![]() | |
System | Immune |
---|---|
Subdivisions | Genetic (Immunogenetics) |
Significant diseases | Rheumatoid arthritis Inflammation |
Significant tests | |
Specialist | Immunologist |
![]() |
Immunology |
---|
Immunology is a branch of medicine [1] and biology [2] that covers the medical study of immune systems [3] in humans, animals, plants and sapient species. [4] In such we can see there is a difference of human immunology and comparative immunology in veterinary medicine and animal biosciences. [1]
Immunology measures, uses charts and differentiate in context in medicine the studies of immunity on cell and molecular level, and the immune system as part of the physiological level as its functioning is of major importance. In the different states of both health, occurring symptoms and diseases; the functioning of the immune system and immunological responses such as autoimmune diseases, [5] allergic hypersensitivities, [6] or in some cases malfunctioning of immune system as for example in immunological disorders or in immune deficiency, [7] and the specific transplant rejection [8] )
Immunology has applications in numerous disciplines of medicine, particularly in the fields of rheumatology, virology, allergology (dermatology), bacteriology, oncology and further transplantation medicine.
The term was coined by Russian biologist Ilya Ilyich Mechnikov, [9] who advanced studies on immunology and received the Nobel Prize for his work in 1908. He pinned small thorns into starfish larvae and noticed unusual cells surrounding the thorns. This was the active response of the body trying to maintain its integrity. It was Mechnikov who first observed the phenomenon of phagocytosis, [10] in which the body defends itself against a foreign body.
Immunology has importance in reproductive medicine as the physical, chemical, and physiological characteristics of the components of the immune system in vitro , [11] in situ , and in vivo . [12]
In psychiatry it is said that psychiatric disorders lead to low levels of immunology but are not encountered any specific characteristics of immunological deficiencies.
Prior to the designation of immunity, [13] from the etymological root immunis, which is Latin for "exempt", early physicians characterized organs that would later be proven as essential components of the immune system. The important lymphoid organs of the immune system are the thymus, [14] bone marrow, and chief lymphatic tissues such as spleen, tonsils, lymph vessels, lymph nodes, adenoids, and liver. However, many components of the immune system are cellular in nature, and not associated with specific organs, but rather embedded or circulating in various tissues located throughout the body.
Classical immunology ties in with the fields of epidemiology and medicine. It studies the relationship between the body systems, pathogens, and immunity. The earliest written mention of immunity can be traced back to the plague of Athens in 430 BCE. Thucydides noted that people who had recovered from a previous bout of the disease could nurse the sick without contracting the illness a second time. [15] Many other ancient societies have references to this phenomenon, but it was not until the 19th and 20th centuries before the concept developed into scientific theory.
The study of the molecular and cellular components that comprise the immune system, including their function and interaction, is the central science of immunology. The immune system has been divided into a more primitive innate immune system and, in vertebrates, an acquired or adaptive immune system. The latter is further divided into humoral (or antibody) and cell-mediated components.[ citation needed ]
The immune system has the capability of self and non-self-recognition. [16] An antigen is a substance that ignites the immune response. The cells involved in recognizing the antigen are Lymphocytes. Once they recognize, they secrete antibodies. Antibodies are proteins that neutralize the disease-causing microorganisms. Antibodies do not directly kill pathogens, but instead, identify antigens as targets for destruction by other immune cells such as phagocytes or NK cells.
The (antibody) response is defined as the interaction between antibodies and antigens. [17] Antibodies are specific proteins released from a certain class of immune cells known as B lymphocytes, while antigens are defined as anything that elicits the generation of antibodies (antibody generators). Immunology rests on an understanding of the properties of these two biological entities and the cellular response to both.
It is now getting clear that the immune responses contribute to the development of many common disorders not traditionally viewed as immunologic, [18] including metabolic, cardiovascular, cancer, and neurodegenerative conditions like Alzheimer's disease. Besides, there are direct implications of the immune system in the infectious diseases (tuberculosis, malaria, hepatitis, pneumonia, dysentery, and helminth infestations) as well. Hence, research in the field of immunology is of prime importance for the advancements in the fields of modern medicine, biomedical research, and biotechnology.
