An air well or aerial well is a structure or device that collects water by promoting the condensation of moisture from air. [1] Designs for air wells are many and varied, but the simplest designs are completely passive, require no external energy source and have few, if any, moving parts.
Three principal designs are used for air wells, designated as high mass, radiative, and active:
All air well design incorporate a substrate with a temperature sufficiently low that dew forms. Dew is a form of precipitation that occurs naturally when atmospheric water vapour condenses onto a substrate. It is distinct from fog, in that fog is made of droplets of water that condense around particles in the air. [4] Condensation releases latent heat which must be dissipated in order for water collection to continue. [5]
An air well requires moisture from the air. Everywhere on Earth, even in deserts, the surrounding atmosphere contains at least some water. According to Beysens and Milimouk: "The atmosphere contains 12,900 cubic kilometres (3,100 cu mi) of fresh water, composed of 98 percent water vapour and 2 percent condensed water (clouds): a figure comparable to the renewable liquid water resources of inhabited lands (12,500 km3)." [4] The quantity of water vapour contained within the air is commonly reported as a relative humidity, this depends on temperature, warmer air contains more water vapour than cooler air. When air is cooled to the dew point, it becomes saturated, and moisture will condense on a suitable surface. [6] For instance, the dew point temperature of air at 20 °C (68 °F) and 80 percent relative humidity is 16 °C (61 °F). The dew point temperature falls to 9 °C (48 °F) if the relative humidity is 50 percent. [4]
A related, but quite distinct, technique of obtaining atmospheric moisture is the fog fence.
An air well should not be confused with a dew pond. A dew pond is an artificial pond intended for watering livestock. The name dew pond (sometimes cloud pond or mist pond) derives from the widely held belief that the pond was filled by moisture from the air. [7] In fact, dew ponds are primarily filled by rainwater. [8]
A stone mulch can significantly increase crop yields in arid areas. This is most notably the case in the Canary Islands: on the island of Lanzarote there is about 140 millimetres (5.5 in) of rain each year and no permanent rivers. Despite this, substantial crops can be grown by using a mulch of volcanic stones, a trick discovered after volcanic eruptions in 1730. Some credit the stone mulch with promoting dew; although the idea has inspired some thinkers, it seems unlikely that the effect is significant. Rather, plants are able to absorb dew directly from their leaves, and the main benefit of a stone mulch is to reduce water loss from the soil and to eliminate competition from weeds. [9]
Beginning in the early 20th century, a number of inventors experimented with high-mass collectors. Notable investigators were the Russian engineer Friedrich Zibold (sometimes given as Friedrich Siebold [10] ), the French bioclimatologist Leon Chaptal, the German-Australian researcher Wolf Klaphake, and the Belgian inventor Achille Knapen .
In 1900, near the site of the ancient Byzantine city of Theodosia, thirteen large piles of stones were discovered by Zibold, who was a forester and engineer in charge of the area. [12] Each stone pile covered just over 900 square metres (9,700 sq ft), and was about 10 metres (33 ft) tall. The finds were associated with the remains of 75-millimetre diameter (3.0 in) terracotta pipes that apparently led to wells and fountains in the city. Zibold concluded that the stacks of stone were condensers that supplied Theodosia with water [13] and he calculated that each air well produced more than 55,400 litres (12,200 imp gal; 14,600 US gal) each day. [14]
To verify his hypothesis, Zibold constructed a stone-pile condenser at an altitude of 288 metres (945 ft) on mount Tepe-Oba near the ancient site of Theodosia. Zibold's condenser was surrounded by a wall 1 metre (3 ft 3 in) high, 20 metres (66 ft) wide, around a bowl-shaped collection area with drainage. He used sea stones 10–40 centimetres (3.9–15.7 in) in diameter piled 6 metres (20 ft) high in a truncated cone that was 8 metres (26 ft) in diameter across the top. The shape of the stone pile allowed a good air flow with only minimal thermal contact between the stones. [3]
Zibold's condenser began to operate in 1912 with a maximum daily production that was later estimated to have been 360 litres (79 imp gal; 95 US gal) – Zibold made no public record of his results at the time. [10] The base developed leaks that forced the experiment to end in 1915 and the site was partially dismantled before being abandoned. (The site was rediscovered in 1993 and cleaned up.) [3] Zibold's condenser was approximately the same size as the ancient stone piles that had been found, [3] and although the yield was very much less than the yield Zibold had calculated for the original structures, the experiment was an inspiration for later developers.
