Organism

Last updated

Escherichia coli (E. coli) is a microscopic single-celled organism, and a prokaryote as well. EscherichiaColi NIAID.jpg
Escherichia coli (E. coli) is a microscopic single-celled organism, and a prokaryote as well.
Amoebae are single-celled eukaryotes Amoeba (Amobe) 01.jpg
Amoebae are single-celled eukaryotes
Polypore fungi and angiosperm trees are large many-celled eukaryotes. Fungi in Borneo.jpg
Polypore fungi and angiosperm trees are large many-celled eukaryotes.

In biology, an organism (from Greek: ὀργανισμός, organismos) is any individual entity that propagates the properties of life. It is a synonym for "life form".

Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution. Despite the complexity of the science, there are certain unifying concepts that consolidate it into a single, coherent field. Biology recognizes the cell as the basic unit of life, genes as the basic unit of heredity, and evolution as the engine that propels the creation and extinction of species. Living organisms are open systems that survive by transforming energy and decreasing their local entropy to maintain a stable and vital condition defined as homeostasis.

Ancient Greek Version of the Greek language used from roughly the 9th century BCE to the 6th century CE

The ancient Greek language includes the forms of Greek used in Ancient Greece and the ancient world from around the 9th century BCE to the 6th century CE. It is often roughly divided into the Archaic period, Classical period, and Hellenistic period. It is antedated in the second millennium BCE by Mycenaean Greek and succeeded by Medieval Greek.

Life form – entity that is living, such as plants (flora) and animals (fauna). It is estimated that more than 99% of all species that ever existed on Earth, amounting to over five billion species, are extinct.

Contents

Organisms are classified by taxonomy into specified groups such as the multicellular animals, plants, and fungi; or unicellular microorganisms such as a protists, bacteria, and archaea. [1] All types of organisms are capable of reproduction, growth and development, maintenance, and some degree of response to stimuli. Humans are multicellular animals composed of many trillions of cells which differentiate during development into specialized tissues and organs.

Taxonomy (biology) The science of identifying, describing, defining and naming groups of biological organisms

In biology, taxonomy is the science of naming, defining (circumscribing) and classifying groups of biological organisms on the basis of shared characteristics. Organisms are grouped together into taxa and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a super-group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum, class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, as he developed a system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

Multicellular organism Organism that consists of more than one cell

Multicellular organisms are organisms that consist of more than one cell, in contrast to unicellular organisms.

Animal Kingdom of motile multicellular eukaryotic heterotrophic organisms

Animals are multicellular eukaryotic organisms that form the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 millionths of a metre to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The kingdom Animalia includes humans, but in colloquial use the term animal often refers only to non-human animals. The study of non-human animals is known as zoology.

An organism may be either a prokaryote or a eukaryote. Prokaryotes are represented by two separate domains  bacteria and archaea. Eukaryotic organisms are characterized by the presence of a membrane-bound cell nucleus and contain additional membrane-bound compartments called organelles (such as mitochondria in animals and plants and plastids in plants and algae, all generally considered to be derived from endosymbiotic bacteria). [2] Fungi, animals and plants are examples of kingdoms of organisms within the eukaryotes.

Prokaryote Group of organisms whose cells lack a cell nucleus

A prokaryote is a unicellular organism that lacks a membrane-bound nucleus, mitochondria, or any other membrane-bound organelle. The word prokaryote comes from the Greek πρό (pro) "before" and κάρυον (karyon) "nut" or "kernel". Prokaryotes are divided into two domains, Archaea and Bacteria. Species with nuclei and organelles are placed in the third domain, Eukaryota. Prokaryotes reproduce without fusion of gametes. The first living organisms are thought to have been prokaryotes.

Eukaryote Taxonomic group whose members have complex structures enclosed within membranes

Eukaryotes are organisms whose cells have a nucleus enclosed within membranes, unlike prokaryotes, which have no membrane-bound organelles. Eukaryotes belong to the domain Eukaryota or Eukarya. Their name comes from the Greek εὖ and κάρυον. Eukaryotic cells also contain other membrane-bound organelles such as mitochondria and the Golgi apparatus, and in addition, some cells of plants and algae contain chloroplasts. Unlike unicellular archaea and bacteria, eukaryotes may also be multicellular and include organisms consisting of many cell types forming different kinds of tissue. Animals and plants are the most familiar eukaryotes.

Three-domain system

The three-domain system is a biological classification introduced by Carl Woese et al. in 1999 that divides cellular life forms into archaea, bacteria, and eukaryote domains. In particular, it emphasizes the separation of prokaryotes into two groups, originally called Eubacteria and Archaebacteria. Woese argued that, on the basis of differences in 16S rRNA genes, these two groups and the eukaryotes each arose separately from an ancestor with poorly developed genetic machinery, often called a progenote. To reflect these primary lines of descent, he treated each as a domain, divided into several different kingdoms. Woese initially used the term "kingdom" to refer to the three primary phylogenic groupings, and this nomenclature was widely used until the term "domain" was adopted in 1990.

Estimates on the number of Earth's current species range from 10 million to 14 million, [3] of which only about 1.2 million have been documented. [4] More than 99% of all species, amounting to over five billion species, [5] that ever lived are estimated to be extinct. [6] [7] In 2016, a set of 355 genes from the last universal common ancestor (LUCA) of all organisms was identified. [8] [9]

In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.

