimed at drug delivery and for developing new techniques to monitor intracellular antioxidant activity." She is also a fellow of the Royal Chemical Society, and a member of the American Chemical Society.

A radioactive nanoparticle is a nanoparticle that contains radioactive materials. Radioactive nanoparticles have applications in medical diagnostics, medical imaging, toxicokinetics, and environmental health, and are being investigated for applications in nuclear nanomedicine. Radioactive nanoparticles present special challenges in operational health physics and internal dosimetry that are not present for other substances, although existing radiation protection measures and hazard controls for nanoparticles generally apply.

<span class="mw-page-title-main">Characterization of nanoparticles</span> Measurement of physical and chemical properties of nanoparticles

The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles. Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties. Nanoparticles are unlike conventional chemicals in that their chemical composition and concentration are not sufficient metrics for a complete description, because they vary in other physical properties such as size, shape, surface properties, crystallinity, and dispersion state.

There are many water purifiers available in the market which use different techniques like boiling, filtration, distillation, chlorination, sedimentation and oxidation. Currently nanotechnology plays a vital role in water purification techniques. Nanotechnology is the process of manipulating atoms on a nanoscale. In nanotechnology, nanomembranes are used with the purpose of softening the water and removal of contaminants such as physical, biological and chemical contaminants. There are variety of techniques in nanotechnology which uses nanoparticles for providing safe drinking water with a high level of effectiveness. Some techniques have become commercialized.

Ramakrishna Podila is an Indian-born American physicist and nanomaterials researcher. He is currently an Associate Professor of Physics in the Department of Physics and Astronomy at Clemson University and is the director of the Clemson Nano-bio lab. He is known for his interdisciplinary research at the interface of physics, biology, and nanoscience. His lab integrates the principles of condensed matter physics, optical spectroscopy, and physiological chemistry to understand physics at the nanoscale and nano-bio interfaces.

<span class="mw-page-title-main">Nanomaterials and cancer</span>

Nanomaterials have shown potential for the treatment of cancer, offering new approaches for diagnosis, drug delivery, and therapy. These materials, often at the nanoscale, possess unique properties that can make them suitable for various applications in oncology.