Inspired by Zibold's work, Chaptal built a small air well near Montpellier in 1929. Chaptal's condenser was a pyramidal concrete structure 3 metres (9.8 ft) square and 2.5 metres (8 ft 2 in) high, it was filled with 8 cubic metres (280 cu ft) of limestone pieces being about 7.5 centimetres (3.0 in) in diameter. Small vent holes ringed the top and bottom of the pyramid. These holes could be closed or opened as required to control the flow of air. The structure was allowed to cool during the night, and then warm moist air was let in during the day. Dew formed on the limestone pieces and collected in a reservoir below ground level. The amount of water obtained varied from 1 litre (0.22 imp gal; 0.26 US gal) to 2.5 litres (0.55 imp gal; 0.66 US gal) per day depending on the atmospheric conditions. [15]
Chaptal did not consider his experiment a success. When he retired in 1946, he put the condenser out of order, possibly because he did not want to leave an improper installation to mislead those who might later continue studies on air wells. [2]
Wolf Klaphake was a successful chemist working in Berlin during the 1920s and 1930s. During that time, he tested several forms of air wells in Yugoslavia and on Vis Island in the Adriatic Sea. Klaphake's work was inspired by Zibold [16] and by the works of Maimonides, a known Jewish scholar who wrote in Arabic about 1,000 years ago and who mentioned the use of water condensers in Palestine. [3]
Klaphake experimented with a very simple design: an area of mountain slope was cleared and smoothed with a watertight surface. It was shaded by a simple canopy supported by pillars or ridges. The sides of the structure were closed, but the top and bottom edges were left open. At night the mountain slope would cool, and in the day moisture would collect on and run down the smoothed surface. Although the system apparently worked, it was expensive, and Klaphake finally adopted a more compact design based on a masonry structure. This design was a sugarloaf-shaped building, about 15 metres (49 ft) high, with walls at least 2 metres (6 ft 7 in) thick, with holes on the top and at the bottom. The outer wall was made of concrete to give a high thermal capacity, and the inner surface was made of a porous material such as sandstone. [17] According to Klaphake:
The building produces water during the day and cools itself during the night; when the sun rises, the warm air is drawn through the upper holes into the building by the out-flowing cooler air, becomes cooled on the cold surface, deposits its water, which then oozes down and is collected somewhere underneath. It is wrong to think that this process works only on days with dew, as the inner surface becomes much cooler than one should expect. In Dalmatia, that day was a rare exception which failed to produce water. [16]
Traces of Klaphake's condensers have been tentatively identified. [18]
In 1935, Wolf Klaphake and his wife Maria emigrated to Australia. The Klaphakes' decision to emigrate was probably primarily the result of Maria's encounters with Nazi authorities; [19] [20] their decision to settle in Australia (rather than, say, in Britain) was influenced by Wolf's desire to develop a dew condenser. [20] As a dry continent, Australia was likely to need alternative sources of fresh water, and the Premier of South Australia, whom he had met in London, had expressed an interest. Klaphake made a specific proposal for a condenser at the small town of Cook, where there was no supply of potable water. At Cook, the railway company had previously installed a large coal-powered active condenser, [21] but it was prohibitively expensive to run, and it was cheaper to simply transport water. However, the Australian government turned down Klaphake's proposal, and he lost interest in the project. [22] [16]
Knapen, who had previously worked on systems for removing moisture from buildings, [23] [24] [25] was in turn inspired by Chaptal's work and he set about building an ambitiously large puits aerien (aerial well) on a 180 metres (590 ft) high hill at Trans-en-Provence in France. [1] [26] Beginning in 1930, Knapen's dew tower took 18 months to build; it still stands today, albeit in dilapidated condition. At the time of its construction, the condenser excited some public interest. [27]
The tower is 14 metres (46 ft) high and has massive masonry walls about 3 metres (9.8 ft) thick with a number of apertures to let in air. Inside there is a massive column made of concrete. At night, the whole structure is allowed to cool, and during the day warm moist air enters the structure via the high apertures, cools, descends, and leaves the building by the lower apertures. [28] Knapen's intention was that water should condense on the cool inner column. In keeping with Chaptal's finding that the condensing surface must be rough and the surface tension must be sufficiently low that the condensed water can drip, the central column's outer surface was studded with projecting plates of slate. The slates were placed nearly vertically to encourage dripping down to a collecting basin at the bottom of the structure. [3] Unfortunately, the aerial well never achieved anything like its hoped-for performance and produced no more than a few litres of water each day. [29]
