Population

Last updated

The distribution of world population in 1994 Population density.png
The distribution of world population in 1994
Key Population density key.png
Key

Population typically refers to the number of people in a single area, whether it be a city or town, region, country, continent, or the world. Governments typically quantify the size of the resident population within their jurisdiction using a census, a process of collecting, analysing, compiling, and publishing data regarding a population.

Contents

Perspectives of various disciplines

Social sciences

In sociology and population geography, population refers to a group of human beings with some predefined criterion in common, such as location, race, ethnicity, nationality, or religion. Demography is a social science which entails the statistical study of populations.

Ecology

In ecology, a population is a group of organisms of the same species who inhabit the same particular geographical area and are capable of interbreeding. [1] [2] The area of a sexual population is the area where inter-breeding is possible between any pair within the area and more probable than cross-breeding with individuals from other areas. [3]

In ecology, the population of a certain species in a certain area can be estimated using the Lincoln index.

Genetics

In genetics, a population is often defined as a set of organisms in which any pair of members can breed together. This means that they can regularly exchange gametes to produce normally-fertile offspring, and such a breeding group is also known therefore as a gamodeme. This also implies that all members belong to the same species. [4] If the gamodeme is very large (theoretically, approaching infinity), and all gene alleles are uniformly distributed by the gametes within it, the gamodeme is said to be panmictic. Under this state, allele (gamete) frequencies can be converted to genotype (zygote) frequencies by expanding an appropriate quadratic equation, as shown by Sir Ronald Fisher in his establishment of quantitative genetics. [5]

This seldom occurs in nature: localization of gamete exchange – through dispersal limitations, preferential mating, cataclysm, or other cause – may lead to small actual gamodemes which exchange gametes reasonably uniformly within themselves but are virtually separated from their neighboring gamodemes. However, there may be low frequencies of exchange with these neighbors. This may be viewed as the breaking up of a large sexual population (panmictic) into smaller overlapping sexual populations. This failure of panmixia leads to two important changes in overall population structure: (1) the component gamodemes vary (through gamete sampling) in their allele frequencies when compared with each other and with the theoretical panmictic original (this is known as dispersion, and its details can be estimated using expansion of an appropriate binomial equation); and (2) the level of homozygosity rises in the entire collection of gamodemes. The overall rise in homozygosity is quantified by the inbreeding coefficient (f or φ). Note that all homozygotes are increased in frequency – both the deleterious and the desirable. The mean phenotype of the gamodemes collection is lower than that of the panmictic original – which is known as inbreeding depression. It is most important to note, however, that some dispersion lines will be superior to the panmictic original, while some will be about the same, and some will be inferior. The probabilities of each can be estimated from those binomial equations. In plant and animal breeding, procedures have been developed which deliberately utilize the effects of dispersion (such as line breeding, pure-line breeding, backcrossing). It can be shown that dispersion-assisted selection leads to the greatest genetic advance (ΔG=change in the phenotypic mean), and is much more powerful than selection acting without attendant dispersion. This is so for both allogamous (random fertilization) [6] and autogamous (self-fertilization) gamodemes. [7]

World human population

According to the UN the world's population surpassed 8 billion on 15 november 2022 [8] and that the 7 billion number was surpassed on 12 March 2012. According to a separate estimate by the United Nations, Earth's population exceeded seven billion in October 2011, a milestone that offers unprecedented challenges and opportunities to all of humanity, according to UNFPA. [9]

According to papers published by the United States Census Bureau, the world population hit 6.5 billion on 24 February 2006. The United Nations Population Fund designated 12 October 1999 as the approximate day on which world population reached 6 billion. This was about 12 years after the world population reached 5 billion in 1987, and six years after the world population reached 5.5 billion in 1993. The population of countries such as Nigeria is not even known to the nearest million, [10] so there is a considerable margin of error in such estimates. [11]

Researcher Carl Haub calculated that a total of over 100 billion people have probably been born in the last 2000 years. [12]

Predicted growth and decline

The years taken for every billion people to be added to the world's population, and the years that population was reached (with future estimates). World population growth - time between each billion-person growth.svg
The years taken for every billion people to be added to the world's population, and the years that population was reached (with future estimates).