Extinction Termination of a taxon by the death of the last member

In biology, extinction is the termination of a kind of organism or of a group of kinds (taxon), usually a species. The moment of extinction is generally considered to be the death of the last individual of the species, although the capacity to breed and recover may have been lost before this point. Because a species' potential range may be very large, determining this moment is difficult, and is usually done retrospectively. This difficulty leads to phenomena such as Lazarus taxa, where a species presumed extinct abruptly "reappears" after a period of apparent absence.

Gene Basic physical and functional unit of heredity

In biology, a gene is a sequence of nucleotides in DNA or RNA that codes for a molecule that has a function. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic trait. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes as well as gene–environment interactions. Some genetic traits are instantly visible, such as eye color or number of limbs, and some are not, such as blood type, risk for specific diseases, or the thousands of basic biochemical processes that constitute life.

Etymology

The term "organism" (from Greek ὀργανισμός, organismos, from ὄργανον, organon, i.e. "instrument, implement, tool, organ of sense or apprehension" [10] [11] ) first appeared in the English language in 1703 and took on its current definition by 1834 (Oxford English Dictionary). It is directly related to the term "organization". There is a long tradition of defining organisms as self-organizing beings, going back at least to Immanuel Kant's 1790 Critique of Judgment . [12]

Greek language Language spoken in Greece, Cyprus and Southern Albania

Greek is an independent branch of the Indo-European family of languages, native to Greece, Cyprus and other parts of the Eastern Mediterranean and the Black Sea. It has the longest documented history of any living Indo-European language, spanning more than 3000 years of written records. Its writing system has been the Greek alphabet for the major part of its history; other systems, such as Linear B and the Cypriot syllabary, were used previously. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic, and many other writing systems.

<i>Oxford English Dictionary</i> Premier historical dictionary of the English language

The Oxford English Dictionary (OED) is the principal historical dictionary of the English language, published by Oxford University Press (OUP). It traces the historical development of the English language, providing a comprehensive resource to scholars and academic researchers, as well as describing usage in its many variations throughout the world. The second edition, comprising 21,728 pages in 20 volumes, was published in 1989.

Immanuel Kant Prussian philosopher

Immanuel Kant was an influential Prussian German philosopher in the Age of Enlightenment. In his doctrine of transcendental idealism, he argued that space, time, and causation are mere sensibilities; "things-in-themselves" exist, but their nature is unknowable. In his view, the mind shapes and structures experience, with all human experience sharing certain structural features. He drew a parallel to the Copernican revolution in his proposition that worldly objects can be intuited a priori ('beforehand'), and that intuition is therefore independent from objective reality. Kant believed that reason is the source of morality, and that aesthetics arise from a faculty of disinterested judgment. Kant's views continue to have a major influence on contemporary philosophy, especially the fields of epistemology, ethics, political theory, and post-modern aesthetics.

Definitions

An organism may be defined as an assembly of molecules functioning as a more or less stable whole that exhibits the properties of life. Dictionary definitions can be broad, using phrases such as "any living structure, such as a plant, animal, fungus or bacterium, capable of growth and reproduction". [13] Many definitions exclude viruses and possible man-made non-organic life forms, as viruses are dependent on the biochemical machinery of a host cell for reproduction. [14] A superorganism is an organism consisting of many individuals working together as a single functional or social unit. [15]

Molecule Electrically neutral entity consisting of more than one atom (n > 1); rigorously, a molecule, in which n > 1 must correspond to a depression on the potential energy surface that is deep enough to confine at least one vibrational state

A molecule is an electrically neutral group of two or more atoms held together by chemical bonds. Molecules are distinguished from ions by their lack of electrical charge. However, in quantum physics, organic chemistry, and biochemistry, the term molecule is often used less strictly, also being applied to polyatomic ions.

Virus Type of non-cellular infectious agent

A virus is a small infectious agent that replicates only inside the living cells of an organism. Viruses can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea.

Hypothetical types of biochemistry Possible alternative biochemicals used by life forms

Hypothetical types of biochemistry are forms of biochemistry speculated to be scientifically viable but not proven to exist at this time. The kinds of living organisms currently known on Earth all use carbon compounds for basic structural and metabolic functions, water as a solvent, and DNA or RNA to define and control their form. If life exists on other planets or moons, it may be chemically similar; it is also possible that there are organisms with quite different chemistries—for instance, involving other classes of carbon compounds, compounds of another element, or another solvent in place of water.

There has been controversy about the best way to define the organism [16] [17] [18] [19] [20] [21] [22] [23] [24] and indeed about whether or not such a definition is necessary. [25] [26] Several contributions [27] are responses to the suggestion that the category of "organism" may well not be adequate in biology. [28] [ page needed ]

Non-cellular life

Viruses are not typically considered to be organisms because they are incapable of autonomous reproduction, growth or metabolism. This controversy is problematic because some cellular organisms are also incapable of independent survival (but are capable of independent metabolism and procreation) and live as obligatory intracellular parasites. Although viruses have a few enzymes and molecules characteristic of living organisms, they have no metabolism of their own; they cannot synthesize and organize the organic compounds from which they are formed. Naturally, this rules out autonomous reproduction: they can only be passively replicated by the machinery of the host cell. In this sense, they are similar to inanimate matter. While viruses sustain no independent metabolism and thus are usually not classified as organisms, they do have their own genes, and they do evolve by mechanisms similar to the evolutionary mechanisms of organisms.

