This article needs more reliable medical references for verification or relies too heavily on primary sources .(August 2014) |
Part of a series of articles on the |
Impact of nanotechnology |
---|
Health and safety |
Environmental |
Other topics |
Nanomedicine is the medical application of nanotechnology. [1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter). [2] [3]
Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.
Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future. [4] [5] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging. [6] Nanomedicine research is receiving funding from the US National Institutes of Health Common Fund program, supporting four nanomedicine development centers. [7] The goal of funding this newer form of science is to further develop the biological, biochemical, and biophysical mechanisms of living tissues. [7] More medical and drug companies today are becoming involved in nanomedical research and medications. These include Bristol-Myers Squibb, which focuses on drug delivery systems for immunology and fibrotic diseases; Moderna known for their COVID-19 vaccine and their work on mRNA therapeutics; and Nanobiotix, a company that focuses on cancer and currently has a drug in testing that increases the effect of radiation on targeted cells. More companies include Generation Bio, which specializes in genetic medicines and has developed the cell-targeted lipid nanoparticle, and Jazz Pharmaceuticals, which developed Vyxeos , a drug that treats acute myeloid leukemia, and concentrates on cancer and neuroscience. Cytiva is a company that specializes in producing delivery systems for genomic medicines that are non-viral, including mRNA vaccines and other therapies utilizing nucleic acid and Ratiopharm is known for manufacturing Pazenir, a drug for various cancers. Finally, Pacira specializes in pain management and is know for producing ZILRETTA for osteoarthritis knee pain, the first treatment without opioids [8] .
Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested every year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013. [9] In 2023, the global market was valued at $189.55 billion and is predicted to exceed $ 500 billion in the next ten years. [8] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.
Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles. [10] [11] This use of drug delivery systems was first proposed by Gregory Gregoriadis in 1974, who outlined liposomes as a drug delivery system for chemotherapy. [12] The overall drug consumption and side-effects may be lowered significantly by depositing the active pharmaceutical agent in the diseased region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs in tandem decreases in consumption and treatment expenses. Additionally, targeted drug delivery reduces the side effects of crude or naturally occurring drugs by minimizing undesired exposure to healthy cells. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices. [13] [14] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery. [15] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug. [16] Several nano-delivery drugs were on the market by 2019. [17]
Drug delivery systems, lipid- [18] or polymer-based nanoparticles, can be designed to improve the pharmacokinetics and biodistribution of the drug. [19] [20] [21] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients. [22] When designed to avoid the body's defense mechanisms, [23] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility. [24] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials [23] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses. [25] The toxicity of nanoparticles varies, depending on size, shape, and material. These factors also affect the build-up and organ damage that may occur. Nanoparticles are made to be long-lasting, but this causes them to be trapped within organs, specifically the liver and spleen, as they cannot be broken down or excreted. This build-up of non-biodegradable material has been observed to cause organ damage and inflammation in mice. [26] Delivering magnetic nanoparticles to a tumor using uneven stationary magnetic fields may lead to enhanced tumor growth. In order to avoid this, alternating electromagnetic fields should be used. [27]
Nanoparticles are under research for their potential to decrease antibiotic resistance or for various antimicrobial uses. [28] [29] [30] [31] Nanoparticles might also be used to circumvent multidrug resistance (MDR) mechanisms. [10]
Advances in lipid nanotechnology were instrumental in engineering medical nanodevices and novel drug delivery systems, as well as in developing sensing applications. [32] Another system for microRNA delivery under preliminary research is nanoparticles formed by the self-assembly of two different microRNAs to possibly shrink tumors. [33] One potential application is based on small electromechanical systems, such as nanoelectromechanical systems being investigated for the active release of drugs and sensors for possible cancer treatment with iron nanoparticles or gold shells. [34] Another system of drug delivery involving nanoparticles is the use of aquasomes, self-assembled nanoparticles with a nanocrystalline center, a coating made of a polyhydroxyl oligomer, covered in the desired drug, which protects it from dehydration and conformational change. [12]
Some nanotechnology-based drugs that are commercially available or in human clinical trials include:
In vivo imaging is another area where tools and devices are being developed. [38] Using nanoparticle contrast agents, images such as ultrasound and MRI have a better distribution and improved contrast. In cardiovascular imaging, nanoparticles have potential to aid visualization of blood pooling, ischemia, angiogenesis, atherosclerosis, and focal areas where inflammation is present. [38]
The small size of nanoparticles gives them with properties that can be very useful in oncology, particularly in imaging. [10] Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal. These nanoparticles are much brighter than organic dyes and only need one light source for activation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today's organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements, but this concern may be addressed by use of fluorescent dopants, substances added to create fluorescence. [39]
Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes. [39] The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source. They have also found a way to insert nanoparticles [40] into the affected parts of the body so that those parts of the body will glow showing the tumor growth or shrinkage or also organ trouble. [41]
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Silica nanoparticles, in particular, are inert from a photophysical perspective and can accumulate a large number of dye(s) within their shells. [42] Gold nanoparticles tagged with short DNA segments can be used to detect genetic sequences in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.[ citation needed ]
Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient's blood. [43] Nanotechnology is helping to advance the use of arthroscopes, which are pencil-sized devices that are used in surgeries with lights and cameras so surgeons can do the surgeries with smaller incisions. The smaller the incisions the faster the healing time which is better for the patients. It is also helping to find a way to make an arthroscope smaller than a strand of hair. [44]
Research on nanoelectronics-based cancer diagnostics could lead to tests that can be done in pharmacies. The results promise to be highly accurate and the product promises to be inexpensive. They could take a very small amount of blood and detect cancer anywhere in the body in about five minutes, with a sensitivity that is a thousand times better a conventional laboratory test. These devices are built with nanowires to detect cancer proteins; each nanowire detector is primed to be sensitive to a different cancer marker. [34] The biggest advantage of the nanowire detectors is that they could test for anywhere from ten to one hundred similar medical conditions without adding cost to the testing device. [45] Nanotechnology has also helped to personalize oncology for the detection, diagnosis, and treatment of cancer. It is now able to be tailored to each individual's tumor for better performance. They have found ways that they will be able to target a specific part of the body that is being affected by cancer. [46]
In contrast to dialysis, which works on the principle of the size-related diffusion of solutes and ultrafiltration of fluid across a semi-permeable membrane, the purification using nanoparticles allows specific targeting of substances. [47] Additionally, larger compounds which are commonly not dialyzable can be removed. [48]
The purification process is based on functionalized iron oxide or carbon coated metal nanoparticles with ferromagnetic or superparamagnetic properties. [49] Binding agents such as proteins, [47] antibiotics, [50] or synthetic ligands [51] are covalently linked to the particle surface. These binding agents are able to interact with target species forming an agglomerate. Applying an external magnetic field gradient exerts a force on the nanoparticles, allowing them to be separated from the bulk fluid, thus removing contaminants. [52] [53] This can neutralize the toxicity of sepsis, but runs the risk of nephrotoxicity and neurotoxicity. [54]
The small size (< 100 nm) and large surface area of functionalized nanomagnets offer advantages properties compared to hemoperfusion, which is a clinically used technique for the purification of blood and is based on surface adsorption. These advantages include high loading capacity, high selectivity towards the target compound, fast diffusion, low hydrodynamic resistance, and low dosage requirements. [55]
Nanotechnology may be used as part of tissue engineering to help reproduce, repair, or reshape damaged tissue using suitable nanomaterial-based scaffolds and growth factors. If successful, tissue engineering if successful may replace conventional treatments like organ transplants or artificial implants. Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles to the polymer matrix at low concentrations (~0.2 weight %) significantly improves in the compressive and flexural mechanical properties of polymeric nanocomposites. [56] [57] These nanocomposites may potentially serve as novel, mechanically strong, lightweight bone implants. [58]
For example, a flesh welder was demonstrated to fuse two pieces of chicken meat into a single piece using a suspension of gold-coated nanoshells activated by an infrared laser. This could be used to weld arteries during surgery. [59] Another example is nanonephrology, the use of nanomedicine on the kidney.