Population growth increased significantly as the Industrial Revolution gathered pace from 1700 onwards. [13] The last 50 years have seen a yet more rapid increase in the rate of population growth [13] due to medical advances and substantial increases in agricultural productivity, particularly beginning in the 1960s, [14] made by the Green Revolution. [15] In 2017 the United Nations Population Division projected that the world's population will reach about 9.8 billion in 2050 and 11.2 billion in 2100. [16]

PRB 2017 Data Sheet Largest Populations PRB 2017 Data Sheet Largest Populations.jpg
PRB 2017 Data Sheet Largest Populations

In the future, the world's population is expected to peak, [17] after which it will decline due to economic reasons, health concerns, land exhaustion and environmental hazards. According to one report, it is very likely that the world's population will stop growing before the end of the 21st century. Further, there is some likelihood that population will actually decline before 2100. [18] [19] Population has already declined in the last decade or two in Eastern Europe, the Baltics and in the Commonwealth of Independent States. [20]

The population pattern of less-developed regions of the world in recent years has been marked by gradually declining birth rates. These followed an earlier sharp reduction in death rates. [21] This transition from high birth and death rates to low birth and death rates is often referred to as the demographic transition. [21]

Population planning

Human population planning is the practice of altering the rate of growth of a human population. Historically, human population control has been implemented with the goal of limiting the rate of population growth. In the period from the 1950s to the 1980s, concerns about global population growth and its effects on poverty, environmental degradation, and political stability led to efforts to reduce population growth rates. While population control can involve measures that improve people's lives by giving them greater control of their reproduction, a few programs, most notably the Chinese government's one-child per family policy, have resorted to coercive measures.

In the 1970s, tension grew between population control advocates and women's health activists who advanced women's reproductive rights as part of a human rights-based approach. [22] Growing opposition to the narrow population control focus led to a significant change in population control policies in the early 1980s. [23]

See also

Related Research Articles

<span class="mw-page-title-main">Reproduction</span> Biological process by which new organisms are generated from one or more parent organisms

Reproduction is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. Reproduction is a fundamental feature of all known life; each individual organism exists as the result of reproduction. There are two forms of reproduction: asexual and sexual.

<span class="mw-page-title-main">Inbreeding</span> Reproduction by closely related organisms

Inbreeding is the production of offspring from the mating or breeding of individuals or organisms that are closely related genetically. By analogy, the term is used in human reproduction, but more commonly refers to the genetic disorders and other consequences that may arise from expression of deleterious or recessive traits resulting from incestuous sexual relationships and consanguinity. Animals avoid incest only rarely.

Small populations can behave differently from larger populations. They are often the result of population bottlenecks from larger populations, leading to loss of heterozygosity and reduced genetic diversity and loss or fixation of alleles and shifts in allele frequencies. A small population is then more susceptible to demographic and genetic stochastic events, which can impact the long-term survival of the population. Therefore, small populations are often considered at risk of endangerment or extinction, and are often of conservation concern.

<i>Ex situ</i> conservation Preservation of plants or animals outside their natural habitats

Ex situ conservation literally means, "off-site conservation". It is the process of protecting an endangered species, variety or breed, of plant or animal outside its natural habitat; for example, by removing part of the population from a threatened habitat and placing it in a new location, an artificial environment which is similar to the natural habitat of the respective animal and within the care of humans, example are zoological parks and wildlife safaris. The degree to which humans control or modify the natural dynamics of the managed population varies widely, and this may include alteration of living environments, reproductive patterns, access to resources, and protection from predation and mortality. Ex situ management can occur within or outside a species' natural geographic range. Individuals maintained ex situ exist outside an ecological niche. This means that they are not under the same selection pressures as wild populations, and they may undergo artificial selection if maintained ex situ for multiple generations.

<span class="mw-page-title-main">Population genetics</span> Subfield of genetics

Population genetics is a subfield of genetics that deals with genetic differences within and between populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.

<span class="mw-page-title-main">Family planning</span> Planning when to have children

Family planning is the consideration of the number of children a person wishes to have, including the choice to have no children, and the age at which they wish to have them. Things that may play a role on family planning decisions include marital situation, career or work considerations, financial situations. If sexually active, family planning may involve the use of contraception and other techniques to control the timing of reproduction.

Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart. In other words, the nearer two genes are on a chromosome, the lower the chance of recombination between them, and the more likely they are to be inherited together. Markers on different chromosomes are perfectly unlinked, although the penetrance of potentially deleterious alleles may be influenced by the presence of other alleles, and these other alleles may be located on other chromosomes than that on which a particular potentially deleterious allele is located.

<span class="mw-page-title-main">Quantitative genetics</span> Study of the inheritance of continuously variable traits

Quantitative genetics deals with phenotypes that vary continuously —as opposed to discretely identifiable phenotypes and gene-products.