The most common argument in support of viruses as living organisms is their ability to undergo evolution and replicate through self-assembly. Some scientists argue that viruses neither evolve nor self-reproduce. In fact, viruses are evolved by their host cells, meaning that there was co-evolution of viruses and host cells. If host cells did not exist, viral evolution would be impossible. This is not true for cells. If viruses did not exist, the direction of cellular evolution could be different, but cells would nevertheless be able to evolve. As for the reproduction, viruses totally rely on hosts' machinery to replicate. [29] The discovery of viral metagenomes with genes coding for energy metabolism and protein synthesis fueled the debate about whether viruses belong in the tree of life. The presence of these genes suggested that viruses were once able to metabolize. However, it was found later that the genes coding for energy and protein metabolism have a cellular origin. Most likely, these genes were acquired through horizontal gene transfer from viral hosts. [29]

Chemistry

Organisms are complex chemical systems, organized in ways that promote reproduction and some measure of sustainability or survival. The same laws that govern non-living chemistry govern the chemical processes of life. It is generally the phenomena of entire organisms that determine their fitness to an environment and therefore the survivability of their DNA-based genes.

Organisms clearly owe their origin, metabolism, and many other internal functions to chemical phenomena, especially the chemistry of large organic molecules. Organisms are complex systems of chemical compounds that, through interaction and environment, play a wide variety of roles.

Organisms are semi-closed chemical systems. Although they are individual units of life (as the definition requires), they are not closed to the environment around them. To operate they constantly take in and release energy. Autotrophs produce usable energy (in the form of organic compounds) using light from the sun or inorganic compounds while heterotrophs take in organic compounds from the environment.

The primary chemical element in these compounds is carbon. The chemical properties of this element such as its great affinity for bonding with other small atoms, including other carbon atoms, and its small size making it capable of forming multiple bonds, make it ideal as the basis of organic life. It is able to form small three-atom compounds (such as carbon dioxide), as well as large chains of many thousands of atoms that can store data (nucleic acids), hold cells together, and transmit information (protein).

Macromolecules

Compounds that make up organisms may be divided into macromolecules and other, smaller molecules. The four groups of macromolecule are nucleic acids, proteins, carbohydrates and lipids. Nucleic acids (specifically deoxyribonucleic acid, or DNA) store genetic data as a sequence of nucleotides. The particular sequence of the four different types of nucleotides (adenine, cytosine, guanine, and thymine) dictate many characteristics that constitute the organism. The sequence is divided up into codons, each of which is a particular sequence of three nucleotides and corresponds to a particular amino acid. Thus a sequence of DNA codes for a particular protein that, due to the chemical properties of the amino acids it is made from, folds in a particular manner and so performs a particular function.

These protein functions have been recognized:

  1. Enzymes, which catalyze all of the reactions of metabolism
  2. Structural proteins, such as tubulin, or collagen
  3. Regulatory proteins, such as transcription factors or cyclins that regulate the cell cycle
  4. Signaling molecules or their receptors such as some hormones and their receptors
  5. Defensive proteins, which can include everything from antibodies of the immune system, to toxins (e.g., dendrotoxins of snakes), to proteins that include unusual amino acids like canavanine

A bilayer of phospholipids makes up the membrane of cells that constitutes a barrier, containing everything within the cell and preventing compounds from freely passing into, and out of, the cell. Due to the selective permeability of the phospholipid membrane, only specific compounds can pass through it. In some multicellular organisms, they serve as a storage of energy and mediate communication between cells. Carbohydrates are more easily broken down than lipids and yield more energy to compare to lipids and proteins. In fact, carbohydrates are the number one source of energy for all living organisms.

Structure

All organisms consist of structural units called cells; some contain a single cell (unicellular) and others contain many units (multicellular). Multicellular organisms are able to specialize cells to perform specific functions. A group of such cells is a tissue, and in animals these occur as four basic types, namely epithelium, nervous tissue, muscle tissue, and connective tissue. Several types of tissue work together in the form of an organ to produce a particular function (such as the pumping of the blood by the heart, or as a barrier to the environment as the skin). This pattern continues to a higher level with several organs functioning as an organ system such as the reproductive system, and digestive system. Many multicellular organisms consist of several organ systems, which coordinate to allow for life.

Cell

The cell theory, first developed in 1839 by Schleiden and Schwann, states that all organisms are composed of one or more cells; all cells come from preexisting cells; and cells contain the hereditary information necessary for regulating cell functions and for transmitting information to the next generation of cells.

There are two types of cells, eukaryotic and prokaryotic. Prokaryotic cells are usually singletons, while eukaryotic cells are usually found in multicellular organisms. Prokaryotic cells lack a nuclear membrane so DNA is unbound within the cell; eukaryotic cells have nuclear membranes.

