Water vapor

Last updated

Water vapor (H2O)
St Johns Fog.jpg
Invisible water vapor condenses to form
visible clouds of liquid rain droplets
Liquid state Water
Solid state Ice
Properties [1]
Molecular formula H2O
Molar mass 18.01528(33)  g/mol
Melting point 0.00  °C (273.15  K ) [2]
Boiling point 99.98 °C (373.13 K) [2]
specific gas constant 461.5 J/(kg·K)
Heat of vaporization 2.27 MJ/kg
Heat capacity at 300 K1.864 kJ/(kg·K) [3]

Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Unlike other forms of water, water vapor is invisible. [4] Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation. It is less dense than air and triggers convection currents that can lead to clouds.

Gas gaseous object

Gas is one of the four fundamental states of matter. A pure gas may be made up of individual atoms, elemental molecules made from one type of atom, or compound molecules made from a variety of atoms. A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles. This separation usually makes a colorless gas invisible to the human observer. The interaction of gas particles in the presence of electric and gravitational fields are considered negligible, as indicated by the constant velocity vectors in the image.

Properties of water Physical and chemical properties of pure water

Water is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" and the "solvent of life". It is the most abundant substance on Earth and the only common substance to exist as a solid, liquid, and gas on Earth's surface. It is also the third most abundant molecule in the universe.

Phase (matter) region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform; region of material that is chemically uniform, physically distinct, (often) mechanically separable

In the physical sciences, a phase is a region of space, throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase.


Being a component of Earth's hydrosphere and hydrologic cycle, it is particularly abundant in Earth's atmosphere where it is also a potent greenhouse gas along with other gases such as carbon dioxide and methane. Use of water vapor, as steam, has been important to humans for cooking and as a major component in energy production and transport systems since the industrial revolution.

Greenhouse gas gas in an atmosphere that absorbs and emits radiation within the thermal infrared range

A greenhouse gas is a gas that absorbs and emits radiant energy within the thermal infrared range. Greenhouse gases cause the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor, carbon dioxide, methane, nitrous oxide and ozone. Without greenhouse gases, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F). The atmospheres of Venus, Mars and Titan also contain greenhouse gases.

Carbon dioxide chemical compound

Carbon dioxide is a colorless gas with a density about 60% higher than that of dry air. Carbon dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (410 ppm) by volume, having risen from pre-industrial levels of 280 ppm. Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide is odorless at normally encountered concentrations. However, at high concentrations, it has a sharp and acidic odor.

Methane simplest organic molecule with one carbon atom and four hydrogen

Methane (or ) is a chemical compound with the chemical formula CH4 (one atom of carbon and four atoms of hydrogen). It is a group-14 hydride and the simplest alkane, and is the main constituent of natural gas. The relative abundance of methane on Earth makes it an attractive fuel, although capturing and storing it poses challenges due to its gaseous state under normal conditions for temperature and pressure.

Water vapor is a relatively common atmospheric constituent, present even in the solar atmosphere as well as every planet in the Solar System and many astronomical objects including natural satellites, comets and even large asteroids. Likewise the detection of extrasolar water vapor would indicate a similar distribution in other planetary systems. Water vapor is significant in that it can be indirect evidence supporting the presence of extraterrestrial liquid water in the case of some planetary mass objects.

Solar System planetary system of the Sun

The Solar System is the gravitationally bound planetary system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System bodies. Of the objects that orbit the Sun indirectly—the moons—two are larger than the smallest planet, Mercury.

Astronomical object physical body of astronomically-significant size,mass,or role,naturally occurring in a universe;single,tightly bound contiguous entity (while an astronomical/celestial object is a complex,less cohesively bound structure,may consist of multiple bodies

An astronomical object or celestial object is a naturally occurring physical entity, association, or structures that exists in the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body or celestial body is a single, tightly bound, contiguous entity, while an astronomical or celestial object is a complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Natural satellite astronomical body that orbits a planet

A natural satellite or moon is, in the most common usage, an astronomical body that orbits a planet or minor planet.



Whenever a water molecule leaves a surface and diffuses into a surrounding gas, it is said to have evaporated. Each individual water molecule which transitions between a more associated (liquid) and a less associated (vapor/gas) state does so through the absorption or release of kinetic energy. The aggregate measurement of this kinetic energy transfer is defined as thermal energy and occurs only when there is differential in the temperature of the water molecules. Liquid water that becomes water vapor takes a parcel of heat with it, in a process called evaporative cooling. [5] The amount of water vapor in the air determines how frequently molecules will return to the surface. When a net evaporation occurs, the body of water will undergo a net cooling directly related to the loss of water.

Evaporation Type of vaporization of a liquid that occurs from its surface; surface phenomenon

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. The surrounding gas must not be saturated with the evaporating substance. When the molecules of the liquid collide, they transfer energy to each other based on how they collide with each other. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

Kinetic energy energy possessed by an object by virtue of its motion

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.