Heterosis, hybrid vigor, or outbreeding enhancement is the improved or increased function of any biological quality in a hybrid offspring. An offspring is heterotic if its traits are enhanced as a result of mixing the genetic contributions of its parents. These effects can be due to Mendelian or non-Mendelian inheritance.

The effective population size (Ne) is a number that, in some simplified scenarios, corresponds to the number of breeding individuals in the population. More generally, Ne is the number of individuals that an idealised population would need to have in order for some specified quantity of interest to be the same as in the real population. Idealised populations are based on unrealistic but convenient simplifications such as random mating, simultaneous birth of each new generation, constant population size, and equal numbers of children per parent. For most quantities of interest and most real populations, the effective population size Ne is usually smaller than the census population size N of a real population. The same population may have multiple effective population sizes, for different properties of interest, including for different genetic loci.

<span class="mw-page-title-main">Minimum viable population</span> Smallest size a biological population can exist without facing extinction

Minimum viable population (MVP) is a lower bound on the population of a species, such that it can survive in the wild. This term is commonly used in the fields of biology, ecology, and conservation biology. MVP refers to the smallest possible size at which a biological population can exist without facing extinction from natural disasters or demographic, environmental, or genetic stochasticity. The term "population" is defined as a group of interbreeding individuals in similar geographic area that undergo negligible gene flow with other groups of the species. Typically, MVP is used to refer to a wild population, but can also be used for ex-situ conservation.

<span class="mw-page-title-main">Conservation genetics</span> Interdisciplinary study of extinction avoidance

Conservation genetics is an interdisciplinary subfield of population genetics that aims to understand the dynamics of genes in populations principally to avoid extinction. Therefore, it applies genetic methods to the conservation and restoration of biodiversity. Researchers involved in conservation genetics come from a variety of fields including population genetics, molecular ecology, biology, evolutionary biology, and systematics. Genetic diversity is one of the three fundamental levels of biodiversity, so it is directly important in conservation. Genetic variability influences both the health and long-term survival of populations because decreased genetic diversity has been associated with reduced fitness, such as high juvenile mortality, diminished population growth, reduced immunity, and ultimately, higher extinction risk.

<span class="mw-page-title-main">Sexual and reproductive health</span> State of the reproductive system without evidence of disease, disorders, or deficiencies

Sexual and reproductive health (SRH) is a field of research, healthcare, and social activism that explores the health of an individual's reproductive system and sexual wellbeing during all stages of their life.

Plant breeders use different methods depending on the mode of reproduction of crops, which include:

Inbreeding depression is the reduced biological fitness which has the potential to result from inbreeding. Biological fitness refers to an organism's ability to survive and perpetuate its genetic material. Inbreeding depression is often the result of a population bottleneck. In general, the higher the genetic variation or gene pool within a breeding population, the less likely it is to suffer from inbreeding depression, though inbreeding and outbreeding depression can simultaneously occur.

<span class="mw-page-title-main">Estimates of historical world population</span> Estimates of historical world population

This article lists current estimates of the world population in history. In summary, estimates for the progression of world population since the Late Middle Ages are in the following ranges:

Reproductive compensation was originally a theory to explain why recessive genetic disorders may persist in a population. It was proposed in 1967 as an explanation for the maintenance of Rh negative blood groups. Reproductive compensation refers to the tendency of parents, seeking a given family size, to replace offspring that are lost to genetic disorders. It may also refer to the effects of increased maternal or parental investment in caring for disadvantaged offspring, seeking to compensate for genetic disadvantage. It is a theory that suggests that behavioral as well as physiological factors may play a role in the level of recessive genetic disorders in a population.

<span class="mw-page-title-main">Isolation by distance</span>

Isolation by distance (IBD) is a term used to refer to the accrual of local genetic variation under geographically limited dispersal. The IBD model is useful for determining the distribution of gene frequencies over a geographic region. Both dispersal variance and migration probabilities are variables in this model and both contribute to local genetic differentiation. Isolation by distance is usually the simplest model for the cause of genetic isolation between populations. Evolutionary biologists and population geneticists have been exploring varying theories and models for explaining population structure. Yoichi Ishida compares two important theories of isolation by distance and clarifies the relationship between the two. According to Ishida, Sewall Wright's isolation by distance theory is termed ecological isolation by distance while Gustave Malécot's theory is called genetic isolation by distance. Isolation by distance is distantly related to speciation. Multiple types of isolating barriers, namely prezygotic isolating barriers, including isolation by distance, are considered the key factor in keeping populations apart, limiting gene flow.