All cells, whether prokaryotic or eukaryotic, have a membrane, which envelops the cell, separates its interior from its environment, regulates what moves in and out, and maintains the electric potential of the cell. Inside the membrane, a salty cytoplasm takes up most of the cell volume. All cells possess DNA, the hereditary material of genes, and RNA, containing the information necessary to build various proteins such as enzymes, the cell's primary machinery. There are also other kinds of biomolecules in cells.

All cells share several similar characteristics of: [30]

Evolution

Last universal common ancestor

Precambrian stromatolites in the Siyeh Formation, Glacier National Park. In 2002, a paper in the scientific journal Nature suggested that these 3.5 Gya (billion years old) geological formations contain fossilized cyanobacteria microbes. This suggests they are evidence of one of the earliest known life forms on Earth. Stromatolites.jpg
Precambrian stromatolites in the Siyeh Formation, Glacier National Park. In 2002, a paper in the scientific journal Nature suggested that these 3.5 Gya (billion years old) geological formations contain fossilized cyanobacteria microbes. This suggests they are evidence of one of the earliest known life forms on Earth.

The last universal common ancestor (LUCA) is the most recent organism from which all organisms now living on Earth descend. [31] Thus it is the most recent common ancestor of all current life on Earth. The LUCA is estimated to have lived some 3.5 to 3.8 billion years ago (sometime in the Paleoarchean era). [32] [33] The earliest evidence for life on Earth is graphite found to be biogenic in 3.7 billion-year-old metasedimentary rocks discovered in Western Greenland [34] and microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia. [35] [36] Although more than 99 percent of all species that ever lived on the planet are estimated to be extinct, [6] [7] there are currently 10–14 million species of life on Earth. [3]

Information about the early development of life includes input from many different fields, including geology and planetary science. These sciences provide information about the history of the Earth and the changes produced by life. However, a great deal of information about the early Earth has been destroyed by geological processes over the course of time.

All organisms are descended from a common ancestor or ancestral gene pool. Evidence for common descent may be found in traits shared between all living organisms. In Darwin's day, the evidence of shared traits was based solely on visible observation of morphologic similarities, such as the fact that all birds have wings, even those that do not fly.

There is strong evidence from genetics that all organisms have a common ancestor. For example, every living cell makes use of nucleic acids as its genetic material, and uses the same twenty amino acids as the building blocks for proteins. All organisms use the same genetic code (with some extremely rare and minor deviations) to translate nucleic acid sequences into proteins. The universality of these traits strongly suggests common ancestry, because the selection of many of these traits seems arbitrary. Horizontal gene transfer makes it more difficult to study the last universal ancestor. [37] However, the universal use of the same genetic code, same nucleotides, and same amino acids makes the existence of such an ancestor overwhelmingly likely. [38]

Location of the root

The LUCA used the Wood-Ljungdahl or reductive acetyl-CoA pathway to fix carbon. Reduktiver Acetyl-CoA-Weg.png
The LUCA used the Wood–Ljungdahl or reductive acetyl–CoA pathway to fix carbon.

The most commonly accepted location of the root of the tree of life is between a monophyletic domain Bacteria and a clade formed by Archaea and Eukaryota of what is referred to as the "traditional tree of life" based on several molecular studies. [39] [40] [41] [42] [43] [44] A very small minority of studies have concluded differently, namely that the root is in the domain Bacteria, either in the phylum Firmicutes [45] or that the phylum Chloroflexi is basal to a clade with Archaea and Eukaryotes and the rest of Bacteria as proposed by Thomas Cavalier-Smith. [46]

Research published in 2016, by William F. Martin, by genetically analyzing 6.1 million protein-coding genes from sequenced prokaryotic genomes of various phylogenetic trees, identified 355 protein clusters from amongst 286,514 protein clusters that were probably common to the LUCA. The results "depict LUCA as anaerobic, CO2-fixing, H2-dependent with a Wood–Ljungdahl pathway (the reductive acetyl-coenzyme A pathway), N2-fixing and thermophilic. LUCA's biochemistry was replete with FeS clusters and radical reaction mechanisms. Its cofactors reveal dependence upon transition metals, flavins, S-adenosyl methionine, coenzyme A, ferredoxin, molybdopterin, corrins and selenium. Its genetic code required nucleoside modifications and S-adenosylmethionine-dependent methylations." The results depict methanogenic clostria as a basal clade in the 355 lineages examined, and suggest that the LUCA inhabited an anaerobic hydrothermal vent setting in a geochemically active environment rich in H2, CO2, and iron. [47] However, the identification of these genes as being present in LUCA was criticized, suggesting that many of the proteins assumed to be present in LUCA represent later horizontal gene transfers between archaea and bacteria. [48]

Reproduction

Sexual reproduction is widespread among current eukaryotes, and was likely present in the last common ancestor. [49] This is suggested by the finding of a core set of genes for meiosis in the descendants of lineages that diverged early from the eukaryotic evolutionary tree. [50] and Malik et al. [51] It is further supported by evidence that eukaryotes previously regarded as "ancient asexuals", such as Amoeba , were likely sexual in the past, and that most present day asexual amoeboid lineages likely arose recently and independently. [52]

In prokaryotes, natural bacterial transformation involves the transfer of DNA from one bacterium to another and integration of the donor DNA into the recipient chromosome by recombination. Natural bacterial transformation is considered to be a primitive sexual process and occurs in both bacteria and archaea, although it has been studied mainly in bacteria. Transformation is clearly a bacterial adaptation and not an accidental occurrence, because it depends on numerous gene products that specifically interact with each other to enter a state of natural competence to perform this complex process. [53] Transformation is a common mode of DNA transfer among prokaryotes. [54]

Horizontal gene transfer

The ancestry of living organisms has traditionally been reconstructed from morphology, but is increasingly supplemented with phylogenetics – the reconstruction of phylogenies by the comparison of genetic (DNA) sequence.