In the US, the National Weather Service measures the actual rate of evaporation from a standardized "pan" open water surface outdoors, at various locations nationwide. Others do likewise around the world. The US data is collected and compiled into an annual evaporation map. [6] The measurements range from under 30 to over 120 inches per year. Formulas can be used for calculating the rate of evaporation from a water surface such as a swimming pool. [7] [8] In some countries, the evaporation rate far exceeds the precipitation rate.

Evaporative cooling is restricted by atmospheric conditions. Humidity is the amount of water vapor in the air. The vapor content of air is measured with devices known as hygrometers. The measurements are usually expressed as specific humidity or percent relative humidity. The temperatures of the atmosphere and the water surface determine the equilibrium vapor pressure; 100% relative humidity occurs when the partial pressure of water vapor is equal to the equilibrium vapor pressure. This condition is often referred to as complete saturation. Humidity ranges from 0 gram per cubic metre in dry air to 30 grams per cubic metre (0.03 ounce per cubic foot) when the vapor is saturated at 30 °C. [9]

Standard conditions for temperature and pressure are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST), although these are not universally accepted standards. Other organizations have established a variety of alternative definitions for their standard reference conditions.

Humidity amount of water vapor in the humid air

Humidity is the amount of water vapour present in air. Water vapour, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. The amount of water vapour needed to achieve saturation increases as the temperature increases. As the temperature of a parcel of air decreases it will eventually reach the saturation point without adding or losing water mass. The amount of water vapour contained within a parcel of air can vary significantly. For example, a parcel of air near saturation may contain 28 grams of water per cubic metre of air at 30 °C, but only 8 grams of water per cubic metre of air at 8 °C.

Hygrometer instrument used for measuring the moisture content in the atmosphere

A hygrometer is an instrument used to measure the amount of humidity and water vapor in the atmosphere, in soil, or in confined spaces. Humidity measurement instruments usually rely on measurements of some other quantity such as temperature, pressure, mass, a mechanical or electrical change in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can lead to a measurement of humidity. Modern electronic devices use temperature of condensation, or changes in electrical capacitance or resistance to measure humidity differences. The first crude hygrometer was invented by the Italian Renaissance polymath Leonardo da Vinci in 1480 and a more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later in the year 1783, Swiss physicist and Geologist, Horace Benedict De Saussure invented the first hygrometer using human hair to measure humidity.

Meteorite Recovery Antarctica (retouched).jpg
Recovery of meteorites in Antarctica (ANSMET)
Tightjunction BBB.jpg
Electron micrograph of freeze-etched capillary tissue


Sublimation is when water molecules directly leave the surface of ice without first becoming liquid water. Sublimation accounts for the slow mid-winter disappearance of ice and snow at temperatures too low to cause melting. Antarctica shows this effect to a unique degree because it is by far the continent with the lowest rate of precipitation on Earth. As a result, there are large areas where millennial layers of snow have sublimed, leaving behind whatever non-volatile materials they had contained. This is extremely valuable to certain scientific disciplines, a dramatic example being the collection of meteorites that are left exposed in unparalleled numbers and excellent states of preservation.

Sublimation is important in the preparation of certain classes of biological specimens for scanning electron microscopy. Typically the specimens are prepared by cryofixation and freeze-fracture, after which the broken surface is freeze-etched, being eroded by exposure to vacuum till it shows the required level of detail. This technique can display protein molecules, organelle structures and lipid bilayers with very low degrees of distortion.


Clouds, formed by condensed water vapour Above the Clouds.jpg
Clouds, formed by condensed water vapour

Water vapour will only condense onto another surface when that surface is cooler than the dew point temperature, or when the water vapour equilibrium in air has been exceeded. When water vapour condenses onto a surface, a net warming occurs on that surface. The water molecule brings heat energy with it. In turn, the temperature of the atmosphere drops slightly. [10] In the atmosphere, condensation produces clouds, fog and precipitation (usually only when facilitated by cloud condensation nuclei). The dew point of an air parcel is the temperature to which it must cool before water vapour in the air begins to condense concluding water vapour is a type of water or rain.

Also, a net condensation of water vapour occurs on surfaces when the temperature of the surface is at or below the dew point temperature of the atmosphere. Deposition is a phase transition separate from condensation which leads to the direct formation of ice from water vapour. Frost and snow are examples of deposition.

There are many mechanism of cooling by which condensation occurs 1.direct loss of heat known as radiation cooling. 2.cooling with upliftment of air known as adiabatic cooling. there are 4 types of upliftment of air: a. orographic upliftment- mountains work as barrier for upliftment of air b. convectional upliftment- upliftment of air due to pressure difference c. frontal upliftment- upliftment of air due to temp difference d. cyclonic upliftment but not related to temp 3.advective cooling- cooling due to horizontal movement of air.

Chemical reactions

A number of chemical reactions have water as a product. If the reactions take place at temperatures higher than the dew point of the surrounding air the water will be formed as vapor and increase the local humidity, if below the dew point local condensation will occur. Typical reactions that result in water formation are the burning of hydrogen or hydrocarbons in air or other oxygen containing gas mixtures, or as a result of reactions with oxidizers.

