Organelle

Last updated
Organelle
Details
Pronunciation /ɔːrɡəˈnɛl/
Part of Cell
Identifiers
Latin organella
MeSH D015388
TH H1.00.01.0.00009
FMA 63832
Anatomical terms of microanatomy

In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive. Organelles are either separately enclosed within their own lipid bilayers (also called membrane-bounded organelles) or are spatially distinct functional units without a surrounding lipid bilayer (non-membrane bounded organelles). Although most organelles are functional units within cells, some function units that extend outside of cells are often termed organelles, such as cilia, the flagellum and archaellum, and the trichocyst (these could be referred to as membrane bound in the sense that they are attached to (or bound to) the membrane).

Contents

Organelles are identified by microscopy, and can also be purified by cell fractionation. There are many types of organelles, particularly in eukaryotic cells. They include structures that make up the endomembrane system (such as the nuclear envelope, endoplasmic reticulum, and Golgi apparatus), and other structures such as mitochondria and plastids. While prokaryotes do not possess eukaryotic organelles, some do contain protein-shelled bacterial microcompartments, which are thought to act as primitive prokaryotic organelles; [1] and there is also evidence of other membrane-bounded structures. [2] Also, the prokaryotic flagellum which protrudes outside the cell, and its motor, as well as the largely extracellular pilus, are often spoken of as organelles.

History and terminology

Cell biology
Animal cell diagram
Animal Cell.svg
Components of a typical animal cell:
  1. Nucleolus
  2. Nucleus
  3. Ribosome (dots as part of 5)
  4. Vesicle
  5. Rough endoplasmic reticulum
  6. Golgi apparatus (or, Golgi body)
  7. Cytoskeleton
  8. Smooth endoplasmic reticulum
  9. Mitochondrion
  10. Vacuole
  11. Cytosol (fluid that contains organelles; with which, comprises cytoplasm)
  12. Lysosome
  13. Centrosome
  14. Cell membrane

In biology, organs are defined as confined functional units within an organism. [3] The analogy of bodily organs to microscopic cellular substructures is obvious, as from even early works, authors of respective textbooks rarely elaborate on the distinction between the two.

In the 1830s, Félix Dujardin refuted Ehrenberg theory which said that microorganisms have the same organs of multicellular animals, only minor. [4]

Credited as the first [5] [6] [7] to use a diminutive of organ (i.e., little organ) for cellular structures was German zoologist Karl August Möbius (1884), who used the term organula (plural of organulum, the diminutive of Latin organum). [8] In a footnote, which was published as a correction in the next issue of the journal, he justified his suggestion to call organs of unicellular organisms "organella" since they are only differently formed parts of one cell, in contrast to multicellular organs of multicellular organisms. [8] [9]

Types

While most cell biologists consider the term organelle to be synonymous with cell compartment, a space often bounded by one or two lipid bilayers, some cell biologists choose to limit the term to include only those cell compartments that contain deoxyribonucleic acid (DNA), having originated from formerly autonomous microscopic organisms acquired via endosymbiosis. [10]

The first, broader conception of organelles is that they are membrane-bounded structures. However, even by using this definition, some parts of the cell that have been shown to be distinct functional units do not qualify as organelles. Therefore, the use of organelle to also refer to non-membrane bounded structures such as ribosomes is common and accepted. [11] [ verification needed ] [12] [13] This has led many texts to delineate between membrane-bounded and non-membrane bounded organelles. [14] The non-membrane bounded organelles, also called large biomolecular complexes, are large assemblies of macromolecules that carry out particular and specialized functions, but they lack membrane boundaries. Many of these are referred to as "proteinaceous organelles" as their main structure is made of proteins. Such cell structures include:

The mechanisms by which such non-membrane bounded organelles form and retain their spatial integrity have been likened to liquid-liquid phase separation. [15]

The second, more restrictive definition of organelle includes only those cell compartments that contain deoxyribonucleic acid (DNA), having originated from formerly autonomous microscopic organisms acquired via endosymbiosis. [10] [16] [17]

Using this definition, there would only be two broad classes of organelles (i.e. those that contain their own DNA, and have originated from endosymbiotic bacteria):

Other organelles are also suggested[ by whom? ] to have endosymbiotic origins, but do not contain their own DNA[ citation needed ] (notably the flagellum – see evolution of flagella).