Sequence comparisons suggest recent horizontal transfer of many genes among diverse species including across the boundaries of phylogenetic "domains". Thus determining the phylogenetic history of a species can not be done conclusively by determining evolutionary trees for single genes. [55]

Biologist Peter Gogarten suggests "the original metaphor of a tree no longer fits the data from recent genome research", therefore "biologists (should) use the metaphor of a mosaic to describe the different histories combined in individual genomes and use (the) metaphor of a net to visualize the rich exchange and cooperative effects of HGT among microbes." [56]

Future of life (cloning and synthetic organisms)

Modern biotechnology is challenging traditional concepts of organism and species. Cloning is the process of creating a new multicellular organism, genetically identical to another, with the potential of creating entirely new species of organisms. Cloning is the subject of much ethical debate.

In 2008, the J. Craig Venter Institute assembled a synthetic bacterial genome, Mycoplasma genitalium , by using recombination in yeast of 25 overlapping DNA fragments in a single step. The use of yeast recombination greatly simplifies the assembly of large DNA molecules from both synthetic and natural fragments. [57] Other companies, such as Synthetic Genomics, have already been formed to take advantage of the many commercial uses of custom designed genomes.

See also

Related Research Articles

Cell (biology) The basic structural and functional unit of all organisms; the smallest unit of life.

The cell is the basic structural, functional, and biological unit of all known organisms. A cell is the smallest unit of life. Cells are often called the "building blocks of life". The study of cells is called cell biology or cellular biology.

In biology, kingdom is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla.

Symbiogenesis An evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis, or endosymbiotic theory, is an evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms, first articulated in 1905 and 1910 by the Russian botanist Konstantin Mereschkowski, and advanced and substantiated with microbiological evidence by Lynn Margulis in 1967. It holds that the organelles distinguishing eukaryote cells evolved through symbiosis of individual single-celled prokaryotes . The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells represent formerly free-living prokaryotes taken one inside the other in endosymbiosis. In more detail, mitochondria appear to be related to Rickettsiales proteobacteria, and chloroplasts to nitrogen-fixing filamentous cyanobacteria. Among the many lines of evidence supporting symbiogenesis are that new mitochondria and plastids are formed only through binary fission, and that cells cannot create new ones otherwise; that the transport proteins called porins are found in the outer membranes of mitochondria, chloroplasts and bacterial cell membranes; that cardiolipin is found only in the inner mitochondrial membrane and bacterial cell membranes; and that some mitochondria and plastids contain single circular DNA molecules similar to the chromosomes of bacteria.

Domain (biology) Taxonomic rank

In biological taxonomy, a domain, also superkingdom or empire, is the highest taxonomic rank of organisms in the three-domain system of taxonomy designed by Carl Woese et.al. in 1990.

Horizontal gene transfer A type of nonhereditary genetic change involving swapping of DNA or RNA other than from parent to offspring

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms.

Unicellular organism Organism that consists of only one cell

A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of Multiple cells. Unicellular organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. Prokaryotes include bacteria and archaea. Many eukaryotes are multicellular, but the group includes the protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early protocells possibly emerging 3.8–4 billion years ago.

Evolution of sexual reproduction How sexually reproducing multicellular organisms could have evolved from a common ancestor species

The evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists could have evolved from a common ancestor that was a single celled eukaryotic species. There are a few species which have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals that routinely reproduce asexually without entirely losing sex. The evolution of sex contains two related, yet distinct, themes: its origin and its maintenance.

Last universal common ancestor Last recent common ancestor of all current life

The last universal common ancestor (LUCA), also called the last universal ancestor (LUA), or concestor, is the most recent population of organisms from which all organisms now living on Earth have a common descent, the most recent common ancestor of all current life on Earth. LUCA is not thought to be the first life on Earth but only one of many early organisms, all the others becoming extinct.

Microbial genetics is a subject area within microbiology and genetic engineering. Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria, and archaea. Some fungi and protozoa are also subjects used to study in this field. The studies of microorganisms involve studies of genotype and expression system. Genotypes are the inherited compositions of an organism. Genetic Engineering is a field of work and study within microbial genetics. The usage of recombinant DNA technology is a process of this work. The process involves creating recombinant DNA molecules through manipulating a DNA sequence. That DNA created is then in contact with a host organism. Cloning is also an example of genetic engineering.

Cell physiology study of cell activity

Cell physiology is the biological study about the activities that take place in a cell to keep it alive. This includes, among animal cells, plant cells and microorganisms. The term "physiology" refers to all the normal functions that take place in a living organism. All of these activities in the cell could be counted as following ; nutrition, environmental response, cell growth, cell division, reproduction and differentiation. The differences among the animal cell, plant cell and microorganisms shows the essential functional similarity even though those cells have different structures. Absorption of water by roots, production of food in the leaves, and growth of shoots towards light are examples of plant physiology. The heterotrophic metabolism of food derived from plants and animals and the use of movement to obtain nutrients are characteristic of animal physiology.