In a similar fashion other chemical or physical reactions can take place in the presence of water vapor resulting in new chemicals forming such as rust on iron or steel, polymerization occurring (certain polyurethane foams and cyanoacrylate glues cure with exposure to atmospheric humidity) or forms changing such as where anhydrous chemicals may absorb enough vapor to form a crystalline structure or alter an existing one, sometimes resulting in characteristic color changes that can be used for measurement.


Measuring the quantity of water vapor in a medium can be done directly or remotely with varying degrees of accuracy. Remote methods such electromagnetic absorption are possible from satellites above planetary atmospheres. Direct methods may use electronic transducers, moistened thermometers or hygroscopic materials measuring changes in physical properties or dimensions.

mediumtemperature range (degC)measurement uncertainty typical measurement frequencysystem costnotes
sling psychrometer air−10 to 50low to moderatehourlylow
satellite-based spectroscopyair−80 to 60lowvery high
capacitive sensorair/gases−40 to 50moderate2 to 0.05 Hzmediumprone to becoming saturated/contaminated over time
warmed capacitive sensorair/gases−15 to 50moderate to low2 to 0.05 Hz (temp dependant)medium to highprone to becoming saturated/contaminated over time
resistive sensorair/gases−10 to 50moderate60 secondsmediumprone to contamination
lithium chloride dewcell air−30 to 50moderatecontinuousmediumsee dewcell
Cobalt(II) chloride air/gases0 to 50high5 minutesvery lowoften used in Humidity indicator card
Absorption spectroscopy air/gasesmoderatehigh
Aluminum oxideair/gasesmoderatemediumsee Moisture analysis
silicon oxideair/gasesmoderatemediumsee Moisture analysis
Piezoelectric sorptionair/gasesmoderatemediumsee Moisture analysis
Electrolyticair/gasesmoderatemediumsee Moisture analysis
hair tension air0 to 40highcontinuouslow to mediumAffected by temperature. Adversely affected by prolonged high concentrations
Nephelometerair/other gaseslowvery high
Goldbeater's skin (Cow Peritoneum)air−20 to 30moderate (with corrections)slow, slower at lower temperatureslowref:WMO Guide to Meteorological Instruments and Methods of Observation No. 8 2006, (pages 1.12–1)
Lyman-alphahigh frequencyhigh http://amsglossary.allenpress.com/glossary/search?id=lyman-alpha-hygrometer1 Requires frequent calibration
Gravimetric Hygrometervery lowvery highoften called primary source, national independent standards developed in US,UK,EU & Japan
mediumtemperature range (degC)measurement uncertainty typical measurement frequencysystem costnotes

Impact on air density

Water vapor is lighter or less dense than dry air. [11] [12] At equivalent temperatures it is buoyant with respect to dry air, whereby the density of dry air at standard temperature and pressure (273.15 K, 101.325 kPa) is 1.27 g/L and water vapor at standard temperature has a vapor pressure of 0.6 kPa and the much lower density of 4.85 mg/L.



Water vapor and dry air density calculations at 0 °C:

  • The molar mass of water is 18.02 g/mol, as calculated from the sum of the atomic masses of its constituent atoms.
  • The average molecular mass of air (approx. 78% nitrogen, N2; 21% oxygen, O2; 1% other gases) is 28.57 g/mol at standard temperature and pressure (STP).
  • Obeying Avogadro's Law and the ideal gas law, moist air will have a lower density then dry air. At max. saturation (i. e. rel. humidity = 100 % at 0 °C) the density will go down to 28.51 g/mol.
  • STP conditions imply a temperature of 0 °C, at which the ability of water to become vapor is very restricted. Its concentration in air is very low at 0 °C. The red line on the chart to the right is the maximum concentration of water vapor expected for a given temperature. The water vapor concentration increases significantly as the temperature rises, approaching 100% (steam, pure water vapor) at 100 °C. However the difference in densities between air and water vapor would still exist (0.598 vs. 1.27 g/l).

At equal temperatures

At the same temperature, a column of dry air will be denser or heavier than a column of air containing any water vapor, the molar mass of diatomic nitrogen and diatomic oxygen both being greater than the molar mass of water. Thus, any volume of dry air will sink if placed in a larger volume of moist air. Also, a volume of moist air will rise or be buoyant if placed in a larger region of dry air. As the temperature rises the proportion of water vapor in the air increases, and its buoyancy will increase. The increase in buoyancy can have a significant atmospheric impact, giving rise to powerful, moisture rich, upward air currents when the air temperature and sea temperature reaches 25 °C or above. This phenomenon provides a significant driving force for cyclonic and anticyclonic weather systems (typhoons and hurricanes).

Respiration and breathing

Water vapor is a by-product of respiration in plants and animals. Its contribution to the pressure, increases as its concentration increases. Its partial pressure contribution to air pressure increases, lowering the partial pressure contribution of the other atmospheric gases (Dalton's Law). The total air pressure must remain constant. The presence of water vapor in the air naturally dilutes or displaces the other air components as its concentration increases.

This can have an effect on respiration. In very warm air (35 °C) the proportion of water vapor is large enough to give rise to the stuffiness that can be experienced in humid jungle conditions or in poorly ventilated buildings.