In population genetics, the allele frequency spectrum, sometimes called the site frequency spectrum, is the distribution of the allele frequencies of a given set of loci in a population or sample. Because an allele frequency spectrum is often a summary of or compared to sequenced samples of the whole population, it is a histogram with size depending on the number of sequenced individual chromosomes. Each entry in the frequency spectrum records the total number of loci with the corresponding derived allele frequency. Loci contributing to the frequency spectrum are assumed to be independently changing in frequency. Furthermore, loci are assumed to be biallelic, although extensions for multiallelic frequency spectra exist.

Autogamy, or self-fertilization, refers to the fusion of two gametes that come from one individual. Autogamy is predominantly observed in the form of self-pollination, a reproductive mechanism employed by many flowering plants. However, species of protists have also been observed using autogamy as a means of reproduction. Flowering plants engage in autogamy regularly, while the protists that engage in autogamy only do so in stressful environments.

References

  1. "Population". Biology Online. Retrieved 5 December 2012.
  2. "Definition of population (biology)". Oxford Dictionaries. Oxford University Press. Archived from the original on 10 May 2013. Retrieved 5 December 2012. a community of animals, plants, or humans among whose members interbreeding occurs
  3. Hartl, Daniel (2007). Principles of Population Genetics. Sinauer Associates. p. 45. ISBN   978-0-87893-308-2.
  4. Hartl, Daniel (2007). Principles of Population Genetics. Sinauer Associates. p. 95. ISBN   978-0-87893-308-2.
  5. Fisher, R. A. (1999). The Genetical Theory of Natural Selection. Oxford University Press. ISBN   978-0-19-850440-5.
  6. Gordon, Ian L. (2000). "Quantitative genetics of allogamous F2 : an origin of randomly fertilized populations". Heredity. 85: 43–52. doi: 10.1046/j.1365-2540.2000.00716.x . PMID   10971690.
  7. Gordon, Ian L. (2001). "Quantitative genetics of autogamous F2". Hereditas. 134 (3): 255–262. doi: 10.1111/j.1601-5223.2001.00255.x . PMID   11833289.
  8. "Population Clock". www.worldometers.info. Retrieved 15 november 2022.{{cite web}}: Check date values in: |access-date= (help)
  9. to a World of Seven Billion People Archived 13 January 2012 at the Wayback Machine UNFPA 12 September 2011
  10. "Cities in Nigeria: 2005 Population Estimates – MongaBay.com" . Retrieved 1 July 2008.
  11. "Country Profile: Nigeria". BBC News. 24 December 2009. Retrieved 1 July 2008.
  12. Haub, C. 1995/2004. "How Many People Have Ever Lived on Earth?" Population Today, "How Many People Have Ever Lived on Earth? - Population Reference Bureau". Archived from the original on 24 April 2013. Retrieved 29 April 2013.
  13. 1 2 As graphically illustrated by population since 10,000BC and population since 1000AD
  14. "The end of India's green revolution?". BBC News. 29 May 2006. Retrieved 29 November 2009.
  15. Food First/Institute for Food and Development Policy Archived 14 July 2009 at the Wayback Machine
  16. "UN Population Prospects 2017" (PDF).
  17. World Population Development Statistics: Forecast, United Nations, 2011.
  18. Lutz, Wolfgang; Sanderson, Warren; Scherbov, Sergei (2001). "The End of World Population Growth" (PDF). Nature. 412 (6846): 543–545. Bibcode:2001Natur.412..543L. doi:10.1038/35087589. PMID   11484054. S2CID   4425080.
  19. Ojovan, M.I.; Loshchinin, M.B. (2015). "Heuristic Paradoxes of S.P. Kapitza Theoretical Demography". European Researcher. 92 (3): 237–248. doi: 10.13187/er.2015.92.237 .
  20. "world demographic trends". gsociology.icaap.org. Retrieved 18 July 2019.
  21. 1 2 "Human Population Growth". Archived from the original on 30 March 2009. Retrieved 7 April 2009.
  22. Knudsen, Lara (2006). Reproductive Rights in a Global Context . Vanderbilt University Press. pp.  2. ISBN   978-0-8265-1528-5. reproductive rights.
  23. Knudsen, Lara (2006). Reproductive Rights in a Global Context . Vanderbilt University Press. pp.  4–5. ISBN   978-0-8265-1528-5. reproductive rights.