Eukaryotic organelles

Eukaryotic cells are structurally complex, and by definition are organized, in part, by interior compartments that are themselves enclosed by lipid membranes that resemble the outermost cell membrane. The larger organelles, such as the nucleus and vacuoles, are easily visible with the light microscope. They were among the first biological discoveries made after the invention of the microscope.

Not all eukaryotic cells have each of the organelles listed below. Exceptional organisms have cells that do not include some organelles (such as mitochondria) that might otherwise be considered universal to eukaryotes. [19] The several plastids including chloroplasts are distributed among some but not all eukaryotes.

There are also occasional exceptions to the number of membranes surrounding organelles, listed in the tables below (e.g., some that are listed as double-membrane are sometimes found with single or triple membranes). In addition, the number of individual organelles of each type found in a given cell varies depending upon the function of that cell.The cell membrane and cell wall are not organelles.

Major eukaryotic organelles
OrganelleMain functionStructureOrganismsNotes
chloroplast (plastid) photosynthesis, traps energy from sunlightdouble-membrane compartmentplants, algae, rare kleptoplastic organisms has own DNA; theorized to be engulfed by the ancestral archaeplastid cell (endosymbiosis)
endoplasmic reticulum translation and folding of new proteins (rough endoplasmic reticulum), expression of lipids (smooth endoplasmic reticulum)single-membrane compartmentall eukaryotesrough endoplasmic reticulum is covered with ribosomes (which are bound to the ribosome membrane), has folds that are flat sacs; smooth endoplasmic reticulum has folds that are tubular
flagellum locomotion, sensoryproteinsome eukaryotes
Golgi apparatus sorting, packaging, processing and modification of proteinssingle-membrane compartmentall eukaryotescis-face (convex) nearest to rough endoplasmic reticulum; trans-face (concave) farthest from rough endoplasmic reticulum
mitochondrion energy production from the oxidation of glucose substances and the release of adenosine triphosphate double-membrane compartmentmost eukaryotesconstituting element of the chondriome; has own DNA; theorized to have been engulfed by an ancestral eukaryotic cell (endosymbiosis) [20]
nucleus DNA maintenance, controls all activities of the cell, RNA transcription double-membrane compartmentall eukaryotescontains bulk of genome
vacuole storage, transportation, helps maintain homeostasis single-membrane compartmentall eukaryotes
Minor eukaryotic organelles and cell components
Organelle/MacromoleculeMain functionStructureOrganisms
acrosome helps spermatozoa fuse with ovumsingle-membrane compartmentmost animals (including sponges)
autophagosome vesicle that sequesters cytoplasmic material and organelles for degradationdouble-membrane compartmentall eukaryotes
centriole anchor for cytoskeleton, organizes cell division by forming spindle fibers Microtubule proteinanimals
cilium movement in or of external medium; "critical developmental signaling pathway". [21] Microtubule proteinanimals, protists, few plants
cnidocyst stingingcoiled hollow tubule cnidarians
eyespot apparatus detects light, allowing phototaxis to take place green algae and other unicellular photosynthetic organisms such as euglenids
glycosome carries out glycolysis single-membrane compartmentSome protozoa, such as Trypanosomes .
glyoxysome conversion of fat into sugarssingle-membrane compartmentplants
hydrogenosome energy & hydrogen productiondouble-membrane compartmenta few unicellular eukaryotes
lysosome breakdown of large molecules (e.g., proteins + polysaccharides)single-membrane compartmentanimals
melanosome pigment storagesingle-membrane compartmentanimals
mitosome probably plays a role in Iron–sulfur cluster (Fe–S) assemblydouble-membrane compartmenta few unicellular eukaryotes that lack mitochondria
myofibril myocyte contractionbundled filamentsanimals
nucleolus pre-ribosome productionprotein–DNA–RNAmost eukaryotes
ocelloid detects light and possibly shapes, allowing phototaxis to take placedouble-membrane compartmentmembers of the family Warnowiaceae
parenthesome not characterizednot characterizedfungi
peroxisome breakdown of metabolic hydrogen peroxidesingle-membrane compartmentall eukaryotes
porosome secretory portalsingle-membrane compartmentall eukaryotes
proteasome degradation of unneeded or damaged proteins by proteolysisvery large protein complexall eukaryotes, all archaea, and some bacteria
ribosome (80S) translation of RNA into proteinsRNA-proteinall eukaryotes
stress granule mRNA storage [22] membraneless