Immunological research continues to become more specialized, pursuing non-classical models of immunity and functions of cells, organs and systems not previously associated with the immune system (Yemeserach 2010).
The specificity of the bond between antibody and antigen has made the antibody an excellent tool for the detection of substances by a variety of diagnostic techniques. Antibodies specific for a desired antigen can be conjugated with an isotopic (radio) or fluorescent label or with a color-forming enzyme in order to detect it. However, the similarity between some antigens can lead to false positives and other errors in such tests by antibodies cross-reacting with antigens that are not exact matches. [19]
The use of immune system components or antigens to treat a disease or disorder is known as immunotherapy. Immunotherapy is most commonly used to treat allergies, autoimmune disorders such as Crohn's disease, Hashimoto's thyroiditis and rheumatoid arthritis, and certain cancers. Immunotherapy is also often used for patients who are immunosuppressed (such as those with HIV) and people with other immune deficiencies. This includes regulating factors such as IL-2, IL-10, GM-CSF B, IFN-α.
Clinical immunology is the study of diseases caused by disorders of the immune system (failure, aberrant action, and malignant growth of the cellular elements of the system). It also involves diseases of other systems, where immune reactions play a part in the pathology and clinical features.
The diseases caused by disorders of the immune system fall into two broad categories:
Other immune system disorders include various hypersensitivities (such as in asthma and other allergies) that respond inappropriately to otherwise harmless compounds.
The most well-known disease that affects the immune system itself is AIDS, an immunodeficiency characterized by the suppression of CD4+ ("helper") T cells, dendritic cells and macrophages by the Human Immunodeficiency Virus (HIV).
Clinical immunologists also study ways to prevent the immune system's attempts to destroy allografts (transplant rejection). [20]
Clinical Immunology and Allergy is usually a subspecialty of Internal Medicine or Pediatrics. Fellows in Clinical Immunology are typically exposed to many of the different aspects of the specialty and get to treat Allergic conditions, Primary Immunodeficiencies and systemic autoimmune and autoinflammatory conditions. As part of their training fellows may do additional rotations in Rheumatology, Pulmonology, Otorhinolaryngology, Dermatology and the Immunologic lab. [21]
When health conditions worsen to emergency status, portions of immune system organs, including the thymus, spleen, bone marrow, lymph nodes, and other lymphatic tissues, can be surgically excised for examination while patients are still alive.
Immunology is strongly experimental in everyday practice but is also characterized by an ongoing theoretical attitude. Many theories have been suggested in immunology from the end of the nineteenth century up to the present time. The end of the 19th century and the beginning of the 20th century saw a battle between "cellular" and "humoral" theories of immunity. According to the cellular theory of immunity, represented in particular by Elie Metchnikoff, it was cells – more precisely, phagocytes – that were responsible for immune responses. In contrast, the humoral theory of immunity, held by Robert Koch [22] and Emil von Behring, [23] among others, stated that the active immune agents were soluble components (molecules) found in the organism's "humors" rather than its cells. [24] [25] [26]
In the mid-1950s, Macfarlane Burnet, inspired by a suggestion made by Niels Jerne, [27] formulated the clonal selection theory (CST) of immunity. [28] On the basis of CST, Burnet developed a theory of how an immune response is triggered according to the self/nonself distinction: "self" constituents (constituents of the body) do not trigger destructive immune responses, while "nonself" entities (e.g., pathogens, an allograft) trigger a destructive immune response. [29] The theory was later modified to reflect new discoveries regarding histocompatibility or the complex "two-signal" activation of T cells. [30] The self/nonself theory of immunity and the self/nonself vocabulary have been criticized, [26] [31] [32] but remain very influential. [33] [34]
More recently, several theoretical frameworks have been suggested in immunology, including "autopoietic" views, [35] "cognitive immune" views, [36] the "danger model" (or "danger theory"), [31] and the "discontinuity" theory. [37] [38] The danger model, suggested by Polly Matzinger and colleagues, has been very influential, arousing many comments and discussions. [39] [40] [41] [42]