References

  1. 1 2 3 "Nanotechnology - 2nd Edition". www.elsevier.com. Retrieved 2021-04-09.
  2. "Nanoparticles for Biomedical Applications - 1st Edition". www.elsevier.com. Retrieved 2021-04-09.
  3. 1 2 "Nanoelectronics - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2021-04-09.
  4. 1 2 Burke, Andrew; Ding, Xuanfeng; Singh, Ravi; Kraft, Robert A.; Levi-Polyachenko, Nicole; Rylander, Marissa Nichole; Szot, Chris; Buchanan, Cara; Whitney, Jon; Fisher, Jessica; Hatcher, Heather C. (2009-08-04). "Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation". Proceedings of the National Academy of Sciences of the United States of America. 106 (31): 12897–12902. Bibcode:2009PNAS..10612897B. doi: 10.1073/pnas.0905195106 . ISSN   1091-6490. PMC   2722274 . PMID   19620717.
  5. Tajabadi, Mahdis (2019-06-28). "Application of Carbon Nanotubes in Breast Cancer Therapy". Drug Research. doi:10.1055/a-0945-1469. ISSN   2194-9387. PMID   31252436. S2CID   195765151.
  6. "MIT engineers develop "blackest black" material to date". MIT News | Massachusetts Institute of Technology. 13 September 2019. Retrieved 2021-04-10.
  7. merickso@stanford.edu, By Mandy Erickson Mandy Erickson is a science writer in the Office of Communications Email her at (29 July 2019). "Nanotherapy reduces plaque buildup in mouse arteries". News Center. Retrieved 2021-04-10.
  8. "Carbon nanotubes and the pursuit of the ultimate body armor". Nanowerk. Retrieved 2021-04-10.
  9. "eLCOSH : Nanotechnology and Construction". www.elcosh.org. Retrieved 2021-04-09.
  10. 1 2 3 4 "How Nanotechnology Can Change the Concrete World Successfully mimicking nature's bottom-up construction processes is one of the most promising directions". ResearchGate. Retrieved 2021-04-09.
  11. 1 2 3 Mohan, Prem (2011-09-17). "CIVIL ENGINEERING SEMINAR TOPICS: SIGNIFICANCE OF NANOTECHNOLOGY IN CONSTRUCTION ENGINEERING". CIVIL ENGINEERING SEMINAR TOPICS. Retrieved 2021-04-09.
  12. 1 2 3 Raza, Hassan (2019-11-26). Nanoelectronics Fundamentals: Materials, Devices and Systems. Springer Nature. ISBN   978-3-030-32573-2.
  13. 1 2 3 Pelaz, Beatriz; Alexiou, Christoph; Alvarez-Puebla, Ramon A.; Alves, Frauke; Andrews, Anne M.; Ashraf, Sumaira; Balogh, Lajos P.; Ballerini, Laura; Bestetti, Alessandra; Brendel, Cornelia; Bosi, Susanna (2017-03-28). "Diverse Applications of Nanomedicine". ACS Nano. 11 (3): 2313–2381. doi:10.1021/acsnano.6b06040. ISSN   1936-086X. PMC   5371978 . PMID   28290206.
  14. Soares, Sara; Sousa, João; Pais, Alberto; Vitorino, Carla (2018). "Nanomedicine: Principles, Properties, and Regulatory Issues". Frontiers in Chemistry. 6: 360. Bibcode:2018FrCh....6..360V. doi: 10.3389/fchem.2018.00360 . ISSN   2296-2646. PMC   6109690 . PMID   30177965.
  15. 1 2 "Nanoparticles for Biomedical Applications - 1st Edition". www.elsevier.com. Retrieved 2021-04-02.
  16. Zhou, Yiqun; Peng, Zhili; Seven, Elif S.; Leblanc, Roger M. (2018-01-28). "Crossing the blood-brain barrier with nanoparticles". Journal of Controlled Release. 270: 290–303. doi:10.1016/j.jconrel.2017.12.015. ISSN   0168-3659. PMID   29269142. S2CID   25472949.
  17. Park, Kyung Soo; Sun, Xiaoqi; Aikins, Marisa E.; Moon, James J. (2021-02-01). "Non-viral COVID-19 vaccine delivery systems". Advanced Drug Delivery Reviews. 169: 137–151. doi:10.1016/j.addr.2020.12.008. ISSN   0169-409X. PMC   7744276 . PMID   33340620.
  18. Debele, Tilahun Ayane; Yeh, Cheng-Fa; Su, Wen-Pin (2020-12-15). "Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators". Cancers. 12 (12): 3773. doi: 10.3390/cancers12123773 . ISSN   2072-6694. PMC   7765190 . PMID   33333816.
  19. Serrano, Elena; Rus, Guillermo; García-Martínez, Javier (2009-12-01). "Nanotechnology for sustainable energy". Renewable and Sustainable Energy Reviews. 13 (9): 2373–2384. doi:10.1016/j.rser.2009.06.003. ISSN   1364-0321.
  20. 1 2 3 "Nanotechnology Phenomena in the Light of the Solar Energy". ResearchGate. Retrieved 2021-04-09.
  21. 1 2 3 Sarno, Maria (2020-01-01). "Nanotechnology in energy storage: the supercapacitors". Studies in Surface Science and Catalysis. 179: 431–458. doi:10.1016/B978-0-444-64337-7.00022-7. ISBN   9780444643377. ISSN   0167-2991. S2CID   214425773.
  22. 1 2 3 Hussein, Ahmed Kadhim (2015-02-01). "Applications of nanotechnology in renewable energies—A comprehensive overview and understanding". Renewable and Sustainable Energy Reviews. 42: 460–476. doi:10.1016/j.rser.2014.10.027. ISSN   1364-0321.
  23. 1 2 Li, Yong; Yang, Jie; Song, Jian (2017-03-01). "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle". Renewable and Sustainable Energy Reviews. 69: 652–663. doi:10.1016/j.rser.2016.11.118. ISSN   1364-0321.
  24. Xu, Hanyan; Chen, Hao; Lai, Haiwen; Li, Zheng; Dong, Xiaozhong; Cai, Shengying; Chu, Xingyuan; Gao, Chao (2020-06-01). "Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery". Journal of Energy Chemistry. 45: 40–44. doi: 10.1016/j.jechem.2019.09.025 . ISSN   2095-4956.