By the end of the twentieth century, the mechanics of how dew condenses were much better understood. The key insight was that low-mass collectors which rapidly lose heat by radiation perform best. A number of researchers worked on this method. [30] In the early 1960s, dew condensers made from sheets of polyethylene supported on a simple frame resembling a ridge tent were used in Israel to irrigate plants. Saplings supplied with dew and very slight rainfall from these collectors survived much better than the control group planted without such aids – they all dried up over the summer. [31] In 1986 in New Mexico condensers made of a special foil produced sufficient water to supply young saplings. [4]
In 1992 a party of French academics attended a condensed matter conference in Ukraine where physicist Daniel Beysens introduced them to the story of how ancient Theodosia was supplied with water from dew condensers. They were sufficiently intrigued that in 1993 they went to see for themselves. They concluded that the mounds that Zibold identified as dew condensers were in fact ancient burial mounds (a part of the necropolis of ancient Theodosia) and that the pipes were medieval in origin and not associated with the construction of the mounds. They found the remains of Zibold's condenser, which they tidied up and examined closely. Zibold's condenser had apparently performed reasonably well, but in fact his exact results are not at all clear, and it is possible that the collector was intercepting fog, which added significantly to the yield. [10] If Zibold's condenser worked at all, this was probably due to fact that a few stones near the surface of the mound were able to lose heat at night while being thermally isolated from the ground; however, it could never have produced the yield that Zibold envisaged. [2] [32]
Fired with enthusiasm, the party returned to France and set up the International Organisation for Dew Utilization (OPUR), with the specific objective of making dew available as an alternative source of water. [33]
OPUR began a study of dew condensation under laboratory conditions; they developed a special hydrophobic film and experimented with trial installations, including a 30 square metres (320 sq ft) collector in Corsica. [34] Vital insights included the idea that the mass of the condensing surface should be as low as possible so that it cannot easily retain heat, that it should be protected from unwanted thermal radiation by a layer of insulation, and that it should be hydrophobic, so as to shed condensed moisture readily. [35]
By the time they were ready for their first practical installation, they heard that one of their members, Girja Sharan, had obtained a grant to construct a dew condenser in Kothara, India. In April 2001, Sharan had incidentally noticed substantial condensation on the roof of a cottage at Toran Beach Resort in the arid coastal region of Kutch, where he was briefly staying. The following year, he investigated the phenomenon more closely and interviewed local people. Financed by the Gujarat Energy Development Agency and the World Bank, Sharan and his team went on to develop passive, radiative condensers for use in the arid coastal region of Kutch. [36] Active commercialisation began in 2006. [37]
Sharan tested a wide range of materials and got good results from galvanised iron and aluminium sheets, but found that sheets of the special plastic developed by the OPUR just 400 micrometres (0.016 in) thick generally worked even better than the metal sheets and were less expensive. [38] The plastic film, known as OPUR foil, is hydrophilic and is made from polyethylene mixed with titanium dioxide and barium sulphate.
There are three principal approaches to the design of the heat sinks that collect the moisture in air wells: high mass, radiative, and active. Early in the twentieth century, there was interest in high-mass air wells, but despite much experimentation including the construction of massive structures, this approach proved to be a failure. [39]
From the late twentieth century onwards, there has been much investigation of low-mass, radiative collectors; these have proved to be much more successful. [40]
The high-mass air well design attempts to cool a large mass of masonry with cool nighttime air entering the structure due to breezes or natural convection. In the day, the warmth of the sun results in increased atmospheric humidity. When moist daytime air enters the air well, it condenses on the presumably cool masonry. None of the high-mass collectors performed well, Knapen's aerial well being a particularly conspicuous example.