(mRNP complexes)

most eukaryotes
TIGER domain mRNA encoding proteinsmembranelessmost organisms
vesicle material transportsingle-membrane compartmentall eukaryotes

Other related structures:

Prokaryotic organelles

(A) Electron micrograph of Halothiobacillus neapolitanus cells, arrows highlight carboxysomes. (B) Image of intact carboxysomes isolated from H. neapolitanus. Scale bars are 100 nm. Carboxysomes EM.jpg
(A) Electron micrograph of Halothiobacillus neapolitanus cells, arrows highlight carboxysomes. (B) Image of intact carboxysomes isolated from H. neapolitanus. Scale bars are 100 nm.
Structure of Candidatus Brocadia anammoxidans, showing an anammoxosome and intracytoplasmic membrane Brocadia anammoxidans.jpg
Structure of Candidatus Brocadia anammoxidans, showing an anammoxosome and intracytoplasmic membrane

Prokaryotes are not as structurally complex as eukaryotes, and were once thought to have little internal organization, and lack cellular compartments and internal membranes; but slowly, details are emerging about prokaryotic internal structures that overturn these assumptions. [2] An early false turn was the idea developed in the 1970s that bacteria might contain cell membrane folds termed mesosomes, but these were later shown to be artifacts produced by the chemicals used to prepare the cells for electron microscopy. [24]

However, there is increasing evidence of compartmentalization in at least some prokaryotes. [2] Recent research has revealed that at least some prokaryotes have microcompartments, such as carboxysomes. These subcellular compartments are 100–200 nm in diameter and are enclosed by a shell of proteins. [1] Even more striking is the description of membrane-bounded magnetosomes in bacteria, reported in 2006. [25] [26]

The bacterial phylum Planctomycetota has revealed a number of compartmentalization features. The Planctomycetota cell plan includes intracytoplasmic membranes that separates the cytoplasm into paryphoplasm (an outer ribosome-free space) and pirellulosome (or riboplasm, an inner ribosome-containing space). [27] Membrane-bounded anammoxosomes have been discovered in five Planctomycetota "anammox" genera, which perform anaerobic ammonium oxidation. [28] In the Planctomycetota species Gemmata obscuriglobus , a nucleus-like structure surrounded by lipid membranes has been reported. [27] [29]

Compartmentalization is a feature of prokaryotic photosynthetic structures. [2] Purple bacteria have "chromatophores", which are reaction centers found in invaginations of the cell membrane. [2] Green sulfur bacteria have chlorosomes, which are photosynthetic antenna complexes found bonded to cell membranes. [2] Cyanobacteria have internal thylakoid membranes for light-dependent photosynthesis; studies have revealed that the cell membrane and the thylakoid membranes are not continuous with each other. [2]

Prokaryotic organelles and cell components
Organelle/macromoleculeMain functionStructureOrganisms
anammoxosome anaerobic ammonium oxidation ladderane lipid membrane" Candidatus " bacteria within Planctomycetota
carboxysome carbon fixation protein-shell bacterial microcompartment some bacteria
chlorosome photosynthesis light harvesting complex attached to cell membrane green sulfur bacteria
flagellum movement in external mediumprotein filamentsome prokaryotes
magnetosome magnetic orientationinorganic crystal, lipid membrane magnetotactic bacteria
nucleoid DNA maintenance, transcription to RNADNA-proteinprokaryotes
pilus Adhesion to other cells for conjugation or to a solid substrate to create motile forces.a hair-like appendage sticking out (though partially embedded into) the plasma membraneprokaryotic cells
plasmid DNA exchangecircular DNAsome bacteria
ribosome (70S) translation of RNA into proteinsRNA-proteinbacteria and archaea
thylakoid membranes photosynthesis photosystem proteins and pigmentsmostly cyanobacteria