Archaea A domain of single-celled prokaryotic microorganisms

Archaea constitute a domain of single-celled organisms. These microorganisms are prokaryotes, and have no cell nucleus. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this classification is outmoded.

Evolution of cells The evolutionary origin and subsequent development of cells

Evolution of cells refers to the evolutionary origin and subsequent evolutionary development of cells. Cells first emerged at least 3.8 billion years ago. This was approximately 750 million years after the earth was formed.

The origin and function of meiosis are fundamental to understanding the evolution of sexual reproduction in eukaryotes. There is no current consensus among biologists on the questions of how sex in eukaryotes arose in evolution, what basic function sexual reproduction serves, and why it is maintained, given the basic two-fold cost of sex. It is clear that it evolved over 1.2 billion years ago, and that almost all species which are descendants of the original sexually reproducing species are still sexual reproducers, including plants, fungi, and animals.

Marine microorganisms are defined by their habitat as the microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism is any microscopic living organism, that is, any life form too small for the naked human eye to see, needing a microscope. Microorganisms are very diverse. They can be single-celled or multicellular and include all bacteria and archaea and most protozoa, as well as some species of fungi, algae, and certain microscopic animals, such as rotifers. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify viruses as microorganisms, but others consider these as nonliving. In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all life, including microorganisms, living on Earth.

Eocyte hypothesis

The Eocyte hypothesis is a biological classification that indicates eukaryotes emerged within the prokaryotic Crenarchaeota, a phylum within the archaea. This hypothesis was originally proposed by James A. Lake and colleagues in 1984 based on the discovery that the shapes of ribosomes in the Crenarchaeota and eukaryotes are more similar to each other than to either bacteria or the second major kingdom of archaea, the Euryarchaeota.

Lokiarchaeota is a proposed phylum of the Archaea. The phylum includes all members of the group previously named Deep Sea Archaeal Group (DSAG), also known as Marine Benthic Group B (MBG-B). A phylogenetic analysis disclosed a monophyletic grouping of the Lokiarchaeota with the eukaryotes. The analysis revealed several genes with cell membrane-related functions. The presence of such genes support the hypothesis of an archaeal host for the emergence of the eukaryotes; the eocyte-like scenarios.

Darwinian threshold

Darwinian threshold or Darwinian transition is a term introduced by Carl Woese to describe a transition period during the evolution of the first cells when genetic transmission moves from a predominantly horizontal mode to a vertical mode. The process starts when the ancestors of the Last Universal Common Ancestor become refractory to horizontal gene transfer (HGT) and become individual entities with vertical heredity upon which natural selection is effective. After this transition, life is characterized by genealogies that have a modern tree-like phylogeny.