The problem with the high-mass collectors was that they could not get rid of sufficient heat during the night – despite design features intended to ensure that this would happen. [3] While some thinkers have believed that Zibold might have been correct after all, [41] [42] an article in Journal of Arid Environments discusses why high-mass condenser designs of this type cannot yield useful amounts of water:
We would like to stress the following point. To obtain condensation, the condenser temperature of the stones must be lower than the dew point temperature. When there is no fog, the dew point temperature is always lower than the air temperature. Meteorological data shows that the dew point temperature (an indicator of the water content of the air) does not change appreciably when the weather is stable. Thus wind, which ultimately imposes air temperature to the condenser, cannot cool the condenser to ensure its functioning. Another cooling phenomenon — radiative cooling — must operate. It is therefore at night-time, when the condenser cools by radiation, that liquid water can be extracted from air. It is very rare that the dew point temperature would increase significantly so as to exceed the stone temperature inside the stone heap. Occasionally, when this does happen, dew can be abundant during a short period of time. This is why subsequent attempts by L. Chaptal and A. Knapen to build massive dew condensers only rarely resulted in significant yields. [Emphasis as in original] [2]
Although ancient air wells are mentioned in some sources, there is scant evidence for them, and persistent belief in their existence has the character of a modern myth. [2]
A radiative air well is designed to cool a substrate by radiating heat to the night sky. The substrate has a low mass so that it cannot hold onto heat, and it is thermally isolated from any mass, including the ground. [43] A typical radiative collector presents a condensing surface at an angle of 30° from the horizontal. The condensing surface is backed by a thick layer of insulating material such as polystyrene foam and supported 2–3 metres (7–10 ft) above ground level. Such condensers may be conveniently installed on the ridge roofs of low buildings or supported by a simple frame. [44] Although other heights do not typically work quite so well, it may be less expensive or more convenient to mount a collector near to ground level or on a two-story building. [45]
A 550 square metres (5,900 sq ft) radiative condenser illustrated to the left is built near the ground. In the area of northwest India where it is installed dew occurs for 8 months a year, and the installation collects about 15 millimetres (0.59 in) of dew water over the season with nearly 100 dew-nights. In a year it provides a total of about 9,000 litres (2,000 imp gal; 2,400 US gal) of potable water for the school which owns and operates the site. [46]
Although flat designs have the benefit of simplicity, other designs such as inverted pyramids and cones can be significantly more effective. This is probably because the designs shield the condensing surfaces from unwanted heat radiated by the lower atmosphere, and, being symmetrical, they are not sensitive to wind direction. [47]
New materials may make even better collectors. [48] One such material is inspired by the Namib Desert beetle, which survives only on the moisture it extracts from the atmosphere. It has been found that its back is coated with microscopic projections: the peaks are hydrophilic and the troughs are hydrophobic. [49] [50] [51] Researchers at the Massachusetts Institute of Technology have emulated this capability by creating a textured surface that combines alternating hydrophobic and hydrophilic materials. [52]
Active atmospheric water collectors have been in use since the commercialisation of mechanical refrigeration. Essentially, all that is required is to cool a heat exchanger below the dew point, and water will be produced. Such water production may take place as a by-product, possibly unwanted, of dehumidification. [3] The air conditioning system of the Burj Khalifa in Dubai, for example, produces an estimated 15 million US gallons (57,000 m3) of water each year that is used for irrigating the tower's landscape plantings. [54]
Because mechanical refrigeration is energy intensive, active collectors are typically restricted to places where there is no supply of water that can be desalinated or purified at a lower cost and that are sufficiently far from a supply of fresh water to make transport uneconomical. Such circumstances are uncommon, and even then large installations such as that tried in the 1930s at Cook, South Australia failed because of the cost of running the installation – it was cheaper to transport water over large distances. [22]
In the case of small installations, convenience may outweigh cost. There is a wide range of small machines designed to be used in offices that produce a few litres of drinking water from the atmosphere. However, there are circumstances where there really is no source of water other than the atmosphere. For example, in the 1930s, American designers added condenser systems to airships – in this case the air was that emitted by the exhaust of the engines, and so it contained additional water as a product of combustion. The moisture was collected and used as additional ballast to compensate for the loss of weight as fuel was consumed. By collecting ballast in this way, the airship's buoyancy could be kept relatively constant without having to release helium gas, which was both expensive and in limited supply. [55]
More recently, on the International Space Station, the Zvezda module includes a humidity control system. The water it collects is usually used to supply the Elektron system that electrolyses water into hydrogen and oxygen, but it can be used for drinking in an emergency. [56]
There are a number of designs that minimise the energy requirements of active condensers:
Cape Verde is a group of arid Atlantic islands which are home to distinct communities of plants, birds, and reptiles. The islands constitute the unique Cape Verde Islands dry forests ecoregion, according to the World Wildlife Fund.
Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor to liquid water when in contact with a liquid or solid surface or cloud condensation nuclei within the atmosphere. When the transition happens from the gaseous phase into the solid phase directly, the change is called deposition.
Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present.
Dew is water in the form of droplets that appears on thin, exposed objects in the morning or evening due to condensation. As the exposed surface cools by radiating its heat, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets.
The dew point of a given body of air is the temperature to which it must be cooled to become saturated with water vapor. This temperature depends on the pressure and water content of the air. When the air is cooled below the dew point, its moisture capacity is reduced and airborne water vapor will condense to form liquid water known as dew. When this occurs through the air's contact with a colder surface, dew will form on that surface.
Fog is a visible aerosol consisting of tiny water droplets or ice crystals suspended in the air at or near the Earth's surface. Fog can be considered a type of low-lying cloud usually resembling stratus, and is heavily influenced by nearby bodies of water, topography, and wind conditions. In turn, fog affects many human activities, such as shipping, travel, and warfare.
Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation. It is less dense than most of the other constituents of air and triggers convection currents that can lead to clouds and fog.
The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. Lapse rate arises from the word lapse. In dry air, the adiabatic lapse rate is 9.8 °C/km. The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km, as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place. It can be highly variable between circumstances.
A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.
A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.
A dew pond is an artificial pond usually sited on the top of a hill, intended for watering livestock. Dew ponds are used in areas where a natural supply of surface water may not be readily available. The name dew pond is first found in the Journal of the Royal Agricultural Society in 1865. Despite the name, their primary source of water is believed to be rainfall rather than dew or mist.
A solar still distills water with substances dissolved in it by using the heat of the Sun to evaporate water so that it may be cooled and collected, thereby purifying it. They are used in areas where drinking water is unavailable, so that clean water is obtained from dirty water or from plants by exposing them to sunlight.
Moisture analysis covers a variety of methods for measuring the moisture content in solids, liquids, or gases. For example, moisture is a common specification in commercial food production. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be known in processes involving plastics, pharmaceuticals and heat treatment. Fields that require moisture measurement in gasses or liquids include hydrocarbon processing, pure semiconductor gases, bulk pure or mixed gases, dielectric gases such as those in transformers and power plants, and natural gas pipeline transport. Moisture content measurements can be reported in multiple units, such as: parts per million, pounds of water per million standard cubic feet of gas, mass of water vapor per unit volume or mass of water vapor per unit mass of dry gas.
In chemistry, a condenser is laboratory apparatus used to condense vapors – that is, turn them into liquids – by cooling them down.
In systems involving heat transfer, a condenser is a heat exchanger used to condense a gaseous substance into a liquid state through cooling. In doing so, the latent heat is released by the substance and transferred to the surrounding environment. Condensers are used for efficient heat rejection in many industrial systems. Condensers can be made according to numerous designs and come in many sizes ranging from rather small (hand-held) to very large. For example, a refrigerator uses a condenser to get rid of heat extracted from the interior of the unit to the outside air.
Wolf Klaphake (1900–1967) was a German-born scientist. He emigrated to Australia in 1935, where he was interred as an enemy alien from 1940 to 1944. He died in Sydney in 1967.
Fog collection is the harvesting of water from fog using large pieces of vertical mesh netting to induce the fog-droplets to flow down towards a trough below. The setup is known as a fog fence, fog collector or fog net. Through condensation, atmospheric water vapour from the air condenses on cold surfaces into droplets of liquid water known as dew. The phenomenon is most observable on thin, flat, exposed objects including plant leaves and blades of grass. As the exposed surface cools by radiating its heat to the sky, atmospheric moisture condenses at a rate greater than that of which it can evaporate, resulting in the formation of water droplets.
Interstitial condensation is a type of condensation that may occur within an enclosed wall, roof or floor cavity structure, which can create dampening.
Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change. A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase to pass through the membrane's pores. The driving force of the process is a partial vapour pressure difference commonly triggered by a temperature difference.
Compressed air dryers are special types of filter systems that are specifically designed to remove the water that is inherent in compressed air. The compression of air raises its temperature and concentrates atmospheric contaminants, primarily water vapor, as resulting in air with elevated temperature and 100% relative humidity. As the compressed air cools down, water vapor condenses into the tank(s), pipes, hoses and tools connected downstream from the compressor which may be damaging. Therefore water vapor is removed from compressed air to prevent condensation from occurring and to prevent moisture from interfering in sensitive industrial processes.
This article has been widely reproduced, including extracts in Sharan, 2006.