See also

Related Research Articles

<span class="mw-page-title-main">Cell (biology)</span> Basic unit of many life forms

The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific function. The term comes from the Latin word cellula meaning 'small room'. Most cells are only visible under a microscope. Cells emerged on Earth about 4 billion years ago. All cells are capable of replication, protein synthesis, and motility.

<span class="mw-page-title-main">Cytoplasm</span> All of the contents of a eukaryotic cell except the nucleus

In cell biology, the cytoplasm describes all material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. The main components of the cytoplasm are the cytosol, the organelles, and various cytoplasmic inclusions. The cytoplasm is about 80% water and is usually colorless.

Cell biology is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living and functioning of organisms. Cell biology is the study of the structural and functional units of cells. Cell biology encompasses both prokaryotic and eukaryotic cells and has many subtopics which may include the study of cell metabolism, cell communication, cell cycle, biochemistry, and cell composition. The study of cells is performed using several microscopy techniques, cell culture, and cell fractionation. These have allowed for and are currently being used for discoveries and research pertaining to how cells function, ultimately giving insight into understanding larger organisms. Knowing the components of cells and how cells work is fundamental to all biological sciences while also being essential for research in biomedical fields such as cancer, and other diseases. Research in cell biology is interconnected to other fields such as genetics, molecular genetics, molecular biology, medical microbiology, immunology, and cytochemistry.

<span class="mw-page-title-main">Endomembrane system</span> Membranes in the cytoplasm of a eukaryotic cell

The endomembrane system is composed of the different membranes (endomembranes) that are suspended in the cytoplasm within a eukaryotic cell. These membranes divide the cell into functional and structural compartments, or organelles. In eukaryotes the organelles of the endomembrane system include: the nuclear membrane, the endoplasmic reticulum, the Golgi apparatus, lysosomes, vesicles, endosomes, and plasma (cell) membrane among others. The system is defined more accurately as the set of membranes that forms a single functional and developmental unit, either being connected directly, or exchanging material through vesicle transport. Importantly, the endomembrane system does not include the membranes of plastids or mitochondria, but might have evolved partially from the actions of the latter.

<span class="mw-page-title-main">Flagellum</span> Cellular appendage functioning as locomotive or sensory organelle

A flagellum is a hairlike appendage that protrudes from certain plant and animal sperm cells, from fungal spores (zoospores), and from a wide range of microorganisms to provide motility. Many protists with flagella are known as flagellates.

<span class="mw-page-title-main">Symbiogenesis</span> Evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells are descended from formerly free-living prokaryotes taken one inside the other in endosymbiosis. Mitochondria appear to be phylogenetically related to Rickettsiales bacteria, while chloroplasts are thought to be related to cyanobacteria.

<span class="mw-page-title-main">Domain (biology)</span> Taxonomic rank

In biological taxonomy, a domain, also dominion, superkingdom, realm, or empire, is the highest taxonomic rank of all organisms taken together. It was introduced in the three-domain system of taxonomy devised by Carl Woese, Otto Kandler and Mark Wheelis in 1990.

The evolution of flagella is of great interest to biologists because the three known varieties of flagella – each represent a sophisticated cellular structure that requires the interaction of many different systems.

<span class="mw-page-title-main">Cytoskeleton</span> Network of filamentous proteins that forms the internal framework of cells

The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components: microfilaments, intermediate filaments, and microtubules, and these are all capable of rapid growth or disassembly depending on the cell's requirements.