References

  1. Hine, RS. (2008). A dictionary of biology (6th ed.). Oxford: Oxford University Press. p. 461. ISBN   978-0-19-920462-5.
  2. Cavalier-Smith T. (1987). "The origin of eukaryotic and archaebacterial cells". Annals of the New York Academy of Sciences. 503 (1): 17–54. Bibcode:1987NYASA.503...17C. doi:10.1111/j.1749-6632.1987.tb40596.x. PMID   3113314.
  3. 1 2 G. Miller; Scott Spoolman (2012). Environmental Science – Biodiversity Is a Crucial Part of the Earth's Natural Capital. Cengage Learning. p. 62. ISBN   978-1-133-70787-5 . Retrieved 27 December 2014.
  4. Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.; Worm, B. (23 August 2011). "How many species are there on Earth and in the ocean?". PLOS Biology . 9 (8): e1001127. doi:10.1371/journal.pbio.1001127. PMC   3160336 . PMID   21886479.
  5. Kunin, W.E.; Gaston, Kevin, eds. (1996). The Biology of Rarity: Causes and consequences of rare – common differences. ISBN   978-0-412-63380-5 . Retrieved 26 May 2015.
  6. 1 2 Stearns, Beverly Peterson; Stearns, S.C.; Stearns, Stephen C. (2000). Watching, from the Edge of Extinction. Yale University Press. p. preface x. ISBN   978-0-300-08469-6 . Retrieved 30 May 2017.
  7. 1 2 Novacek, Michael J. (8 November 2014). "Prehistory's Brilliant Future". New York Times . Retrieved 25 December 2014.
  8. Weiss, Madeline C.; Sousa, Filipa L.; Mrnjavac, Natalia; Neukirchen, Sinje; Roettger, Mayo; Nelson-Sathi, Shijulal; Martin, William F. (2016). "The physiology and habitat of the last universal common ancestor". Nature Microbiology. 1 (9): 16116. doi:10.1038/nmicrobiol.2016.116. PMID   27562259.
  9. Wade, Nicholas (25 July 2016). "Meet Luca, the Ancestor of All Living Things". New York Times. Retrieved 25 July 2016.
  10. ὄργανον . Liddell, Henry George ; Scott, Robert ; A Greek–English Lexicon at the Perseus Project
  11. "organism". Online Etymology Dictionary.
  12. Kant I., Critique of Judgment: §64.
  13. "organism". Chambers 21st Century Dictionary (online ed.). 1999.
  14. "organism". Oxford English Dictionary (3rd ed.). Oxford University Press. 2004. (Subscription or UK public library membership required.)
  15. Kelly, Kevin (1994). Out of control: the new biology of machines, social systems and the economic world . Boston: Addison-Wesley. p. 98. ISBN   978-0-201-48340-6.
  16. Dupré, J. (2010). "The polygenomic organism". The Sociological Review. 58: 19–99. doi:10.1111/j.1467-954X.2010.01909.x.
  17. Folse Hj, 3.; Roughgarden, J. (2010). "What is an individual organism? A multilevel selection perspective". The Quarterly Review of Biology. 85 (4): 447–472. doi:10.1086/656905. PMID   21243964.
  18. Pradeu, T. (2010). "What is an organism? An immunological answer". History and Philosophy of the Life Sciences. 32 (2–3): 247–267. PMID   21162370.
  19. Gardner, A.; Grafen, A. (2009). "Capturing the superorganism: A formal theory of group adaptation". Journal of Evolutionary Biology. 22 (4): 659–671. doi:10.1111/j.1420-9101.2008.01681.x. PMID   19210588.
  20. Michod, R E (1999). Darwinian dynamics: evolutionary transitions in fitness and individuality. Princeton University Press. ISBN   978-0-691-05011-9.
  21. Queller, D.C.; J.E. Strassmann (2009). "Beyond society: the evolution of organismality". Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1533): 3143–3155. doi:10.1098/rstb.2009.0095. PMC   2781869 . PMID   19805423.
  22. Santelices B. (1999). "How many kinds of individual are there?". Trends in Ecology & Evolution. 14 (4): 152–155. doi:10.1016/s0169-5347(98)01519-5. PMID   10322523.
  23. Wilson, R (2007). "The biological notion of individual". Stanford Encyclopedia of Philosophy.
  24. Longo, Giuseppe; Montévil, Maël (2014). Perspectives on Organisms – Springer. Lecture Notes in Morphogenesis. doi:10.1007/978-3-642-35938-5. ISBN   978-3-642-35937-8.
  25. Pepper, J.W.; M.D. Herron (2008). "Does biology need an organism concept?". Biological Reviews. 83 (4): 621–627. doi:10.1111/j.1469-185X.2008.00057.x. PMID   18947335.
  26. Wilson, J (2000). "Ontological butchery: organism concepts and biological generalizations". Philosophy of Science. 67: 301–311. doi:10.1086/392827. JSTOR   188676.
  27. Bateson, P. (2005). "The return of the whole organism". Journal of Biosciences. 30 (1): 31–39. doi:10.1007/BF02705148. PMID   15824439.
  28. Dawkins, Richard (1982). The Extended Phenotype. Oxford University Press. ISBN   978-0-19-286088-0.
  29. 1 2 Moreira, D.; López-García, P.N. (2009). "Ten reasons to exclude viruses from the tree of life". Nature Reviews Microbiology. 7 (4): 306–311. doi:10.1038/nrmicro2108. PMID   19270719.
  30. The Universal Features of Cells on Earth in Chapter 1 of Molecular Biology of the Cell fourth edition, edited by Bruce Alberts (2002) published by Garland Science.
  31. Theobald, D.L.I (2010), "A formal test of the theory of universal common ancestry", Nature , 465 (7295): 219–222, Bibcode:2010Natur.465..219T, doi:10.1038/nature09014, PMID   20463738
  32. Doolittle, W.F. (2000), "Uprooting the tree of life" (PDF), Scientific American , 282 (6): 90–95, Bibcode:2000SciAm.282b..90D, doi:10.1038/scientificamerican0200-90, PMID   10710791, archived from the original (PDF) on 31 January 2011.