Lifting gas

Water vapor has lower density than that of air and is therefore buoyant in air but has lower vapor pressure than that of air. When water vapor is used as a lifting gas by a thermal airship the water vapor is heated to form steam so that its vapor pressure is greater than the surrounding air pressure in order to maintain the shape of a theoretical "steam balloon", which yields approximately 60% the lift of helium and twice that of hot air. [13]

General discussion

The amount of water vapor in an atmosphere is constrained by the restrictions of partial pressures and temperature. Dew point temperature and relative humidity act as guidelines for the process of water vapor in the water cycle. Energy input, such as sunlight, can trigger more evaporation on an ocean surface or more sublimation on a chunk of ice on top of a mountain. The balance between condensation and evaporation gives the quantity called vapor partial pressure.

The maximum partial pressure (saturation pressure) of water vapor in air varies with temperature of the air and water vapor mixture. A variety of empirical formulas exist for this quantity; the most used reference formula is the Goff-Gratch equation for the SVP over liquid water below zero degree Celsius:

Where T, temperature of the moist air, is given in units of kelvin, and p is given in units of millibars (hectopascals).

The formula is valid from about −50 to 102 °C; however there are a very limited number of measurements of the vapor pressure of water over supercooled liquid water. There are a number of other formulae which can be used. [14]

Under certain conditions, such as when the boiling temperature of water is reached, a net evaporation will always occur during standard atmospheric conditions regardless of the percent of relative humidity. This immediate process will dispel massive amounts of water vapor into a cooler atmosphere.

Exhaled air is almost fully at equilibrium with water vapor at the body temperature. In the cold air the exhaled vapor quickly condenses, thus showing up as a fog or mist of water droplets and as condensation or frost on surfaces. Forcibly condensing these water droplets from exhaled breath is the basis of exhaled breath condensate, an evolving medical diagnostic test.

Controlling water vapor in air is a key concern in the heating, ventilating, and air-conditioning (HVAC) industry. Thermal comfort depends on the moist air conditions. Non-human comfort situations are called refrigeration, and also are affected by water vapor. For example, many food stores, like supermarkets, utilize open chiller cabinets, or food cases, which can significantly lower the water vapor pressure (lowering humidity). This practice delivers several benefits as well as problems.

In Earth's atmosphere

Evidence for increasing amounts of stratospheric water vapor over time in Boulder, Colorado. BAMS climate assess boulder water vapor 2002.gif
Evidence for increasing amounts of stratospheric water vapor over time in Boulder, Colorado.

Gaseous water represents a small but environmentally significant constituent of the atmosphere. The percentage water vapor in surface air varies from 0.01% at -42 °C (-44 °F) [15] to 4.24% when the dew point is 30 °C (86 °F). [16] Approximately 99.13% of it is contained in the troposphere. The condensation of water vapor to the liquid or ice phase is responsible for clouds, rain, snow, and other precipitation, all of which count among the most significant elements of what we experience as weather. Less obviously, the latent heat of vaporization, which is released to the atmosphere whenever condensation occurs, is one of the most important terms in the atmospheric energy budget on both local and global scales. For example, latent heat release in atmospheric convection is directly responsible for powering destructive storms such as tropical cyclones and severe thunderstorms. Water vapor is the most potent greenhouse gas owing to the presence of the hydroxyl bond which strongly absorbs in the infra-red region of the light spectrum.

Water in Earth's atmosphere is not merely below its boiling point (100 °C), but at altitude it goes below its freezing point (0 °C), due to water's highly polar attraction. When combined with its quantity, water vapor then has a relevant dew point and frost point, unlike e. g., carbon dioxide and methane. Water vapor thus has a scale height a fraction of that of the bulk atmosphere, [17] [18] [19] as the water condenses and exits, primarily in the troposphere, the lowest layer of the atmosphere. [20] Carbon dioxide (CO
) and methane, being non-polar, rise above water vapor. The absorption and emission of both compounds contribute to Earth's emission to space, and thus the planetary greenhouse effect. [18] [21] [22] This greenhouse forcing is directly observable, via distinct spectral features versus water vapor, and observed to be rising with rising CO
levels. [23] Conversely, adding water vapor at high altitudes has a disproportionate impact, which is why methane (rising, then oxidizing to CO
and two water molecules) and jet traffic [24] [25] [26] have disproportionately high warming effects.

It is less clear how cloudiness would respond to a warming climate; depending on the nature of the response, clouds could either further amplify or partly mitigate warming from long-lived greenhouse gases.

In the absence of other greenhouse gases, Earth's water vapor would condense to the surface; [27] [28] [29] this has likely happened, possibly more than once. Scientists thus distinguish between non-condensable (driving) and condensable (driven) greenhouse gases, i.e., the above water vapor feedback. [30] [31] [32]

Fog and clouds form through condensation around cloud condensation nuclei. In the absence of nuclei, condensation will only occur at much lower temperatures. Under persistent condensation or deposition, cloud droplets or snowflakes form, which precipitate when they reach a critical mass.