<span class="mw-page-title-main">Three-domain system</span> Hypothesis for classification of life

The three-domain system is a taxonomic classification system that groups all cellular life into three domains, namely Archaea, Bacteria and Eukarya, introduced by Carl Woese, Otto Kandler and Mark Wheelis in 1990. The key difference from earlier classifications such as the two-empire system and the five-kingdom classification is the splitting of Archaea from Bacteria as completely different organisms. It has been challenged by the two-domain system that divides organisms into Bacteria and Archaea only, as Eukaryotes are considered as a clade of Archaea.

<span class="mw-page-title-main">Unicellular organism</span> Organism that consists of only one cell

A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. Most prokaryotes are unicellular and are classified into bacteria and archaea. Many eukaryotes are multicellular, but some are unicellular such as protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early protocells possibly emerging 3.5–4.1 billion years ago.

The periplasm is a concentrated gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer membrane called the periplasmic space in Gram-negative bacteria. Using cryo-electron microscopy it has been found that a much smaller periplasmic space is also present in Gram-positive bacteria, between cell wall and the plasma membrane. The periplasm may constitute up to 40% of the total cell volume of gram-negative bacteria, but is a much smaller percentage in gram-positive bacteria.

<span class="mw-page-title-main">Planctomycetota</span> Phylum of aquatic bacteria

The Planctomycetota are a phylum of widely distributed bacteria, occurring in both aquatic and terrestrial habitats. They play a considerable role in global carbon and nitrogen cycles, with many species of this phylum capable of anaerobic ammonium oxidation, also known as anammox. Many Planctomycetota occur in relatively high abundance as biofilms, often associating with other organisms such as macroalgae and marine sponges.

A bacterium, despite its simplicity, contains a well-developed cell structure which is responsible for some of its unique biological structures and pathogenicity. Many structural features are unique to bacteria and are not found among archaea or eukaryotes. Because of the simplicity of bacteria relative to larger organisms and the ease with which they can be manipulated experimentally, the cell structure of bacteria has been well studied, revealing many biochemical principles that have been subsequently applied to other organisms.

<span class="mw-page-title-main">Cellular compartment</span> Closed part in cytosol

Cellular compartments in cell biology comprise all of the closed parts within the cytosol of a eukaryotic cell, usually surrounded by a single or double lipid layer membrane. These compartments are often, but not always, defined as membrane-bound organelles. The formation of cellular compartments is called compartmentalization.

<span class="mw-page-title-main">Outline of cell biology</span> Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

<span class="mw-page-title-main">Prokaryote</span> Unicellular organism lacking a membrane-bound nucleus

A prokaryote is a single-cell organism whose cell lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό 'before' and κάρυον 'nut, kernel'. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. However in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria and Archaea. Organisms with nuclei are placed in a third domain, Eukaryota.

<span class="mw-page-title-main">Eukaryote</span> Domain of life whose cells have nuclei

The eukaryotes constitute the domain of Eukarya or Eukaryota, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, and many unicellular organisms are eukaryotes. They constitute a major group of life forms alongside the two groups of prokaryotes: the Bacteria and the Archaea. Eukaryotes represent a small minority of the number of organisms, but given their generally much larger size, their collective global biomass is much larger than that of prokaryotes.

<span class="mw-page-title-main">Cell membrane</span> Biological membrane that separates the interior of a cell from its outside environment

The cell membrane is a biological membrane that separates and protects the interior of a cell from the outside environment. The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols interspersed between them, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as membrane transporters, and peripheral proteins that loosely attach to the outer (peripheral) side of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose.

<i>Gemmata obscuriglobus</i> Species of bacteria

Gemmata obscuriglobus is a species of Gram-negative, aerobic, heterotrophic bacteria of the phylum Planctomycetota. G. obscuriglobus occur in freshwater habitats and was first described in 1984, and is the only described species in its genus.