  33. Glansdorff, N.; Xu, Y; Labedan, B. (2008), "The Last Universal Common Ancestor: Emergence, constitution and genetic legacy of an elusive forerunner", Biology Direct , 3: 29, doi:10.1186/1745-6150-3-29, PMC   2478661 , PMID   18613974.
  34. Yoko Ohtomo; Takeshi Kakegawa; Akizumi Ishida; Toshiro Nagase; Minik T. Rosing (8 December 2013). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience . 7 (1): 25–28. Bibcode:2014NatGe...7...25O. doi:10.1038/ngeo2025.
  35. Borenstein, Seth (13 November 2013). "Oldest fossil found: Meet your microbial mom". AP News . Retrieved 15 November 2013.
  36. Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (8 November 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia". Astrobiology . 13 (12): 1103–1124. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC   3870916 . PMID   24205812.
  37. Doolittle, W. Ford (2000). "Uprooting the tree of life" (PDF). Scientific American. 282 (6): 90–95. Bibcode:2000SciAm.282b..90D. doi:10.1038/scientificamerican0200-90. PMID   10710791. Archived from the original (PDF) on 7 September 2006.
  38. Theobald, Douglas L. (13 May 2010), "A formal test of the theory of universal common ancestry", Nature, 465 (7295): 219–222, Bibcode:2010Natur.465..219T, doi:10.1038/nature09014, ISSN   0028-0836, PMID   20463738.
  39. Brown, J.R.; Doolittle, W.F. (1995). "Root of the Universal Tree of Life Based on Ancient Aminoacyl-tRNA Synthetase Gene Duplications". Proc Natl Acad Sci U S A. 92 (7): 2441–2445. doi:10.1073/pnas.92.7.2441. PMC   42233 . PMID   7708661.
  40. Gogarten, J.P.; Kibak, H.; Dittrich, P.; Taiz, L.; Bowman, E.J.; Bowman, B.J.; Manolson, M.F.; et al. (1989). "Evolution of the Vacuolar H+-ATPase: Implications for the Origin of Eukaryotes". Proc Natl Acad Sci U S A. 86 (17): 6661–6665. doi:10.1073/pnas.86.17.6661. PMC   297905 . PMID   2528146.
  41. Gogarten, J.P.; Taiz, L. (1992). "Evolution of Proton Pumping ATPases: Rooting the Tree of Life". Photosynthesis Research. 33: 137–146. doi:10.1007/BF00039176.
  42. Gribaldo, S; Cammarano, P (1998). "The Root of the Universal Tree of Life Inferred from Anciently Duplicated Genes Encoding Components of the Protein-Targeting Machinery". Journal of Molecular Evolution. 47 (5): 508–516. doi:10.1007/pl00006407. PMID   9797401.
  43. Iwabe, Naoyuki; Kuma, Kei-Ichi; Hasegawa, Masami; Osawa, Syozo; Miyata Source, Takashi; Hasegawa, Masami; Osawa, Syozo; Miyata, Takashi (1989). "Evolutionary Relationship of Archaebacteria, Eubacteria, and Eukaryotes Inferred from Phylogenetic Trees of Duplicated Genes". Proc Natl Acad Sci U S A. 86 (23): 9355–9359. doi:10.1073/pnas.86.23.9355. PMC   298494 . PMID   2531898.
  44. Boone, David R.; Castenholz, Richard W.; Garrity, George M., eds. (2001). The Archaea and the Deeply Branching and Phototrophic Bacteria. Bergey's Manual of Systematic Bacteriology. Springer. doi:10.1007/978-0-387-21609-6. ISBN   978-0-387-21609-6.[ page needed ]
  45. Valas, R.E.; Bourne, P.E. (2011). "The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon". Biology Direct. 6: 16. doi:10.1186/1745-6150-6-16. PMC   3056875 . PMID   21356104.
  46. Cavalier-Smith T (2006). "Rooting the tree of life by transition analyses". Biology Direct. 1: 19. doi:10.1186/1745-6150-1-19. PMC   1586193 . PMID   16834776.
  47. Weiss, MC; Sousa, FL; Mrnjavac, N; Neukirchen, S; Roettger, M; Nelson-Sathi, S; Martin, WF (2016). "The physiology and habitat of the last universal common ancestor". Nat Microbiol. 1: 16116. doi:10.1038/NMICROBIOL.2016.116. PMID   27562259.
  48. Gogarten, JP; Deamer, D (November 2016). "Is LUCA a thermophilic progenitor?" (PDF). Nat Microbiol. 1: 16229. doi:10.1038/nmicrobiol.2016.229.
  49. Dacks J; Roger AJ (June 1999). "The first sexual lineage and the relevance of facultative sex". J. Mol. Evol. 48 (6): 779–783. Bibcode:1999JMolE..48..779D. doi:10.1007/PL00013156. PMID   10229582.
  50. Ramesh MA; Malik SB; Logsdon JM (January 2005). "A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis". Curr. Biol. 15 (2): 185–191. doi:10.1016/j.cub.2005.01.003. PMID   15668177.
  51. Malik SB; Pightling AW; Stefaniak LM; Schurko AM; Logsdon JM (2008). "An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis". PLoS ONE. 3 (8): e2879. Bibcode:2008PLoSO...3.2879M. doi:10.1371/journal.pone.0002879. PMC   2488364 . PMID   18663385.
  52. Lahr DJ; Parfrey LW; Mitchell EA; Katz LA; Lara E (July 2011). "The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms". Proc. Biol. Sci. 278 (1715): 2081–2090. doi:10.1098/rspb.2011.0289. PMC   3107637 . PMID   21429931.
  53. Chen I; Dubnau D (March 2004). "DNA uptake during bacterial transformation". Nat. Rev. Microbiol. 2 (3): 241–249. doi:10.1038/nrmicro844. PMID   15083159.
  54. Johnsborg O; Eldholm V; Håvarstein LS (December 2007). "Natural genetic transformation: prevalence, mechanisms and function". Res. Microbiol. 158 (10): 767–778. doi:10.1016/j.resmic.2007.09.004. PMID   17997281.
  55. Oklahoma State – Horizontal Gene Transfer
  56. Peter Gogarten. "Horizontal Gene Transfer – A New Paradigm for Biology". esalenctr.org. Retrieved 20 August 2011.
  57. Gibsona, Daniel G.; Benders, Gwynedd A.; Axelroda, Kevin C.; et al. (2008). "One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome". PNAS. 105 (51): 20404–20409. Bibcode:2008PNAS..10520404G. doi:10.1073/pnas.0811011106. PMC   2600582 . PMID   19073939.