The full potential and implications of nanotechnology uses within the tissue engineering are not yet fully understood, despite research spanning the past two decades. [58]
Today, a significant proportion of vaccines against viral diseases are created using nanotechnology. Solid lipid nanoparticles represent a novel delivery system for some vaccines against SARS-CoV-2 (the virus that causes COVID-19). [60] In recent decades, nanosized adjuvants have been widely used to enhance immune responses to targeted vaccine antigens. Inorganic nanoparticles of aluminum, [61] silica and clay, as well as organic nanoparticles based on polymers and lipids, are commonly used adjuvants within modern vaccine formulations. [62] Nanoparticles of natural polymers such as chitosan are commonly used adjuvants in modern vaccine formulations. [63] Ceria nanoparticles appear very promising for both enhancing vaccine responses and mitigating inflammation, as their adjuvanticity can be adjusted by modifying parameters such as size, crystallinity, surface state, and stoichiometry. [64]
In addition, virus-like nanoparticles are also being researched. These structures allow vaccines to self-assemble without encapsulating viral RNA, making them non-infectious and incapable of replication. These virus-like nanoparticles are designed to elicit a strong immune response by using a self-assembled layer of virus capsid proteins. [65] [60]
Neuro-electronic interfacing is a visionary goal dealing with the construction of nanodevices that will permit computers to connect and interact with the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer. A refuelable system implies energy is refilled continuously or periodically with external sonic, chemical, tethered, magnetic, or biological electrical sources, while a non-refuelable system implies that all power is drawn from internal energy storage, ceasing operation once the energy is depleted. A nanoscale enzymatic biofuel cell for self-powered nanodevices have been developed, using glucose from biofluids such as human blood or watermelons. [66] [67] [68] One limitation to this innovation is the potential for electrical interference, leakage, or overheating due to power consumption. The wiring of the structure is extremely difficult because they must be positioned precisely in the nervous system. The structures that will provide the interface must also be compatible with the body's immune system. [69] Current research is developing nanoparticle coatings for the electrodes to allow for improved recording and reduce interference. [70]
Molecular nanotechnology is a speculative subfield of nanotechnology that explores the potential to engineer molecular assemblers—machines capable of reorganizing matter at a molecular or atomic scale.[ citation needed ] Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities. [1] [69] [71] Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular machines, in his 1986 book Engines of Creation , with the first technical discussion of medical nanorobots by Robert Freitas appearing in 1999. [1] Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030. [72] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (c. 1959) the idea of a medical use for Feynman's theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) "swallow the doctor". The idea was incorporated into Feynman's 1959 essay There's Plenty of Room at the Bottom. [73]
As the development of nanomedicine continues to develop and becomes a potential treatments for diseases, regulatory challenges have come to light. This section will highlight some of the regulatory considerations and challenges faced by the Food and Drug Administration (FDA), the European Medicine Agency (EMA), and each manufacturing organization. The major challenges that companies are reproducible manufacturing processes, scalability, availability of appropriate characterization methods, safety issues, and poor understandings of disease heterogeneity and patient preselection strategies. [74] Despite these challenges, several therapeutic nanomedicine products have been approved by the FDA and EMA. [74] [75] In order to be approved for market, these therapies are evaluated for biocompatibility, immunotoxicity, as well as undergo a preclinical assessment. [76]
The current scope of approved nanomedicine are mainly nano-drugs, but as the field continued to grow and more applications of nanomedicine progress to a marketable scale, more impacts and regulatory oversight will be needed. [75] [77]
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. This definition of nanotechnology includes all types of research and technologies that deal with these special properties. It is common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to research and applications whose common trait is scale. An earlier understanding of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabricating macroscale products, now referred to as molecular nanotechnology.
Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.
Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots, which are called nanorobots or simply nanobots, whose components are at or near the scale of a nanometer. More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.
Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.
Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.
Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to drug preparation, route of administration, site-specific targeting, metabolism, and toxicity are used to optimize efficacy and safety, and to improve patient convenience and compliance. Drug delivery is aimed at altering a drug's pharmacokinetics and specificity by formulating it with different excipients, drug carriers, and medical devices. There is additional emphasis on increasing the bioavailability and duration of action of a drug to improve therapeutic outcomes. Some research has also been focused on improving safety for the person administering the medication. For example, several types of microneedle patches have been developed for administering vaccines and other medications to reduce the risk of needlestick injury.
Targeted drug delivery, sometimes called smart drug delivery, is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. This means of delivery is largely founded on nanomedicine, which plans to employ nanoparticle-mediated drug delivery in order to combat the downfalls of conventional drug delivery. These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with healthy tissue. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue. The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system releases the drug in a dosage form. The advantages to the targeted release system is the reduction in the frequency of the dosages taken by the patient, having a more uniform effect of the drug, reduction of drug side-effects, and reduced fluctuation in circulating drug levels. The disadvantage of the system is high cost, which makes productivity more difficult, and the reduced ability to adjust the dosages.
Photothermal therapy (PTT) refers to efforts to use electromagnetic radiation for the treatment of various medical conditions, including cancer. This approach is an extension of photodynamic therapy, in which a photosensitizer is excited with specific band light. This activation brings the sensitizer to an excited state where it then releases vibrational energy (heat), which is what kills the targeted cells.
Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.
The applications of nanotechnology, commonly incorporate industrial, medicinal, and energy uses. These include more durable construction materials, therapeutic drug delivery, and higher density hydrogen fuel cells that are environmentally friendly. Being that nanoparticles and nanodevices are highly versatile through modification of their physiochemical properties, they have found uses in nanoscale electronics, cancer treatments, vaccines, hydrogen fuel cells, and nanographene batteries.
A nanocarrier is nanomaterial being used as a transport module for another substance, such as a drug. Commonly used nanocarriers include micelles, polymers, carbon-based materials, liposomes and other substances. Nanocarriers are currently being studied for their use in drug delivery and their unique characteristics demonstrate potential use in chemotherapy. This class of materials was first reported by a team of researchers of University of Évora, Alentejo in early 1960's, and grew exponentially in relevance since then.
Nanoparticles for drug delivery to the brain is a method for transporting drug molecules across the blood–brain barrier (BBB) using nanoparticles. These drugs cross the BBB and deliver pharmaceuticals to the brain for therapeutic treatment of neurological disorders. These disorders include Parkinson's disease, Alzheimer's disease, schizophrenia, depression, and brain tumors. Part of the difficulty in finding cures for these central nervous system (CNS) disorders is that there is yet no truly efficient delivery method for drugs to cross the BBB. Antibiotics, antineoplastic agents, and a variety of CNS-active drugs, especially neuropeptides, are a few examples of molecules that cannot pass the BBB alone. With the aid of nanoparticle delivery systems, however, studies have shown that some drugs can now cross the BBB, and even exhibit lower toxicity and decrease adverse effects throughout the body. Toxicity is an important concept for pharmacology because high toxicity levels in the body could be detrimental to the patient by affecting other organs and disrupting their function. Further, the BBB is not the only physiological barrier for drug delivery to the brain. Other biological factors influence how drugs are transported throughout the body and how they target specific locations for action. Some of these pathophysiological factors include blood flow alterations, edema and increased intracranial pressure, metabolic perturbations, and altered gene expression and protein synthesis. Though there exist many obstacles that make developing a robust delivery system difficult, nanoparticles provide a promising mechanism for drug transport to the CNS.