References

  1. 1 2 Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (August 2005). "Protein structures forming the shell of primitive organelles". Science. 309 (5736): 936–8. Bibcode:2005Sci...309..936K. CiteSeerX   10.1.1.1026.896 . doi:10.1126/science.1113397. PMID   16081736. S2CID   24561197.
  2. 1 2 3 4 5 6 7 Murat, Dorothee; Byrne, Meghan; Komeili, Arash (2010-10-01). "Cell Biology of Prokaryotic Organelles". Cold Spring Harbor Perspectives in Biology. 2 (10): a000422. doi:10.1101/cshperspect.a000422. PMC   2944366 . PMID   20739411.
  3. Peterson L (April 17, 2010). "Mastering the Parts of a Cell". Lesson Planet. Retrieved 2010-04-19.
  4. Di Gregorio MA (2005). From Here to Eternity: Ernst Haeckel and Scientific Faith. Gottingen: Vandenhoeck & Ruprecht. p. 218.
  5. Bütschli O (1888). Dr. H. G. Bronn's Klassen u. Ordnungen des Thier-Reichs wissenschaftlich dargestellt in Wort und Bild. Erster Band. Protozoa. Dritte Abtheilung: Infusoria und System der Radiolaria. p. 1412. Die Vacuolen sind demnach in strengem Sinne keine beständigen Organe oder O r g a n u l a (wie Möbius die Organe der Einzelligen im Gegensatz zu denen der Vielzelligen zu nennen vorschlug).
  6. Ryder JA, ed. (February 1889). "Embryology: The Structure of the Human Spermatozoon". American Naturalist. 23: 184. It may possibly be of advantage to use the word organula here instead of organ, following a suggestion by Möbius. Functionally differentiated multicellular aggregates in multicellular forms or metazoa are in this sense organs, while, for functionally differentiated portions of unicellular organisms or for such differentiated portions of the unicellular germ-elements of metazoa, the diminutive organula is appropriate.
  7. Robin C, Pouchet G, Duval MM, Retterrer E, Tourneux F (1891). Journal de l'anatomie et de la physiologie normales et pathologiques de l'homme et des animaux. F. Alcan.
  8. 1 2 Möbius K (September 1884). "Das Sterben der einzelligen und der vielzelligen Tiere. Vergleichend betrachtet". Biologisches Centralblatt. 4 (13, 14): 389–392, 448. Während die Fortpflanzungszellen der vielzelligen Tiere unthätig fortleben bis sie sich loslösen, wandern und entwickeln, treten die einzelligen Tiere auch durch die an der Fortpflanzung beteiligten Leibesmasse in Verkehr mit der Außenwelt und viele bilden sich dafür auch besondere Organula". Footnote on p. 448: "Die Organe der Heteroplastiden bestehen aus vereinigten Zellen. Da die Organe der Monoplastiden nur verschieden ausgebildete Teile e i n e r Zelle sind schlage ich vor, sie „Organula" zu nennen
  9. Walker, Patrick (2009). Nuclear import of histone fold motif containing heterodimers by importin 13. Niedersächsische Staats-und Universitätsbibliothek Göttingen.
  10. 1 2 Keeling PJ, Archibald JM (April 2008). "Organelle evolution: what's in a name?". Current Biology. 18 (8): R345-7. Bibcode:2008CBio...18.R345K. doi: 10.1016/j.cub.2008.02.065 . PMID   18430636. S2CID   11520942.
  11. Campbell NA, Reece JB, Mitchell LG (2002). Biology (6th ed.). Benjamin Cummings. ISBN   978-0-8053-6624-2.
  12. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (March 2015). "Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles". Molecular Cell. 57 (5): 936–947. doi:10.1016/j.molcel.2015.01.013. PMC   4352761 . PMID   25747659.
  13. Banani SF, Lee HO, Hyman AA, Rosen MK (May 2017). "Biomolecular condensates: organizers of cellular biochemistry". Nature Reviews Molecular Cell Biology. 18 (5): 285–298. doi:10.1038/nrm.2017.7. PMC   7434221 . PMID   28225081.
  14. Cormack DH (1984). Introduction to Histology . Lippincott. ISBN   978-0-397-52114-2.