The body's capability to react to antigens depends on a person's age, antigen type, maternal factors and the area where the antigen is presented. [43] Neonates are said to be in a state of physiological immunodeficiency, because both their innate and adaptive immunological responses are greatly suppressed. Once born, a child's immune system responds favorably to protein antigens while not as well to glycoproteins and polysaccharides. In fact, many of the infections acquired by neonates are caused by low virulence organisms like Staphylococcus and Pseudomonas . In neonates, opsonic activity and the ability to activate the complement cascade is very limited. For example, the mean level of C3 in a newborn is approximately 65% of that found in the adult. Phagocytic activity is also greatly impaired in newborns. This is due to lower opsonic activity, as well as diminished up-regulation of integrin and selectin receptors, which limit the ability of neutrophils to interact with adhesion molecules in the endothelium. Their monocytes are slow and have a reduced ATP production, which also limits the newborn's phagocytic activity. Although, the number of total lymphocytes is significantly higher than in adults, the cellular and humoral immunity is also impaired. Antigen-presenting cells in newborns have a reduced capability to activate T cells. Also, T cells of a newborn proliferate poorly and produce very small amounts of cytokines like IL-2, IL-4, IL-5, IL-12, and IFN-g which limits their capacity to activate the humoral response as well as the phagocitic activity of macrophage. B cells develop early during gestation but are not fully active. [44]
Maternal factors also play a role in the body's immune response. At birth, most of the immunoglobulin present is maternal IgG. These antibodies are transferred from the placenta to the fetus using the FcRn (neonatal Fc receptor). [45] Because IgM, IgD, IgE and IgA do not cross the placenta, they are almost undetectable at birth. Some IgA is provided by breast milk. These passively-acquired antibodies can protect the newborn for up to 18 months, but their response is usually short-lived and of low affinity. [44] These antibodies can also produce a negative response. If a child is exposed to the antibody for a particular antigen before being exposed to the antigen itself then the child will produce a dampened response. Passively acquired maternal antibodies can suppress the antibody response to active immunization. Similarly, the response of T-cells to vaccination differs in children compared to adults, and vaccines that induce Th1 responses in adults do not readily elicit these same responses in neonates. [44] Between six and nine months after birth, a child's immune system begins to respond more strongly to glycoproteins, but there is usually no marked improvement in their response to polysaccharides until they are at least one year old. This can be the reason for distinct time frames found in vaccination schedules. [46] [47]
During adolescence, the human body undergoes various physical, physiological and immunological changes triggered and mediated by hormones, of which the most significant in females is 17-β-estradiol (an estrogen) and, in males, is testosterone. Estradiol usually begins to act around the age of 10 and testosterone some months later. [48] There is evidence that these steroids not only act directly on the primary and secondary sexual characteristics but also have an effect on the development and regulation of the immune system, [49] including an increased risk in developing pubescent and post-pubescent autoimmunity. [50] There is also some evidence that cell surface receptors on B cells and macrophages may detect sex hormones in the system. [51]
The female sex hormone 17-β-estradiol has been shown to regulate the level of immunological response, [52] while some male androgens such as testosterone seem to suppress the stress response to infection. Other androgens, however, such as DHEA, increase immune response. [53] As in females, the male sex hormones seem to have more control of the immune system during puberty and post-puberty than during the rest of a male's adult life.
Physical changes during puberty such as thymic involution also affect immunological response. [54]
Ecoimmunology, or ecological immunology, explores the relationship between the immune system of an organism and its social, biotic and abiotic environment.
More recent ecoimmunological research has focused on host pathogen defences traditionally considered "non-immunological", such as pathogen avoidance, self-medication, symbiont-mediated defenses, and fecundity trade-offs. [55] Behavioural immunity, a phrase coined by Mark Schaller, specifically refers to psychological pathogen avoidance drivers, such as disgust aroused by stimuli encountered around pathogen-infected individuals, such as the smell of vomit. [56] More broadly, "behavioural" ecological immunity has been demonstrated in multiple species. For example, the Monarch butterfly often lays its eggs on certain toxic milkweed species when infected with parasites. These toxins reduce parasite growth in the offspring of the infected Monarch. However, when uninfected Monarch butterflies are forced to feed only on these toxic plants, they suffer a fitness cost as reduced lifespan relative to other uninfected Monarch butterflies. [57] This indicates that laying eggs on toxic plants is a costly behaviour in Monarchs which has probably evolved to reduce the severity of parasite infection. [55]
Symbiont-mediated defenses are also heritable across host generations, despite a non-genetic direct basis for the transmission. Aphids, for example, rely on several different symbionts for defense from key parasites, and can vertically transmit their symbionts from parent to offspring. [58] Therefore, a symbiont that successfully confers protection from a parasite is more likely to be passed to the host offspring, allowing coevolution with parasites attacking the host in a way similar to traditional immunity.