The water content of the atmosphere as a whole is constantly depleted by precipitation. At the same time it is constantly replenished by evaporation, most prominently from seas, lakes, rivers, and moist earth. Other sources of atmospheric water include combustion, respiration, volcanic eruptions, the transpiration of plants, and various other biological and geological processes. The mean global content of water vapor in the atmosphere is roughly sufficient to cover the surface of the planet with a layer of liquid water about 25 mm deep. The mean annual precipitation for the planet is about 1 meter, which implies a rapid turnover of water in the air – on average, the residence time of a water molecule in the troposphere is about 9 to 10 days.

Episodes of surface geothermal activity, such as volcanic eruptions and geysers, release variable amounts of water vapor into the atmosphere. Such eruptions may be large in human terms, and major explosive eruptions may inject exceptionally large masses of water exceptionally high into the atmosphere, but as a percentage of total atmospheric water, the role of such processes is trivial. The relative concentrations of the various gases emitted by volcanoes varies considerably according to the site and according to the particular event at any one site. However, water vapor is consistently the commonest volcanic gas; as a rule, it comprises more than 60% of total emissions during a subaerial eruption. [33]

Atmospheric water vapor content is expressed using various measures. These include vapor pressure, specific humidity, mixing ratio, dew point temperature, and relative humidity.

Radar and satellite imaging

These maps show the average amount of water vapor in a column of atmosphere in a given month.(click for more detail)
MODIS/Terra global mean atmospheric water vapor Atmospheric Water Vapor Mean.2005.030.jpg
MODIS/Terra global mean atmospheric water vapor

Because water molecules absorb microwaves and other radio wave frequencies, water in the atmosphere attenuates radar signals. [34] In addition, atmospheric water will reflect and refract signals to an extent that depends on whether it is vapor, liquid or solid.

Generally, radar signals lose strength progressively the farther they travel through the troposphere. Different frequencies attenuate at different rates, such that some components of air are opaque to some frequencies and transparent to others. Radio waves used for broadcasting and other communication experience the same effect.

Water vapor reflects radar to a lesser extent than do water's other two phases. In the form of drops and ice crystals, water acts as a prism, which it does not do as an individual molecule; however, the existence of water vapor in the atmosphere causes the atmosphere to act as a giant prism. [35]

A comparison of GOES-12 satellite images shows the distribution of atmospheric water vapor relative to the oceans, clouds and continents of the Earth. Vapor surrounds the planet but is unevenly distributed. The image loop on the right shows monthly average of water vapor content with the units are given in centimeters, which is the precipitable water or equivalent amount of water that could be produced if all the water vapor in the column were to condense. The lowest amounts of water vapor (0 centimeters) appear in yellow, and the highest amounts (6 centimeters) appear in dark blue. Areas of missing data appear in shades of gray. The maps are based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on NASA's Aqua satellite. The most noticeable pattern in the time series is the influence of seasonal temperature changes and incoming sunlight on water vapor. In the tropics, a band of extremely humid air wobbles north and south of the equator as the seasons change. This band of humidity is part of the Intertropical Convergence Zone, where the easterly trade winds from each hemisphere converge and produce near-daily thunderstorms and clouds. Farther from the equator, water vapor concentrations are high in the hemisphere experiencing summer and low in the one experiencing winter. Another pattern that shows up in the time series is that water vapor amounts over land areas decrease more in winter months than adjacent ocean areas do. This is largely because air temperatures over land drop more in the winter than temperatures over the ocean. Water vapor condenses more rapidly in colder air. [36]

As water vapour absorbs light in the visible spectral range, its absorption can be used in spectroscopic applications (such as DOAS) to determine the amount of water vapor in the atmosphere. This is done operationally, e.g. from the GOME spectrometers on ERS and MetOp. [37] The weaker water vapor absorption lines in the blue spectral range and further into the UV up to its dissociation limit around 243 nm are mostly based on quantum mechanical calculations [38] and are only partly confirmed by experiments. [39]

Lightning generation

Water vapor plays a key role in lightning production in the atmosphere. From cloud physics, usually clouds are the real generators of static charge as found in Earth's atmosphere. The ability of clouds to hold massive amounts of electrical energy is directly related to the amount of water vapor present in the local system.

The amount of water vapor directly controls the permittivity of the air. During times of low humidity, static discharge is quick and easy. During times of higher humidity, fewer static discharges occur. Permittivity and capacitance work hand in hand to produce the megawatt outputs of lightning. [40]

After a cloud, for instance, has started its way to becoming a lightning generator, atmospheric water vapor acts as a substance (or insulator) that decreases the ability of the cloud to discharge its electrical energy. Over a certain amount of time, if the cloud continues to generate and store more static electricity, the barrier that was created by the atmospheric water vapor will ultimately break down from the stored electrical potential energy. [41] This energy will be released to a local oppositely charged region, in the form of lightning. The strength of each discharge is directly related to the atmospheric permittivity, capacitance, and the source's charge generating ability. [42]


Water vapor is common in the Solar System and by extension, other planetary systems. Its signature has been detected in the atmospheres of the Sun, occurring in sunspots. The presence of water vapor has been detected in the atmospheres of all seven extraterrestrial planets in the solar system, the Earth's Moon, [43] and the moons of other planets,[ which? ] although typically in only trace amounts.