  15. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (June 2009). "Germline P granules are liquid droplets that localize by controlled dissolution/condensation". Science. 324 (5935): 1729–32. Bibcode:2009Sci...324.1729B. doi: 10.1126/science.1172046 . PMID   19460965. S2CID   42229928.
  16. Imanian B, Carpenter KJ, Keeling PJ (March–April 2007). "Mitochondrial genome of a tertiary endosymbiont retains genes for electron transport proteins". The Journal of Eukaryotic Microbiology. 54 (2): 146–53. doi:10.1111/j.1550-7408.2007.00245.x. PMID   17403155. S2CID   20393495.
  17. Mullins C (2004). "Theory of Organelle Biogenesis: A Historical Perspective". The Biogenesis of Cellular Organelles. Springer Science+Business Media, National Institutes of Health. ISBN   978-0-306-47990-8.
  18. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). "The Genetic Systems of Mitochondria and Plastids". Molecular Biology of the Cell (4th ed.). ISBN   978-0-8153-3218-3.
  19. Fahey RC, Newton GL, Arrick B, Overdank-Bogart T, Aley SB (April 1984). "Entamoeba histolytica: a eukaryote without glutathione metabolism". Science. 224 (4644): 70–2. Bibcode:1984Sci...224...70F. doi:10.1126/science.6322306. PMID   6322306.
  20. Alberts B, Johnson A, Lewis J, Morgan D, Raff MC, Roberts K, Walter P, Wilson JH, Hunt T (2014-11-18). Molecular biology of the cell (Sixth ed.). Garland Science. p. 679. ISBN   978-0815345244.
  21. Badano JL, Mitsuma N, Beales PL, Katsanis N (September 2006). "The ciliopathies: an emerging class of human genetic disorders". Annual Review of Genomics and Human Genetics. 7: 125–48. doi:10.1146/annurev.genom.7.080505.115610. PMID   16722803.
  22. Anderson P, Kedersha N (March 2008). "Stress granules: the Tao of RNA triage". Trends in Biochemical Sciences. 33 (3): 141–50. doi:10.1016/j.tibs.2007.12.003. PMID   18291657.
  23. Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO (June 2007). "Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome". PLOS Biology. 5 (6): e144. doi: 10.1371/journal.pbio.0050144 . PMC   1872035 . PMID   17518518.
  24. Ryter A (January–February 1988). "Contribution of new cryomethods to a better knowledge of bacterial anatomy". Annales de l'Institut Pasteur. Microbiology. 139 (1): 33–44. doi:10.1016/0769-2609(88)90095-6. PMID   3289587.
  25. Komeili A, Li Z, Newman DK, Jensen GJ (January 2006). "Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK" (PDF). Science. 311 (5758): 242–5. Bibcode:2006Sci...311..242K. doi:10.1126/science.1123231. PMID   16373532. S2CID   36909813.
  26. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (March 2006). "An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria". Nature. 440 (7080): 110–4. Bibcode:2006Natur.440..110S. doi:10.1038/nature04382. PMID   16299495. S2CID   4372846.
  27. 1 2 Lindsay, M. R.; Webb, R. I.; Strous, M; Jetten, M. S.; Butler, M. K.; Forde, R. J.; Fuerst, J. A. (2001). "Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell". Archives of Microbiology. 175 (6): 413–29. Bibcode:2001ArMic.175..413L. doi:10.1007/s002030100280. PMID   11491082. S2CID   21970703.
  28. Jetten, Mike S. M.; Niftrik, Laura van; Strous, Marc; Kartal, Boran; Keltjens, Jan T.; Op den Camp, Huub J. M. (2009-06-01). "Biochemistry and molecular biology of anammox bacteria". Critical Reviews in Biochemistry and Molecular Biology. 44 (2–3): 65–84. doi:10.1080/10409230902722783. hdl: 2066/75127 . PMID   19247843. S2CID   205694872 . Retrieved 2020-08-03.
  29. Fuerst JA (October 13, 2005). "Intracellular compartmentation in planctomycetes". Annual Review of Microbiology. 59: 299–328. doi:10.1146/annurev.micro.59.030804.121258. PMID   15910279.