The preserved immune tissues of extinct species, such as the thylacine (Thylacine cynocephalus) can also provide insights into their biology. [59]
The study of the interaction of the immune system with cancer cells can lead to diagnostic tests and therapies with which to find and fight cancer. The immunology concerned with physiological reaction characteristic of the immune state.
This area of the immunology is devoted to the study of immunological aspects of the reproductive process including fetus acceptance. The term has also been used by fertility clinics to address fertility problems, recurrent miscarriages, premature deliveries and dangerous complications such as pre-eclampsia.
In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. The term antigen originally referred to a substance that is an antibody generator. Antigens can be proteins, peptides, polysaccharides, lipids, or nucleic acids.
An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the pathogen, called an antigen. Each tip of the "Y" of an antibody contains a paratope that is specific for one particular epitope on an antigen, allowing these two structures to bind together with precision. Using this binding mechanism, an antibody can tag a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly.
The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinters, distinguishing them from the organism's own healthy tissue. Many species have two major subsystems of the immune system. The innate immune system provides a preconfigured response to broad groups of situations and stimuli. The adaptive immune system provides a tailored response to each stimulus by learning to recognize molecules it has previously encountered. Both use molecules and cells to perform their functions.
In immunology, autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other normal body constituents. Any disease resulting from this type of immune response is termed an "autoimmune disease". Prominent examples include celiac disease, post-infectious IBS, diabetes mellitus type 1, Henoch–Schönlein purpura (HSP) sarcoidosis, systemic lupus erythematosus (SLE), Sjögren syndrome, eosinophilic granulomatosis with polyangiitis, Hashimoto's thyroiditis, Graves' disease, idiopathic thrombocytopenic purpura, Addison's disease, rheumatoid arthritis (RA), ankylosing spondylitis, polymyositis (PM), dermatomyositis (DM), Alopecia Areata and multiple sclerosis (MS). Autoimmune diseases are very often treated with steroids.
Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.
In biology, immunity is the capability of multicellular organisms to resist harmful microorganisms. Immunity involves both specific and nonspecific components. The nonspecific components act as barriers or eliminators of a wide range of pathogens irrespective of their antigenic make-up. Other components of the immune system adapt themselves to each new disease encountered and can generate pathogen-specific immunity.
Cancer immunotherapy is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.
The adaptive immune system, also known as the acquired immune system, is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system is one of the two main immunity strategies found in vertebrates.
In immunology, clonal selection theory explains the functions of cells of the immune system (lymphocytes) in response to specific antigens invading the body. The concept was introduced by Australian doctor Frank Macfarlane Burnet in 1957, in an attempt to explain the great diversity of antibodies formed during initiation of the immune response. The theory has become the widely accepted model for how the human immune system responds to infection and how certain types of B and T lymphocytes are selected for destruction of specific antigens.
Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted:
Antibody-dependent cellular cytotoxicity (ADCC), also referred to as antibody-dependent cell-mediated cytotoxicity, is a mechanism of cell-mediated immune defense whereby an effector cell of the immune system actively lyses a target cell, whose membrane-surface antigens have been bound by specific antibodies. It is one of the mechanisms through which antibodies, as part of the humoral immune response, can act to limit and contain infection.
Molecular mimicry is defined as the theoretical possibility that sequence similarities between foreign and self-peptides are sufficient to result in the cross-activation of autoreactive T or B cells by pathogen-derived peptides. Despite the prevalence of several peptide sequences which can be both foreign and self in nature, a single antibody or TCR can be activated by just a few crucial residues which stresses the importance of structural homology in the theory of molecular mimicry. Upon the activation of B or T cells, it is believed that these "peptide mimic" specific T or B cells can cross-react with self-epitopes, thus leading to tissue pathology (autoimmunity). Molecular mimicry is a phenomenon that has been just recently discovered as one of several ways in which autoimmunity can be evoked. A molecular mimicking event is, however, more than an epiphenomenon despite its low statistical probability of occurring and these events have serious implications in the onset of many human autoimmune disorders.