Cryogeyser erupting on Jupiter's moon Europa (artist concept) Artist's Concept of Europa Water Vapor Plume.jpg
Cryogeyser erupting on Jupiter's moon Europa (artist concept)
Artist's illustration of the signatures of water in exoplanet atmospheres detectable by instruments such as the Hubble Space Telescope. Atmosphere of exoplanet.jpg
Artist's illustration of the signatures of water in exoplanet atmospheres detectable by instruments such as the Hubble Space Telescope.

Geological formations such as cryogeysers are thought to exist on the surface of several icy moons ejecting water vapor due to tidal heating and may indicate the presence of substantial quantities of subsurface water. Plumes of water vapor have been detected on Jupiter's moon Europa and are similar to plumes of water vapor detected on Saturn's moon Enceladus. [44] Traces of water vapor have also been detected in the stratosphere of Titan. [46] Water vapor has been found to be a major constituent of the atmosphere of dwarf planet, Ceres, largest object in the asteroid belt [47] The detection was made by using the far-infrared abilities of the Herschel Space Observatory. [48] The finding is unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes." According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids." [48] Scientists studying Mars hypothesize that if water moves about the planet, it does so as vapor. [49]

The brilliance of comet tails comes largely from water vapor. On approach to the Sun, the ice many comets carry sublimes to vapor, and this vapor's in-vacuo "deposition-conversion" to ice particles reflects light from the Sun. (The trailing vapor is itself invisible.) Knowing a comet's distance from the sun, astronomers may deduce a comet's water content from its brilliance. [50]

Water vapor has also been confirmed outside the Solar System. Spectroscopic analysis of HD 209458 b, an extrasolar planet in the constellation Pegasus, provides the first evidence of atmospheric water vapor beyond the Solar System. A star called CW Leonis was found to have a ring of vast quantities of water vapor circling the aging, massive star. A NASA satellite designed to study chemicals in interstellar gas clouds, made the discovery with an onboard spectrometer. Most likely, "the water vapor was vaporized from the surfaces of orbiting comets." [51] HAT-P-11b a relatively small exoplanet has also been found to possess water vapour. [52]

See also

Related Research Articles

Boiling point temperature

The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.

Vapor A substance in the gas phase at a temperature lower than its critical point

In physics, a vapor or vapour is a substance in the gas phase at a temperature lower than its critical temperature, which means that the vapor can be condensed to a liquid by increasing the pressure on it without reducing the temperature. A vapor is different from an aerosol. An aerosol is a suspension of tiny particles of liquid, solid, or both within a gas.

Condensation change of the physical state of matter from gas phase into liquid phase; reverse of evaporation

Condensation is the change of the physical state of matter from the gas phase into the liquid phase, and is the reverse of vaporisation. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapour to liquid water when in contact with a liquid or solid surface or cloud condensation nuclei within the atmosphere. When the transition happens from the gaseous phase into the solid phase directly, the change is called deposition.

Dew water in the form of droplets that appears on thin, exposed objects in the morning or evening

Dew is water in the form of droplets that appears on thin, exposed objects in the morning or evening due to condensation. As the exposed surface cools by radiating its heat, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets.

Dew point

The dew point is the temperature to which air must be cooled to become saturated with water vapor. When further cooled, the airborne water vapor will condense to form liquid water (dew). When air cools to its dew point through contact with a surface that is colder than the air, water will condense on the surface. When the temperature is below the freezing point of water, the dew point is called the frost point, as frost is formed rather than dew. The measurement of the dew point is related to humidity. A higher dew point means there will be more moisture in the air.

Latent heat Thermodynamic phase transition energy

Latent heat is thermal energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition.

Relative humidity

Relative humidity (RH) is the ratio of the partial pressure of water vapor to the equilibrium vapor pressure of water at a given temperature. Relative humidity depends on temperature and the pressure of the system of interest. The same amount of water vapor results in higher relative humidity in cool air than warm air. A related parameter is that of dewpoint.

The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, changes with altitude. Lapse rate arises from the word lapse, in the sense of a gradual change. It corresponds to the vertical component of the spatial gradient of temperature. Although this concept is most often applied to the Earth's troposphere, it can be extended to any gravitationally supported parcel of gas.

Mushroom cloud Pyrocumulus mushroom-shaped cloud of debris/smoke resulting from a large explosion

A mushroom cloud is a distinctive pyrocumulus mushroom-shaped cloud of debris/smoke and usually condensed water vapor resulting from a large explosion. The effect is most commonly associated with a nuclear explosion, but any sufficiently energetic detonation or deflagration will produce the same effect. They can be caused by powerful conventional weapons, like thermobaric weapons, including the ATBIP and GBU-43/B Massive Ordnance Air Blast. Some volcanic eruptions and impact events can produce natural mushroom clouds.

Cloud physics Study of the physical processes in atmospheric clouds

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water, tiny crystals of ice, or both. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

Psychrometrics field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures

Psychrometrics,psychrometry, and hygrometry are names for the field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures. The term comes from the Greek psuchron (ψυχρόν) meaning "cold" and metron (μέτρον) meaning "means of measurement".