Gold nanoparticles in chemotherapy and radiotherapy is the use of colloidal gold in therapeutic treatments, often for cancer or arthritis. Gold nanoparticle technology shows promise in the advancement of cancer treatments. Some of the properties that gold nanoparticles possess, such as small size, non-toxicity and non-immunogenicity make these molecules useful candidates for targeted drug delivery systems. With tumor-targeting delivery vectors becoming smaller, the ability to by-pass the natural barriers and obstacles of the body becomes more probable. To increase specificity and likelihood of drug delivery, tumor specific ligands may be grafted onto the particles along with the chemotherapeutic drug molecules, to allow these molecules to circulate throughout the tumor without being redistributed into the body.
Hamid Ghandehari is an Iranian-American drug delivery research scientist, and a professor in the Departments of Pharmaceutics and Pharmaceutical Chemistry and Biomedical Engineering at the University of Utah. His research is focused in recombinant polymers for drug and gene delivery, nanotoxicology of dendritic and inorganic constructs, water-soluble polymers for targeted delivery and poly(amidoamine) dendrimers for oral delivery.
Reduction-sensitive nanoparticles (RSNP) consist of nanocarriers that are chemically responsive to reduction. Drug delivery systems using RSNP can be loaded with different drugs that are designed to be released within a concentrated reducing environment, such as the tumor-targeted microenvironment. Reduction-Sensitive Nanoparticles provide an efficient method of targeted drug delivery for the improved controlled release of medication within localized areas of the body.
Protein nanotechnology is a burgeoning field of research that integrates the diverse physicochemical properties of proteins with nanoscale technology. This field assimilated into pharmaceutical research to give rise to a new classification of nanoparticles termed protein nanoparticles (PNPs). PNPs garnered significant interest due to their favorable pharmacokinetic properties such as high biocompatibility, biodegradability, and low toxicity Together, these characteristics have the potential to overcome the challenges encountered with synthetic NPs drug delivery strategies. These existing challenges including low bioavailability, a slow excretion rate, high toxicity, and a costly manufacturing process, will open the door to considerable therapeutic advancements within oncology, theranostics, and clinical translational research.
pH-responsive tumor-targeted drug delivery is a specialized form of targeted drug delivery that utilizes nanoparticles to deliver therapeutic drugs directly to cancerous tumor tissue while minimizing its interaction with healthy tissue. Scientists have used drug delivery as a way to modify the pharmacokinetics and targeted action of a drug by combining it with various excipients, drug carriers, and medical devices. These drug delivery systems have been created to react to the pH environment of diseased or cancerous tissues, triggering structural and chemical changes within the drug delivery system. This form of targeted drug delivery is to localize drug delivery, prolongs the drug's effect, and protect the drug from being broken down or eliminated by the body before it reaches the tumor.
Nanomaterials have gained significant attention in the field of cancer research and treatment due to their unique properties and potential applications. These materials, typically on the nanoscale, offer several advantages in the fight against cancer.
Moein Moghimi is a British professor and researcher in the fields of nanomedicine, drug delivery and biomaterials. He is currently the professor of Pharmaceutics and Nanomedicine at the School of Pharmacy and the Translational and Clinical Research Institute at Newcastle University. He is also an adjoint professor at the Skaggs School of Pharmacy, University of Colorado Denver.
Magnetic nanoparticle drug delivery is the use of external or internal magnets to increase the accumulation of therapeutic elements contained in nanoparticles to fight pathologies in specific parts of the body. It has been applied in cancer treatments, cardiovascular diseases, and diabetes. Scientific researches revealed that magnetic drug delivery can be made increasingly useful in clinical settings.
{{cite web}}
: Check date values in: |access-date=
and |date=
(help)CS1 maint: url-status (link)