Self-protein refers to all proteins endogenously produced by DNA-level transcription and translation within an organism of interest. This does not include proteins synthesized due to viral infection, but may include those synthesized by commensal bacteria within the intestines. Proteins that are not created within the body of the organism of interest, but nevertheless enter through the bloodstream, a breach in the skin, or a mucous membrane, may be designated as “non-self” and subsequently targeted and attacked by the immune system. Tolerance to self-protein is crucial for overall wellbeing; when the body erroneously identifies self-proteins as “non-self”, the subsequent immune response against endogenous proteins may lead to the development of an autoimmune disease.
In immunology, an adjuvant is a substance that increases or modulates the immune response to a vaccine. The word "adjuvant" comes from the Latin word adiuvare, meaning to help or aid. "An immunologic adjuvant is defined as any substance that acts to accelerate, prolong, or enhance antigen-specific immune responses when used in combination with specific vaccine antigens."
Long-term close-knit interactions between symbiotic microbes and their host can alter host immune system responses to other microorganisms, including pathogens, and are required to maintain proper homeostasis. The immune system is a host defense system consisting of anatomical physical barriers as well as physiological and cellular responses, which protect the host against harmful microorganisms while limiting host responses to harmless symbionts. Humans are home to 1013 to 1014 bacteria, roughly equivalent to the number of human cells, and while these bacteria can be pathogenic to their host most of them are mutually beneficial to both the host and bacteria.
An inactivated vaccine is a vaccine consisting of virus particles, bacteria, or other pathogens that have been grown in culture and then killed to destroy disease-producing capacity. In contrast, live vaccines use pathogens that are still alive. Pathogens for inactivated vaccines are grown under controlled conditions and are killed as a means to reduce infectivity and thus prevent infection from the vaccine.
The danger model of the immune system proposes that it differentiates between components that are capable of causing damage, rather that distinguishing between self and non-self.
Antigen-antibody interaction, or antigen-antibody reaction, is a specific chemical interaction between antibodies produced by B cells of the white blood cells and antigens during immune reaction. The antigens and antibodies combine by a process called agglutination. It is the fundamental reaction in the body by which the body is protected from complex foreign molecules, such as pathogens and their chemical toxins. In the blood, the antigens are specifically and with high affinity bound by antibodies to form an antigen-antibody complex. The immune complex is then transported to cellular systems where it can be destroyed or deactivated.
Immunological memory is the ability of the immune system to quickly and specifically recognize an antigen that the body has previously encountered and initiate a corresponding immune response. Generally, these are secondary, tertiary and other subsequent immune responses to the same antigen. The adaptive immune system and antigen-specific receptor generation are responsible for adaptive immune memory. After the inflammatory immune response to danger-associated antigen, some of the antigen-specific T cells and B cells persist in the body and become long-living memory T and B cells. After the second encounter with the same antigen, they recognize the antigen and mount a faster and more robust response. Immunological memory is the basis of vaccination. Emerging resources show that even the innate immune system can initiate a more efficient immune response and pathogen elimination after the previous stimulation with a pathogen, respectively with PAMPs or DAMPs. Innate immune memory is neither antigen-specific nor dependent on gene rearrangement, but the different response is caused by changes in epigenetic programming and shifts in cellular metabolism. Innate immune memory was observed in invertebrates as well as in vertebrates.
Seung-Yong Seong is a South Korean immunologist and microbiologist known for his study of innate immune system response and his development of the damage-associated molecular pattern (DAMP) model of immune response initiation in collaboration with Polly Matzinger. Seong is also known for his research on the bacterium Orientia tsutsugamushi and his research on immunological adjuvant when he was a student. Since 2013 he has served as Director of the Wide River Institute of Immunology – Seoul National University in conjunction with his Professor position in the Microbiology and Immunology department of Seoul National University College of Medicine. In 2012, he became Editor in Chief of the World Journal of Immunology.
{{cite journal}}
: CS1 maint: uses authors parameter (link)