Infrared window

The infrared atmospheric window is the overall dynamic property of the earth's atmosphere, taken as a whole at each place and occasion of interest, that lets some infrared radiation from the cloud tops and land-sea surface pass directly to space without intermediate absorption and re-emission, and thus without heating the atmosphere. It cannot be defined simply as a part or set of parts of the electromagnetic spectrum, because the spectral composition of window radiation varies greatly with varying local environmental conditions, such as water vapour content and land-sea surface temperature, and because few or no parts of the spectrum are simply not absorbed at all, and because some of the diffuse radiation is passing nearly vertically upwards and some is passing nearly horizontally. A large gap in the absorption spectrum of water vapor, the main greenhouse gas, is most important in the dynamics of the window. Other gases, especially carbon dioxide and ozone, partly block transmission.

Vapour-pressure deficit, or VPD, is the difference (deficit) between the amount of moisture in the air and how much moisture the air can hold when it is saturated. Once air becomes saturated, water will condense out to form clouds, dew or films of water over leaves. It is this last instance that makes VPD important for greenhouse regulation. If a film of water forms on a plant leaf, it becomes far more susceptible to rot. On the other hand, as the VPD increases, the plant needs to draw more water from its roots. In the case of cuttings, the plant may dry out and die. For this reason the ideal range for VPD in a greenhouse is from 0.45 kPa to 1.25 kPa, ideally sitting at around 0.85 kPa. As a general rule, most plants grow well at VPDs of between 0.8 and 0.95 kPa.

Thermodynamic diagrams Diagram showing the thermodynamic states of a material

Thermodynamic diagrams are diagrams used to represent the thermodynamic states of a material and the consequences of manipulating this material. For instance, a temperature–entropy diagram may be used to demonstrate the behavior of a fluid as it is changed by a compressor.

An atmospheric water generator (AWG) is a device that extracts water from humid ambient air. Water vapor in the air can be extracted by condensation - cooling the air below its dew point, exposing the air to desiccants, or pressurizing the air. Unlike a dehumidifier, an AWG is designed to render the water potable. AWGs are useful where pure drinking water is difficult or impossible to obtain, because there is almost always a small amount of water in the air that can be extracted. The two primary techniques in use are cooling and desiccants.

Lifted condensation level

The lifted condensation level or lifting condensation level (LCL) is formally defined as the height at which the relative humidity (RH) of an air parcel will reach 100% with respect to liquid water when it is cooled by dry adiabatic lifting. The RH of air increases when it is cooled, since the amount of water vapor in the air remains constant, while the saturation vapor pressure decreases almost exponentially with decreasing temperature. If the air parcel is lifting further beyond the LCL, water vapor in the air parcel will begin condensing, forming cloud droplets. The LCL is a good approximation of the height of the cloud base which will be observed on days when air is lifted mechanically from the surface to the cloud base.

Atmospheric thermodynamics is the study of heat-to-work transformations that take place in the earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and vertical instabilities in the atmosphere. Atmospheric thermodynamic diagrams are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection parameterizations used in numerical weather models and is used in many climate considerations, including convective-equilibrium climate models.

Condensation cloud

A transient condensation cloud, also called Wilson cloud, is observable at large explosions in humid air.


  1. Lide (1992)
  2. 1 2 Vienna Standard Mean Ocean Water (VSMOW), used for calibration, melts at 273.1500089(10) K (0.000089(10) °C, and boils at 373.1339 [Kelvin|K} (99.9839 °C)
  3. "Water Vapor – Specific Heat" . Retrieved May 15, 2012.
  4. "What is Water Vapor?" . Retrieved 2012-08-28.
  5. Schroeder (2000) , p. 36
  6. https://web.archive.org/web/20080412215652/http://www.grow.arizona.edu/Grow--GrowResources.php?ResourceId=208. Archived from the original on April 12, 2008. Retrieved April 7, 2008.Missing or empty |title= (help)
  7. "swimming, pool, calculation, evaporation, water, thermal, temperature, humidity, vapor, excel" . Retrieved February 26, 2016.
  8. "Summary of Results of all Pool Evaporation Rate Studies". R. L. Martin & Associates. Archived from the original on March 24, 2008.
  9. "climate - meteorology". Encyclopædia Britannica. Retrieved February 26, 2016.
  10. Schroeder (2000) , p. 19
  11. Williams, Jack (August 5, 2013). "Why dry air is heavier than humid air". The Washington Post. Retrieved 28 December 2014.
  12. "Humidity 101". World Water rescue Foundation. Archived from the original on 16 April 2013. Retrieved 28 December 2014.
  13. Goodey, Thomas J. "Steam Balloons and Steam Airships" . Retrieved August 26, 2010.
  14. "Water Vapor Pressure Formulations" . Retrieved February 26, 2016.
  15. McElroy (2002) , p. 34, Fig. 4.3a
  16. McElroy (2002) , p. 36 example 4.1
  17. Bruce L. Gary. "Ch#5" . Retrieved February 26, 2016.
  18. 1 2 "The Carbon Dioxide Greenhouse Effect" . Retrieved February 26, 2016.
  19. Weaver & Ramanathan (1995)
  20. Norris, G. (2 Dec 2013). "Icy Surprise". Aviation Week & Space Technology. 175 (41): 30. 22,000 ft., which is considered the upper limit for clouds containing supercooled liquid water
  21. "Climate scientists confirm elusive tropospheric hot spot". ARC Centre of Excellence for Climate System Science. Retrieved 17 May 2015.
  22. Sherwood, S; Nishant, N (11 May 2015). "Atmospheric changes through 2012 as shown by iteratively homogenized radiosonde temperature and wind data (IUKv2)". Environmental Research Letters. 10 (5): 054007. Bibcode:2015ERL....10e4007S. doi:10.1088/1748-9326/10/5/054007.
  23. Feldman, D (25 February 2015). "Observational determination of surface radiative forcing by CO2 from 2000 to 2010". Nature. 519 (7543): 339–343. Bibcode:2015Natur.519..339F. doi:10.1038/nature14240. PMID   25731165.
  24. Messer, A. "Jet contrails alter average daily temperature range" . Retrieved 17 May 2015.
  25. Danahy, A. "Jets' contrails contribute to heat-trapping high-level clouds" . Retrieved 17 May 2015.
  26. Ryan, A; Mackenzie, A; et al. (September 2012). "World War II contrails: a case study of aviation-induced cloudiness". International Journal of Climatology. 32 (11): 1745–1753. Bibcode:2012IJCli..32.1745R. doi:10.1002/joc.2392.
  27. Vogt et al. (2010): "The equilibrium temperature of the Earth is 255 K, well-below the freezing point of water, but because of its atmosphere, the greenhouse effect warms the surface"
  28. What is the maximum and minimum distance for the Earth that is compatible with life?
  29. "for the Earth, the albedo is 0.306 and the distance is 1.000 AU, so the expected temperature is 254 K or -19 C – significantly below the freezing point of water!"
  30. de Pater, I., Lissauer, J., Planetary Sciences, Cambridge University Press, 2007
  31. "Properties". American Chemical Society. Retrieved February 26, 2016.
  32. Lacis, A. et al., The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change, Tellus B, vol. 65 p. 19734, 2013
  33. Sigurdsson & Houghton (2000)
  34. Skolnik (1990) , p. 23.5
  35. Skolnik (1990) , pp. 2.44–2.54
  36. "Water Vapor". Global Maps. 2018-07-31. Retrieved February 26, 2016.
  37. Loyola, Diego. "GOME-2/MetOp-A at DLR". atmos.eoc.dlr.de. Retrieved 19 October 2017.
  38. Tennyson, Jonathan (2014). "Vibration–rotation transition dipoles from first principles". Journal of Molecular Spectroscopy. 298: 1–6. Bibcode:2014JMoSp.298....1T. doi:10.1016/j.jms.2014.01.012.
  39. Tennyson, J., Bernath, P.F., Brown, L.R., Campargue, A., Carleer, M.R., Csa´sza´r, A.G., Daumont, L., Gamache, R.R., es, J. T. H., Naumenko, O.V., Polyansky, O.L., Rothmam, L.S., Vandaele, A.C., Zobov, N.F., Al Derzi, A.R., F´abri, C., Fazliev, A.Z., rtenbacher, T.F., Gordon, I.E., Lodi, L., and Mizus, I.I. (2013). "IUPAC critical evaluation of the rotational-vibrational spectra of 1440 water vapor. Part III". Physical Chemistry Chemical Physics. 15 (37): 15 371–15 381. Bibcode:2013PCCP...1515371T. doi:10.1039/C3CP50968K. PMID   23928555.CS1 maint: Multiple names: authors list (link)
  40. Shadowitz (1975) , pp. 165–171
  41. Shadowitz (1975) , pp. 172–173, 182, 414–416
  42. Shadowitz (1975) , p. 172
  43. Sridharan et al. (2010) , p. 947
  44. 1 2 Cook, Jia-Rui C.; Gutro, Rob; Brown, Dwayne; Harrington, J.D.; Fohn, Joe (December 12, 2013). "Hubble Sees Evidence of Water Vapor at Jupiter Moon". NASA . Retrieved December 12, 2013.
  45. "Hubble traces faint signatures of water in exoplanet atmospheres (artist's illustration)". ESA/Hubble Press Release. Retrieved 5 December 2013.
  46. Cottini et al. (2012)
  47. Küppers et al. (2014)
  48. 1 2 Harrington, J.D. (January 22, 2014). "Herschel Telescope Detects Water on Dwarf Planet – Release 14-021". NASA . Retrieved January 22, 2014.
  49. Jakosky, Bruce, et al. "Water on Mars", April 2004, Physics Today, p. 71.
  50. Anatomy of a Comet
  51. Lloyd, Robin. "Water Vapor, Possible Comets, Found Orbiting Star", 11 July 2001, Space.com. Retrieved December 15, 2006.
  52. Clavin, Whitney; Chou, Felicia; Weaver, Donna; Villard; Johnson, Michele (24 September 2014). "NASA Telescopes Find Clear Skies and Water Vapor on Exoplanet". NASA . Retrieved 24 September 2014.